2.3 ΠΡΟΒΛΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ
|
|
- Ἄμμων Αβραμίδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΜΕΡΟΣ Α.3 ΠΡΟΒΛΗΜΑΤΑ 79.3 ΠΡΟΒΛΗΜΑΤΑ Σύμφωνα με τα προηγούμενα δεν μπορούμε να πολογίσομε µε ακρίβεια την τιμή ενός άρρητο αριθμού. Στα διάφορα προβλήματα πο θα σναντούμε άρρητος αριθμούς θα τος προσεγγίζομε με τις ρητές προσεγγίσεις δύο ή τριών δεκαδικών ψηφίων. ΠΡΟΒΛΗΜΑΤΑ ΠΡΟΒΛΗΜΑ 1 Να πολογίσετε το εμβαδόν το σταρού το σχήματος 0 cm Γ A B ( ) 4 5 E Εφαρμόζομε το πθαγόρειο θεώρημα στο ορθογώνιο cm τρίγωνο ΑΒΓ.(ΑΒ, ΑΓ) Κάνομε τις πράξεις. Ο σταρός αποτελείται από 5 τετράγωνα πλεράς cm το καθένα. Επομένως το εμβαδόν το σταρού είναι το εμβαδόν 5 τετραγώνων πλεράς, δηλαδή 5.
2 0 ΜΕΡΟΣ Α -.3- ΠΡΟΒΛΗΜΑΤΑ ΠΡΟΒΛΗΜΑ Το ανάπτγμα σε χαρτόνι μιας πραμίδας αποτελείται από το τετράγωνο ΑΒΓ, πο η διαγώνιός το είναι 10 cm και τέσσερα ισοσκελή τρίγωνα πο οι ίσες πλερές τος είναι cm. Να βρείτε το εμβαδόν της επιφάνειας της πραμίδας. Α Δ 10 Β Γ + 10 Εφαρμόζομε το πθαγόρειο θεώρημα στο ορθογώνιο 100 τρίγωνο ΑΔΓ.(ΑΔ,ΔΓ) 50 Κάνομε τις πράξεις. Χρησιμοποιούμε τον ορισμό της τετραγωνικής ρίζας. 50 7,07 cm Βρίσκομε την τετραγωνική ρίζα το 50 με προσέγγιση εκατοστού ,5 ( 3,535) 64 1,5 Το ανάπτγμα της πραμίδας αποτελείται από 1 τετράγωνο πλεράς 7,07 cmκαι από 4 ίσα ισοσκελή τρίγωνα Πρώτα βρίσκομε το ύψος ενός από τα ισοσκελή τρίγωνα για να βρούμε το εμβαδόν τος.
3 ΜΕΡΟΣ Α.3 ΠΡΟΒΛΗΜΑΤΑ 1 51,5 Για να βρούμε το ύψος το ενός ισοσκελούς εφαρμόζομε 51,5 7,1 cm το πθαγόρειο θεώρημα σε ένα από ατά.. Επομένως το εμβαδόν της πραμίδας είναι το εμβαδόν 4 E 4. + ίσων ισοσκελών τριγώνων σν το εμβαδόν ενός τετραγώνο πλεράς. 7,07.7,1 Βρίσκομε τα παραπάνω εμβαδά χρησιμοποιώντας τος β. τύπος E και Ε αντίστοιχα. 101, ,5 cm ΠΡΟΒΛΗΜΑ 3 y Οι σντεταγμένες των κορφών το τριγώνο ΚΛΜ είναι Κ(0,), Λ(,3), Μ(1,0). Να εξετάσετε αν το τρίγωνο έχει ορθή γωνία. 3 1 Κ Λ 0 1 Μ 3 KM + 1 Εφαρμόζομε το πθαγόρειο θεώρημα στο ορθογώνιο KM τρίγωνο ΟΚΜ.(ΟΚ,ΟΜ1) KM 5 Ομοίως και στα άλλα δύο ορθογώνια τρίγωνα τος σχήματος ΚΛ + 1 ΚΛ 5 ΛΜ ΛΜ 10
4 ΜΕΡΟΣ Α -.3- ΠΡΟΒΛΗΜΑΤΑ ΚΛ ΛΜ ΚΛ + ΚΜ Για να είναι ορθογώνιο το τρίγωνο πρέπει να ισχύει το ΚΜ ΛΜ ΠΡΟΒΛΗΜΑ 4 αντίστροφο το πθαγορείο θεωρήματος. Πράγματι ατό ισχύει. Επομένως το τρίγωνο ΚΛΜ είναι ορθογώνιο στην γωνία Κ πο βρίσκεται απέναντι από την μεγαλύτερη πλερά. Δίνεται ισόπλερο τρίγωνο ΑΒΓ µε πλερά 1 cm. Αν Ε είναι το μέσο της διαμέσο το Α, να πολογίσετε το μήκος ΒΕ. Α Ε Β Γ Δ ΑΔ ΑΔ ΑΔ ΑΔ ΒΕ ΒΕ ΒΕ ΒΕ ΒΕ ΑΒ ΒΔ Εφαρμόζομε το πθαγόρειο θεώρημα στο 1 6 ορθογώνιο τρίγωνο ΑΒΔ.(ΑΒ1,ΒΔ6) 10 Χρησιμοποιούμε τον ορισμό της τετραγωνικής ρίζας ,39 cm ΕΔ ( 5,19) 6, ,94 + ΒΔ + 6 6,94 7,93 cm ΠΡΟΒΛΗΜΑ 5 Βρίσκομε την τετραγωνική ρίζα το 10 με προσέγγιση εκατοστού. Εφαρμόζομε το πθαγόρειο θεώρημα στο ορθογώνιο τρίγωνο ΒΕΔ.(ΕΔ5,19,ΒΔ6) Χρησιμοποιούμε τον ορισμό της τετραγωνικής ρίζας. Οι δύο πλερές ενός τριγώνο είναι 10 cm και cm. Να βρεθεί η τρίτη πλερά το, ώστε να είναι ορθογώνιο (δύο περιπτώσεις).
5 ΜΕΡΟΣ Α.3 ΠΡΟΒΛΗΜΑΤΑ 3 α) β) ,1cm cm 10 + α) Αν η τρίτη πλερά είναι ποτείνοσα εφαρμόζομε το πθαγόρειο θεώρημα. Χρησιμοποιούμε τον ορισμό της τετραγωνικής ρίζας. Βρίσκομε την τετραγωνική ρίζα το 164 με προσέγγιση εκατοστού. β) Αν η τρίτη πλερά είναι κάθετη πλερά ε- φαρμόζομε το πθαγόρειο θεώρημα. Χρησιμοποιούμε τον ορισμό της τετραγωνικής ρίζας. ΠΡΟΒΛΗΜΑ 6 Οι παράλληλες εθείες το παρακάτω σχήματος απέχον 1 cm οριζόντια και κατακόρφα. α) Να ενώσετε δύο κοκίδες, ώστε το μήκος το εθύγραµµο τµήµατος πο σχηματίζεται να είναι: i ) cm, ii) 5 cm, iii) 13 cm. β) Να ενώσετε τέσσερις κοκίδες, ώστε να σχηματιστεί ένα τετράγωνο µε εμβαδόν: i) cm ii) 5 cm iii)13 cm α) i) Αν ενώσομε δύο οποιεσδήποτε κοκίδες διαγώνια τότε με εφαρμογή το πθαγορείο θεωρήματος στο σχηματιζόμενο ορθογώνιο τρίγωνο το μήκος της διαγώνιο είναι: cm
6 4 ΜΕΡΟΣ Α -.3- ΠΡΟΒΛΗΜΑΤΑ α) ii) Αν ενώσομε δύο οποιεσδήποτε κοκίδες διαγώνια όπως φαίνεται στο διπλανό σχήμα τότε με εφαρμογή το πθαγορείο θεωρήματος στο σχηματιζόμενο ορθογώνιο τρίγωνο το μήκος της διαγώνιο είναι : cm α) iii) Αν ενώσομε δύο οποιεσδήποτε κοκίδες διαγώνια όπως φαίνεται στο διπλανό σχήμα τότε με εφαρμογή το πθαγορείο θεωρήματος στο σχηματι- 3 + ζόμενο ορθογώνιο τρίγωνο το μήκος της διαγώνιο είναι: cm β) i) Αν ενώσομε τέσσερις οποιεσδήποτε κοκίδες διαγώνια όπως φαίνεται στο διπλανό σχήμα τότε σύμφωνα με τα προηγούμενα το μήκος της διαγώνιο είναι και το εμβαδόν το δημιοργημένο τετραγώνο είναι Ε ( ) cm. β) ii) Αν ενώσομε δύο κοκίδες διαγώνια σύμφωνα με το ερώτημα α) ii)(πάμε δύο κοκίδες κάτω και μία δεξιά) ώστε να δημιοργηθεί διαγώνιος πλερά με μήκος 5 το εμβαδόν το δημιοργημένο τετραγώνο είναι Ε ( 5 ) 5 cm. β) iii) Ομοίως αν ενώσομε δύο κοκίδες διαγώνια σύμφωνα με το ερώτημα α) iii)(πάμε τρεις κοκίδες κάτω και δύο δεξιά) ώστε να δημιοργηθεί διαγώνιος πλερά με μήκος 13 το εμβαδόν το δημιοργημένο τετραγώνο είναι Ε ( 13 ) 13 cm. ΠΡΟΒΛΗΜΑ 7 Το σήμα της φωτογραφίας έχει σχήμα ισόπλερο τριγώνο µε πλερά 60 cm και στηρίζεται σε κολώνα ύ- ψος m. Να βρείτε την απόσταση της κορφής Κ της πινακίδας από το έδαφος.
7 ΜΕΡΟΣ Α.3 ΠΡΟΒΛΗΜΑΤΑ 5 Για να βρούμε την απόσταση της κορφής Κ από το έδαφος πρέπει να προσθέσομε στα 00 Κ cm πο είναι η απόσταση της κάτω πλεράς της πινακίδας από το έδαφος το μήκος το ύψος 60 cm ΚΝ το τριγώνο ΚΛΜ. ΚΝ ΚΜ ΜΝ Ατό είναι: ΚΝ ΚΝ ΚΝ ,96 cm Λ Ν Μ Οπότε η απόσταση είναι 00+51,9651,96 cm ή,5196 m. ΠΡΟΒΛΗΜΑ Τα βέλη στην άσφαλτο αποτελούνται από ένα ορθογώνιο και ένα ισοσκελές τρίγωνο. Οι διαστάσεις το ορθογωνίο είναι 0 cm και,30 m. Το τρίγωνο έχει βάση 60 cm και ίσες πλερές,1 m. Πόσα περίπο τέτοια βέλη μπορούμε να βάψομε µε 1 κιλό κίτρινο χρώματος το οποίο μπορεί να καλύψει επιφάνεια 540dm ; Ε ΟΡΘΟΓΩΝΙΟΥ cm 46 dm Μετατρέπομε όλες τις μονάδες σε m Βρίσκομε πρώτα το εμβαδόν το ορθογωνίο σύμφωνα με τον (,1) 0,3 τύπο 4,41 0,09 4,3 4,3,075 m Ε ΤΡΙΓΩΝΟΥ 0,6355 m Ε ΒΕΛΟΥΣ ( 0,60)(.,075) 46dm 6,36 dm 6,36 dm ,36 4,9 Βέλη 5βέλη + 10,36 dm Ε ΟΡΘΟΓΩΝΙΟΥ β.. Κατόπιν για να βρούμε το εμβαδόν το τριγώνο πρέπει να βρούμε το μήκος το ύψος το τριγώνο. Το βρίσκομε με την βοήθεια το πθαγορείο θεωρήματος. Βρίσκομε μετά το εμβαδόν το τριγώνο και τα προσθέτομε προσέχοντας όλα τα εμβαδά να είναι στην ίδια μονάδα(dm ). Μετά διαιρούμε την τιμή της επιφάνειας πο μπορεί να καλύψει με το ένα κιλό με την τιμή της επιφάνειας πο βρήκαμε προσθέτοντας τα δύο εμβαδά.
8 6 ΜΕΡΟΣ Α -.3- ΠΡΟΒΛΗΜΑΤΑ ΠΡΟΒΛΗΜΑ 9 Οι μπάρες πο είναι τοποθετημένες στις δύο άκρες το δρόμο απέχον μεταξύ τος m. Ένα φορτηγό έχει περίγραµµα ορθογώνιο µε μήκος 7,5 m και πλάτος,4 m. Είναι δνατόν ο οδηγός το να εκτελέσει ελιγμούς, ώστε το φορτηγό να κάνει αναστροφή; m 7,5 m δ;,4 m δ 7,5 +,4 δ 56,5 + 5,76 δ 6,01 δ Για να βρούμε αν μπορεί να κάνει αναστροφή πρέπει να πολογίσομε την διαγώνιο το περιγράμματος το φορτηγού και αν η διαγώνιος είναι μικρότερη ή το πολύ ίση με την απόσταση m,μεταξύ των δύο δρόμων, τότε ατό μπορεί να γίνει. 6 7,7 m Εφαρμόζομε το πθαγόρειο θεώρημα στο ορθογώνιο τρίγωνο με κάθετες πλερές 7,5 m και,4 m αντίστοιχα και ποτείνοσα δ. Χρησιμοποιούμε τον ορισμό της τετραγωνικής ρίζας. Βρίσκομε την τετραγωνική ρίζα το 6 με προσέγγιση εκατοστού. Άρα το φορτηγό μπορεί να κάνει αναστροφή γιατί δ7,7m<m
9 ΜΕΡΟΣ Α.3 ΠΡΟΒΛΗΜΑΤΑ 7 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΟ Ο ΚΕΦΑΛΑΙΟ 1. Ποιοι από τος επόμενος δεκαδικούς αριθμούς είναι ρητοί και ποιοι άρρητοι; α) 3,1111 β) 3, γ) 3, δ) 7, α) 3,1111 β) 3, γ) 3, δ) 7, Να λύσετε την εξίσωση ( 5 3) ( 5 + 3)( 5 3) ( 5 3) 5 3 ( 5 3) 5 3 α) Είναι άρρητος γιατί δεν μπορεί να γραφεί σαν ρητός αφού τα δεκαδικά ψηφία δεν επαναλαμβάνονται περιοδικά. β) Επειδή είναι περιοδικός δεκαδικός (11 η περίοδος) μπορεί να γραφεί σαν ρητός. γ) Είναι άρρητος γιατί δεν μπορεί να γραφεί σαν ρητός αφού τα δεκαδικά ψηφία δεν επαναλαμβάνονται περιοδικά.. δ) Είναι άρρητος γιατί δεν μπορεί να γραφεί σαν ρητός αφού τα δεκαδικά ψηφία δεν επαναλαμβάνονται περιοδικά ( 5 3) Πολλαπλασιάζομε τος όρος το κλάσματος με την σζγή παράσταση το παρονομαστή. Κατόπιν μετά τις πράξεις απλοποιούμε το κλάσμα. Χωρίζομε γνωστούς από αγνώστος. Χρησιμοποιούμε την επιμεριστική ιδιότητα και τέλος διαιρούμε με τον σντελεστή το αγνώστο. 3. Η διαγώνιος ενός τετραγώνο είναι 4 cm. Να πολογίσετε το εμβαδόν το. + δ 16 4 E cm Έστω η πλερά το τετραγώνο. Χρησιμοποιούμε το πθαγόρειο θεώρημα σε ένα από τα δύο ορθογώνια τρίγωνα πο δημιοργούνται για να πολογίσομε την πλερά το τετραγώνο.
10 ΜΕΡΟΣ Α -.3- ΠΡΟΒΛΗΜΑΤΑ δ4 cm Το εμβαδόν το τετραγώνο είναι Ε Επομένως το εμβαδόν το τετραγώνο είναι η πλερά το τετραγώνο στο τετράγωνο. Άρα είναι cm. -4,4 4. Ένα τρίγωνο έχει πλερές με μήκη 5,, + 1. Αν το ικανοποιεί την σχέση ( + 1)( +) 3 +, τότε: α) Να πολογίσετε το. β) Να αποδείξετε ότι το τρίγωνο είναι ορθογώνιο και να βρείτε και το μήκος της ποτείνοσας. α) + 1 ( )( + ) β) Να πολογίσετε τις παρακάτω παραστάσεις: ( ) ( ) α) γ) ( 1+ )( 1 ) 5 α) Κάνομε τις πράξεις στο πρώτο μέλος (επιμεριστική ιδιότητα).μετά κάνομε διαγραφή το και από τα δύο μέλη (ιδιότητα διαγραφής) χωρισμό γνωστών από αγνώστος βρίσκομε την λύση της εξίσωσης 1. β) Εφόσον το 1 οι τρεις πλερές το τριγώνο είναι 5,1, Εφαρμόζομε το αντίστροφο το πθαγορείο θεωρήματος και βλέπομε ότι το τρίγωνο είναι ορθογώνιο. Η ποτείνοσα είναι η μεγαλύτερη πλερά,δηλαδή ατή πο είναι β) ( ) ( 16) δ) α) ( 5) + ( 5) 5 + β) ( ) ( 16) ( + 4) γ) ( 1+ )( 1 ) 1 + ( ) 1 1 α) Εφαρμόζομε τις ιδιότητες των ριζών ( ) α α, α α, α > 0 β) Ομοίως και εδώ. γ) Εφαρμόζομε την επιμεριστική ιδιότητα.
11 ΜΕΡΟΣ Α.3 ΠΡΟΒΛΗΜΑΤΑ 9 δ) ( 1 4) 5 + ( + 1) , ,73 6,70 + 5,196 1,51 δ) Εφαρμόζομε την επιμεριστική ιδιότητα. Αντικαθιστούμε τις ρίζες με τις προσεγγίσεις τος σε χιλιοστά. 6. Να τοποθετήσετε πάνω στον άξονα των πραγματικών αριθμών τος α- ριθμούς: 1, 5, 13, 1, 5, 10, 50 Μπορούμε να γράψομε όλος τος αριθμούς σε δεκαδική μορφή χρησιμοποιώντας τις ρητές προσεγγίσεις δύο ψηφίων για τος αρρήτος, οπότε έ- χομε: 4,47 5 <,4 5 < 1 < 3,16 10 < 3,61 13 < 4,4 1 < 7, ,47 -,4 3,16
12 90 ΜΕΡΟΣ Α -.3- ΠΡΟΒΛΗΜΑΤΑ ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΑΣΚΗΣΗ 1: Να κκλώσετε τις σωστές απαντήσεις: α) Ένας αριθμός για τον οποίο είναι 36 είναι ο: Α. 1 Β. 7 Γ. -6 Δ. 1 β) Η τετραγωνική ρίζα το 36 είναι: Α. 1 Β. 7 Γ. -6 Δ. 1 γ) Στον άξονα των πραγματικών αριθμών «δεξιότερα» το 13 βρίσκεται ο αριθμός: Α. 3 Β. 10 Γ. 15 Δ. δ) Ο αριθμός είναι ίσος με: Α. 15 Β.1 Γ. 6 Δ.3 ε) Από τος επόμενος αριθμούς, άρρητος είναι ο: 36 Α. 5 Β. Γ. 1,56 Δ ΑΣΚΗΣΗ : Να χαρακτηρίσετε ως Σ (Σωστή) ή Λ (Λανθασμένη) τις επόμενες προτάσεις: α) Αν α,τότε α ΣΩΣΤΟ ΛΑΘΟΣ β) Αν 0 α,τότε ( ) α α γ) Επειδή 1,731 < 3 < 1, 73, με προσέγγιση χιλιοστού έχομε: 3 1, 73 ΑΣΚΗΣΗ 3: Το τρίγωνο ΑΒΓ είναι ισόπλερο με πλερά α 5 cm. Να πολογίσετε το ύψος το. ΑΣΚΗΣΗ 4: Η διαγώνιος ενός τετραγώνο είναι δ 1 cm. Να πολογίσετε την πλερά το.
1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ. Ορισμοί. Πυθαγόρειο θεώρημα. Δηλαδή Ε 1 =Ε 2 +Ε 3 ή α 2 =β 2 +γ 2 Το αντίστροφο του πυθαγορείου θεωρήματος
ΜΕΡΟΣ 1.4 ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ 37 Ορισμοί 1.4 ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ Πθαγόρειο θεώρημα Σε κάθε ορθογώνιο τρίγωνο το άθροισμα των τετραγώνων των δύο καθέτων πλερών είναι ίσο µε το τετράγωνο της ποτείνοσας. Στο διπλανό
Διαβάστε περισσότερα1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ
1 1.4 ΠΥΘΑΟΡΕΙΟ ΘΕΩΡΗΜΑ ΘΕΩΡΙΑ 1. Πυθαγόρειο θεώρηµα : Σε κάθε ορθογώνιο τρίγωνο το τετράγωνο της υποτείνουσας είναι ίσο µε το άθροισµα των τετραγώνων των καθέτων πλευρών. γ α α = β + γ β. Αντίστροφο Πυθαγορείου
Διαβάστε περισσότεραΚάθε αριθμός που δεν είναι ρητός, ονομάζεται άρρητος αριθμός.
ΜΕΡΟΣ Α. ΑΡΡΗΤΟΙ ΑΡΙΘΜΟΙ-ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 69. ΑΡΡΗΤΟΙ ΑΡΙΘΜΟΙ-ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΡΡΗΤΟΙ ΑΡΙΘΜΟΙ Κάθε αριθμός που δεν είναι ρητός, ονομάζεται άρρητος αριθμός. Για παράδειγμα ο αριθμός που στην προηγούμενη
Διαβάστε περισσότεραΤετραγωνική ρίζα πραγματικού αριθμού
Τετραγωνική ρίζα του θετικού αριθμού α, ονομάζεται ο θετικός αριθμός χ, όταν χ = α. Ορίζουμε επίσης ότι: 0 0. Δηλαδή αν α, x > 0 και x, τότε x. Συνέπειες του ορισμού Για κάθε πραγματικό αριθμό x ισχύει:
Διαβάστε περισσότεραΒ Γυμνασίου, Μέρο Α, Κεφάλαιο 2, Πραγματικοί αριθμοί
Β Γυμνασίου, Μέρο Α, Κεφάλαιο, Πραγματικοί αριθμοί v 1.1 8 Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά B Γυμνασίου Μέρο Α - Κεφάλαιο, Α..1 Τετραγωνική ρίζα ενό θετικού αριθμού α, λέγεται ο
Διαβάστε περισσότεραΓ Ε Ω Μ Ε Τ Ρ Ι Α - Κ Ε Φ Α Λ Α Ι Ο 1
Ε Ω Μ Ε Τ Ρ Ι Α - Κ Ε Φ Α Λ Α Ι Ο 1 Εμβαδά Επίπεδων Σχημάτων & Πυθαγόρειο Θεώρημα Η συλλογή των ασκήσεων προέρχεται από μια ποικιλία πηγών, σημαντικότερες από τις οποίες είναι το Mathematica.gr, παλιότερα
Διαβάστε περισσότερα2.4 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ 30 Ο 45 Ο 60 Ο
.4 ΤΡΙΩΝΟΜΕΤΡΙΚΟΙ ΡΙΘΜΟΙ 0 Ο 45 Ο 60 Ο ΘΕΩΡΙ. Τριγωνοµετρικοί αριθµοί 0 ο, 45 ο, 60 ο : ηµίτονο συνηµίτονο εφαπτοµένη 0 ο 45 ο 60 ο ΣΚΗΣΕΙΣ. Στο διπλανό πίνακα, σε κάθε πληροφορία της στήλης, να επιλέξετε
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ
ΜΕΡΟΣ ΚΕΦΛΙΟ 1 Ο ΕΩΜΕΤΡΙ 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ 1. Ποια ονομάζονται κύρια και ποια δευτερεύοντα στοιχεία τριγώνων; Κύρια στοιχεία ενός τριγώνου ονομάζουμε τις πλευρές και τις γωνίες του. Δευτερεύοντα στοιχεία
Διαβάστε περισσότεραΜ Α Θ Η Μ Α Τ Ι Κ Α Β Γ Υ Μ Ν Α Σ Ι Ο Υ
Μ Α Θ Η Μ Α Τ Ι Κ Α Β Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Ερωτήσεις θεωρίας Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Δώστε ένα παράδειγμα σχετικό με την έννοια της μεταβλητής 2. Να αναφέρετε
Διαβάστε περισσότερα5. Τα μήκη των βάσεων ενός τραπεζίου είναι 8 cm και 12 cm και το ύψος του είναι 7. Να βρείτε το εμβαδό του.
1 ΑΣΚΗΣΕΙΣ 1. Ένα παραλληλόγραμμο ΑΒΓΔ έχει μια πλευρά ίση με 48 και το αντίστοιχο σε αυτή την πλευρά ύψος είναι 4,5 dm. Να βρείτε το εμβαδό του παραλληλογράμμου 2. Ένα παραλληλόγραμμο έχει εμβαδό 72 2
Διαβάστε περισσότεραΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2017
ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΒΑΣΙΛΕΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 06 07 Βαθμός αριθμητικά:..... / 00 =.... / 0 Ολογράφως:...... / 0 Υπογραφή Καθηγητή/τριας:..... ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 07 Μάθημα: ΜΑΘΗΜΑΤΙΚΑ
Διαβάστε περισσότεραΘΕΩΡΙΑ ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: ΘΕΜΑ 1 ο. A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ;
ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: B ΘΕΩΡΙΑ ΘΕΜΑ 1 ο A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ; B. Να αντιγράψετε και να συμπληρώσετε τις παρακάτω σχέσεις: i. Αν α 0,
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ Α': ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ ο: Αλγεβρικές παραστάσεις Παράγραφος A..: Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) Β: Πράξεις με μονώνυμα Τα σημαντικότερα σημεία
Διαβάστε περισσότεραΤι ονομάζουμε εμβαδόν μιας επίπεδης επιφάνειας; Αναφέρετε ονομαστικά τις μονάδες μέτρησης επιφανειών.
1 Ονοματεπώνυμο μαθητή : Ημερομηνία :.../.../20... Μαθηματικές έννοιες: Εμβαδόν, Τετραγωνικό Μέτρο, Τετραγωνικό Δεκάμετρο, Τετραγωνικό Εκατοστόμετρο, Τετραγωνικό Χιλιοστόμετρο, Στρέμμα. Θυμόμαστε- Μαθαίνουμε:
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ
ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών
Διαβάστε περισσότεραΕ Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Α Σ.
Μ Ν Σ Υ Κ Σ Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Σ. 1. Να γράψετε τους τύπους του εμβαδού των : (α) τετραγώνου (β) ορθογωνίου παραλληλογράμμου (γ) παραλληλογράμμου (δ) τριγώνου (ε) ορθογωνίου τριγώνου (στ) τραπεζίου.
Διαβάστε περισσότερα1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ΕΠΑΝΑΛΗΨΕΙΣ- ΣΥΜΠΛΗΡΩΣΕΙΣ
ΜΕΡΟΣ Α. ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ΕΠΑΝΑΛΗΨΕΙΣ- ΣΥΜΠΛΗΡΩΣΕΙΣ Α Οι πραγματικοί αριθμοί και οι πράξεις τους Όπως γνωρίζουμε, το σύνολο των φυσικών αριθμών Ν είναι
Διαβάστε περισσότερα1.3. Εμβαδά επίπεδων σχημάτων
1.3. μβαδά επίπεδων σχημάτων 1 cm 1 cm μβαδόν τετραγώνο ς θεωρήσομε ένα τετράγωνο πλεράς cm. Μπορούμε να το χωρίσομε σε = = «τετραγωνάκια» πλεράς 1 cm, καθένα από τα οποία έχει εμβαδόν 1 cm. Άρα, το τετράγωνο
Διαβάστε περισσότεραΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο
ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο τέλος της πρότασης αν αυτή είναι Σωστή και Λ αν αυτή είναι Λάθος: ύο τρίγωνα είναι ίσα αν έχουν ίσες
Διαβάστε περισσότερα3.4 Ι ΙΟΤΗΤΕΣ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ
1 3.4 ΙΙΤΗΤΕΣ ΠΡΛΛΗΛΡΜΜΥ ΡΘΩΝΙΥ ΡΜΥ ΤΕΤΡΩΝΥ ΤΡΠΕΖΙΥ ΙΣΣΚΕΛΥΣ ΤΡΠΕΖΙΥ ΘΕΩΡΙ 1. Ιδιότητες παραλληλογράµµου Το σηµείο τοµής των διαγωνίων του είναι κέντρο συµµετρίας (Το κέντρο συµµετρίας) ι διαγώνιες διχοτοµούνται,
Διαβάστε περισσότεραΑΣΚΗΣΗ 1 Ποιο από τα δύο σχήματα Α, Β έχει το μεγαλύτερο εμβαδόν;
ΜΕΡΟΣ Β. ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ-ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ 05. ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΗΣ ΕΠΙΦΑΝΕΙΑΣ Ορισμός Το εμβαδόν μιας επίπεδης επιφάνειας είναι ένας θετικός αριθμός, που εκφράζει την έκταση που καταλαμβάνει η επιφάνεια
Διαβάστε περισσότεραΜαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.
Διαβάστε περισσότερα1 ΘΕΩΡΙΑΣ...με απάντηση
1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.
Διαβάστε περισσότεραΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ
ΜΕΡΟΣ Α ο ΚΕΦΑΛΑΙΟ. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών. Ονομάζεται αλγεβρική παράσταση μια παράσταση
Διαβάστε περισσότεραΕφαπτομένη Οξείας Γωνίας - Φύλλο Εργασίας Απέναντι και προσκείμενη πλευρά σε γωνία ορθογωνίου τριγώνου. Εφαπτομένη Οξείας Γωνίας
Εφαπτομένη Οξείας Γωνίας - Φύλλο Εργασίας Απέναντι και προσκείμενη πλευρά σε γωνία ορθογωνίου τριγώνου 1. Στο ορθογώνιο τρίγωνο ΑΒΓ του διπλανού σχήματος η πλευρά ΒΓ που βρίσκεται απέναντι από την ορθή
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου
Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται
Διαβάστε περισσότεραΚεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί
ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΙΚΩΝ ΕΝΝΟΙΙΩΝ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Α ΤΑΞΗΣ Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί Α. 7. 1 1. Τι είναι τα πρόσημα και πως χαρακτηρίζονται οι αριθμοί από αυτά; Τα σύμβολα
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου, Κεφάλαιο 1ο
1 Ερωτήσεις θεωρίας Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ 1. Τι ονομάζουμε μονώνυμο;. Τι ονομάζουμε ρητή αλγεβρική παράσταση; 3. Ποιες τιμές δεν μπορούν να πάρουν οι μεταβλητές
Διαβάστε περισσότεραΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΑ
ΡΠΤΕΣ ΠΡΟΩΙΚΕΣ ΕΞΕΤΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΪΟΥ - ΙΟΥΝΙΟΥ ΜΘΗΜΤΙΚ ΣΤ () ΘΕΩΡΙ ΘΕΜ 1: (α) Να χαρακτηρίσετε καθεμία από τις παρακάτω προτάσεις ως «Σωστή» ή «Λάθος» : 1. Η ευθεία με εξίσωση y = 3x περνάει από την αρχή
Διαβάστε περισσότεραΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ Ερώτηση 1 η Ποια καλούνται κύρια και ποια δευτερεύοντα στοιχεία ενός τριγώνου; Τι ονομάζεται τριγωνική ανισότητα; Κύρια στοιχεία ενός τριγώνου είναι οι πλευρές και οι γωνίες του. Οι
Διαβάστε περισσότεραΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8
ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ
2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και
Διαβάστε περισσότεραΔιαίρεση ευθυγράμμου τμήματος σε ν ίσα τμήματα
ΜΕΡΟΣ Β. ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ 7. ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ Ίσα τμήματα μεταξύ παραλλήλων ευθειών Αν παράλληλες ευθείες ορίζουν ίσα τμήματα σε μια ευθεία, τότε θα ορίζουν ίσα τμήματα και σε οποιαδήποτε
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β
ΥΜΝΑΣΙΟ - 010 48 Α. Τι λέγεται τετραγωνική ρίζα ενός θετικού αριθμού α και πώς συμβολίζεται αυτή; Β. Ποιος αριθμός ονομάζεται άρρητος;. Πώς ορίζονται οι πραγματικοί αριθμοί; Α. Τι λέγεται ημίτονο μιας
Διαβάστε περισσότεραΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ
ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,
Διαβάστε περισσότεραΜαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία
Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού
Διαβάστε περισσότεραΕπαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου
Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου Θέµα 1 Α. Να υπολογίσετε την πλευρά λ και το απόστηµα α τετραγώνου εγγεγραµµένου σε κύκλο (Ο, R) συναρτήσει της ακτίνας R (10 Μονάδες) Β. Να χαρακτηρίσετε τις
Διαβάστε περισσότεραΣυνοπτική θεωρία. Οι σημαντικότερες αποδείξεις. Ερωτήσεις αντικειμενικού τύπου. Ασκήσεις. Διαγωνίσματα
Γ Ε Ω Μ Ε Τ Ρ Ι Α Β Λ Υ Κ Ε Ι Ο Υ Συνοπτική θεωρία Οι σημαντικότερες αποδείξεις Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα Μαθηματικός Περιηγητής 1 ΚΕΦΑΙΑΟ 9 ο : ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ
Διαβάστε περισσότεραΕπαναληπτικές Ασκήσεις
Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την
Διαβάστε περισσότεραΑ σ κήσεις για τ ι ς μέρες των Χριστ ουγεννι άτ ι κ ων διακ οπών
Μαθηματικά Β Γυμνασίου Α σ κήσεις για τ ι ς μέρες των Χριστ ουγεννι άτ ι κ ων διακ οπών 1. Να χρησιμοποιήσετε μεταβλητές για να εκφράσετε με μια αλγεβρική παράσταση τις παρακάτω φράσεις: a. Η διαφορά δυο
Διαβάστε περισσότεραΙωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται αριθμητική και τι αλγεβρική παράσταση; Μία παράσταση, που περιέχει πράξεις με αριθμούς ονομάζεται αριθμητική παράσταση. Μία παράσταση, που περιέχει πράξεις
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΑΠΟΣΤΟΛΟΥ ΑΝΔΡΕΑ ΕΜΠΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΙΟΥΝΙΟΥ ΧΡΟΝΟΣ : 2 Ώρες Υπογραφή :
ΓΥΜΝΑΣΙΟ ΑΠΟΣΤΟΛΟΥ ΑΝΔΡΕΑ ΕΜΠΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2018 2019 ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΙΟΥΝΙΟΥ 2019 ΜΑΘΗΜΑ : Μαθηματικά ΤΑΞΗ : Γ ΗΜΕΡΟΜΗΝΙΑ : 5 / 6 / 2019 ΧΡΟΝΟΣ : 2 Ώρες Βαθμός : Ολογράφως
Διαβάστε περισσότεραΕνότητα: Τετράπλευρα (Ιδιότητες Ταξινόμηση) Keywords: parallelogram, rectangular, rhombus, square, diagonals, height.
Νέο Αναλυτικό Πρόγραμμα Σπουδών Σχολικό έτος 2016-17 Σπύρος Γ. Γλένης spyrosglenis@gmail.com Ενότητα: Τετράπλευρα (Ιδιότητες Ταξινόμηση) Keywords: parallelogram, rectangular, rhombus, square, diagonals,
Διαβάστε περισσότεραΑσκήσεις Επανάληψης Τάξη Δ Εν. 1: Διανύσματα
Ασκήσεις Επανάληψης Τάξη Δ 016-017 Εν. 1: Διανύσματα 1. Να ονομάσετε τα στοιχεία ενός διανύσματος.. Δίνεται το παραλληλόγραμμο ΑΒΓΔ, όπως φαίνεται στο σχήμα. Να χαρακτηρίσετε ΣΩΣΤΟ ή ΛΑΘΟΣ τις πιο κάτω
Διαβάστε περισσότεραΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ
ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε
Διαβάστε περισσότεραΣε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ
ΚΥΠΡΙΑΝΟΣ ΕΥΑΓΓΕΛΟΣ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Το τετράγωνο μιας κάθετης πλευράς είναι ίσο με την υποτείνουσα επί την προβολή της πλευράς στην υποτείνουσα. ΑΒ 2 = ΒΓ ΑΔ ή ΑΓ 2 = ΒΓ ΓΔ Σε κάθε
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 3: Πραγματικοί αριθμοί Πυθαγόρειο Θεώρημα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 2: Πραγματικοί
Διαβάστε περισσότερα5o Φύλλο Ασκήσεων. Γενικής Παιδείας. ΑΣΚΗΣΗ 1η. ΑΣΚΗΣΗ 2η. Να βρείτε τα διαστήματα μονοτονίας και τα ακρότατα των συναρτήσεων :
ΛΥΚΕΙΟ Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Λ Υ Κ Ε Ι Ο Υ Κ E Φ Α Λ Α Ι Ο Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ 1ο Λ Ο Γ Ι Σ Μ Ο Σ ΤΡΙΜΗΣ ΠΑΝΤΕΛΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Γενικής Παιδείας 5o Φύλλο Ασκήσεων ΑΣΚΗΣΗ 1η Να βρείτε τα διαστήματα μονοτονίας
Διαβάστε περισσότεραΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΝΑ ΑΠΑΝΤΗΣΕΤΕ ΕΝΑ ΑΠΟ ΤΑ ΔΥΟ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΚΑΙ ΔΥΟ ΑΠΟ ΤΙΣ ΤΡΕΙΣ ΑΣΚΗΣΕΙΣ ΟΙ ΑΣΚΗΣΕΙΣ ΚΑΙ ΤΑ ΘΕΜΑΤΑ ΤΗΣ ΘΕΩΡΙΑΣ ΕΙΝΑΙ
Διαβάστε περισσότεραΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.
ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν
Διαβάστε περισσότεραΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΓΕΛ ΕΡΕΤΡΙΑΣ 9/6/2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΓΕΛ ΕΡΕΤΡΙΑΣ 9/6/016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α A1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας, τη λέξη Σωστό ή Λάθος,
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο
Διαβάστε περισσότερα3, ( 4), ( 3),( 2), 2017
ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και
Διαβάστε περισσότεραΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 20/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 0/6/0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας δίπλα στο γράμμα
Διαβάστε περισσότεραΌταν λύνοντας μια εξίσωση καταλήγουμε στην μορφή 0x=0,τότε λέμε ότι
ΜΕΡΟΣ Α. ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ 9. ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ Χρήσιμες ιδιότητες πράξεων Αν αβ τότε α+γβ+γ Αν αβ τότε α-γβ-γ Αν αβ τότε α γ α β γ β Αν αβ τότε γ γ με γ 0 Η έννοια της εξίσωσης Μια ισότητα, που αληθεύει
Διαβάστε περισσότεραΕπαναληπτικές ασκήσεις για το Πάσχα.
Μαθηματικά B Γυμνασίου Επαναληπτικές ασκήσεις για το Πάσχα. Άλγεβρα. Κεφάλαιο 1 ο. 1. Να υπολογιστούν οι παρακάτω αριθμητικές παραστάσεις : 1 7 1 7 1 1 ) - 1 4 : ) -1 1 : 1 4 10 9 6. Να λυθούν οι εξισώσεις:
Διαβάστε περισσότεραΠροσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α.
Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 014-015 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α. ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ
ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Βασικά θεωρήματα Σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του είναι ίσο με το γινόμενο της υποτείνουσας επί την προβολή της
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε
Διαβάστε περισσότερα(1) (2) A ΑE Α = AΒ (ΑΒΕ) (Α Ε)
9. Τα τρίγωνα και έχουν κοινή γωνία, άρα: () () A E AB A E A (1) Όµοια τα τρίγωνα και, άρα: () () A E AB A A () E Όµως από το θεώρηµα του Θαλή: A A () ( // ) () () πό (1), (), () έχουµε. () () Άρα () ()
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο «ΓΕΩΜΕΤΡΙΑ»
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΣ ΜΘΗΜΤΙΚ ΥΜΝΣΙΟΥ ΜΕΡΟΣ ο «ΕΩΜΕΤΡΙ» Τι καλείται εμαδόν επίπεδης επιφάνειας; Το εμαδόν μιας επίπεδης επιφάνειας είναι ένας θετικός αριθμός, πο εκφράζει την έκταση πο καταλαμάνει η επιφάνεια
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΕ ΟΛΟ ΤΟ ΚΕΦΑΛΑΙΟ 2
ΜΑΘΗΜΑΤΙΚΑ Β ΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΑΣΚΗΣΕΙΣ ΣΕ ΟΛΟ ΤΟ ΚΕΦΑΛΑΙΟ 2 ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΤΡΙΩΝΟΜΕΤΡΙΚΟΥΣ ΑΡΙΘΜΟΥΣ 1. Από το διπλανό σχήμα να βρείτε τα: 2. Σε ένα ορθογώνιοι τρίγωνο (Α = 90 ) είναι και Α
Διαβάστε περισσότερα2 η δεκάδα θεµάτων επανάληψης
1 η δεκάδα θεµάτων επανάληψης 11. Σε κάθε τρίγωνο να αποδείξετε ότι το τετράγωνο µιας πλευράς που βρίσκεται απέναντι από οξεία γωνία, ισούται µε το άθροισµα των τετραγώνων των δύο άλλων πλευρών ελαττωµένο
Διαβάστε περισσότεραΟι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.
ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» ΤΑΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ 1. Μεσοκάθετος ενός ευθύγραμμου τμήματος ΑΒ ονομάζεται η ευθεία που είναι κάθετη
Διαβάστε περισσότεραΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii)
ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ 1-13 1 Ποιοι αριθμοί ονομάζονται ομόσημοι και ποιοι ετερόσημοι; 1 Δίνονται οι αριθμοί: 1,,.1,,, 9, + 3, 3 3.1 Ποιοι από αυτούς είναι θετικοί και ποιοι αρνητικοί;.
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012
ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011 2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012 ΜΑΘΗΜΑ : Μαθηματικά ΒΑΘΜΟΣ ΤΑΞΗ : Β ΑΡΙΘΜΗΤΙΚΩΣ : ΔΙΑΡΚΕΙΑ : 2 ώρες ΟΛΟΓΡΑΦΩΣ : ΗΜΕΡΟΜΗΝΙΑ : 15.06.2012 ΥΠ. ΚΑΘΗΓΗΤΗ/ΤΡΙΑΣ:
Διαβάστε περισσότερα3. α) Να λύσετε την εξίσωση x 2 = 3. β) Να σχηματίσετε εξίσωση δευτέρου βαθμού με ρίζες, τις ρίζες της εξίσωσης του α) ερωτήματος.
. Δίνεται η εξίσωση λ + 4(λ ) = 0, με παράμετρο λ R α) Να βρείτε τη διακρίνουσα της εξίσωσης. β) Να αποδείξετε ότι η παραπάνω εξίσωση έχει ρίζες πραγματικές για κάθε λ R. γ) Αν, είναι οι ρίζες της παραπάνω
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Οι ασκήσεις του φυλλαδίου δεν είναι ανά κεφάλαιο, αλλά τυχαία με σκοπό την τελική επανάληψη, και είναι θέματα εξετάσεων από διάφορα σχολεία του νομού Σερρών Σέρρες
Διαβάστε περισσότεραΓεωμετρία. Κεφ 1 ο : Γεωμετρια.
Μαθηματικά Γ Γυμνασίου Γεωμετρία. Κεφ 1 ο : Γεωμετρια. Μέρος Α Θεωρία. 1. Με τι είναι ίσο το άθροισμα των γωνιών ενός τριγώνου; 2. Ποιο τρίγωνο λέγετε οξυγώνιο αμβλυγώνιο ορθογώνιο. 3. Ποιο τρίγωνο λέγετε
Διαβάστε περισσότεραΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ
qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj klzxcvλοπbnαmqwertyuiopasdfghjklz ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ
Διαβάστε περισσότερα66 Γεωμετρία Σχήμα 11.1: Το ΜΝ είναι κοινό μέτρο των και ΓΔ. τόσο ανατρεπτική που απαγόρευσαν να διαδοθεί αυτή η γνώση. Οταν μάλιστα ο *** παρέβει την
Κεφάλαιο 11 Αναλογίες, Ομοιότητα Η έννοια του λόγου ορίζεται στο πέμπτο βιβλίο των Στοιχείων του Ευκλείδη ως εξής: Λόγος εστί δύο μεγεθών ομογενών η κατά πηλικότητά ποια σχέσις Λόγον έχειν προς άλληλα
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x. Να λυθούν οι εξισώσεις: α) 3x x 3 3 5x x β) 4 3 x x x 0
Διαβάστε περισσότεραβ =. Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα 1 Να βρείτε την τιμή της παράστασης: 3β + α α 3β αν δίνεται ότι: 3
Β ΓΥΜΝΑΣΙΟΥ Να βρείτε την τιμή της παράστασης: α αν δίνεται ότι: 3 β =. 3β + α α 3β 13 Α= 10 +, β α 3 Στο διπλανό σχήμα το τρίγωνο ΑΒΓ είναι ισοσκελές με ΑΒ = ΑΓ και Γ= ˆ Α ˆ. Το τετράπλευρο ΑΓΔΕ είναι
Διαβάστε περισσότεραΛ υ σ α ρ ι. Μ α θ η μ α τ ι κ α B Γ υ μ ν α σ ι ο υ. Α λ γ ε β ρ α. Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς
Λ υ σ α ρ ι Μ α θ η μ α τ ι κ α B Γ υ μ ν α σ ι ο υ Α λ γ ε β ρ α Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς 1 E ν ν ο ι α Μ ε τ α β λ η τ η ς Α λ γ. Π α ρ α σ τ α σ ε ι ς Ε ρ ω τ η σ ε ι ς Κ α
Διαβάστε περισσότερα4.5 Ο ΚΩΝΟΣ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥ
1 4.5 Ο ΚΩΝΟΣ ΚΙ Τ ΣΤΟΙΧΕΙ ΤΟΥ ΘΕΩΡΙ 1. Κώνος : ν φανταστούµε ότι το ορθογώνιο τρίγωνο στρέφεται γύρω από την κάθετη πλευρά του κατά µία πλήρη περιστροφή, προκύπτει το στερεό το οποίο λέγεται κώνος. 2.
Διαβάστε περισσότεραΜαθηματικά προσανατολισμού Β Λυκείου
Μαθηματικά προσανατολισμού Β Λυκείου Συντεταγμένες Διανύσματος wwwaskisopolisgr wwwaskisopolisgr Συντεταγμένες στο επίπεδο Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι το διάνυσμα i OI
Διαβάστε περισσότεραΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα
ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ 1 ο δείγμα Α. Θεωρία Α) Πότε ένα πολύγωνο λέγεται κανονικό; Β) Να δώσετε τον ορισμό της εγγεγραμμένης γωνίας σε κύκλο (Ο, ρ). (Να γίνει σχήμα) Γ) Ποια
Διαβάστε περισσότεραΜαθηματικά Α Γυμνασίου
Μαθηματικά Α Γυμνασίου Επαναληπτικές ασκήσεις Στέλιος Μιχαήλογλου Ασκήσεις. Δίνεται η παράσταση 7 : α) Να αποδείξετε ότι Α=8. β) Ο αριθμός Α είναι πρώτος ή σύνθετος; γ) Να αναλύσετε τον αριθμό Α σε γινόμενο
Διαβάστε περισσότεραΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...
Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ
ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό σας. ΚΕΦΑΛΑΙΟ 1 1. Να συμπληρώσετε
Διαβάστε περισσότεραΙωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; Το άθροισμα ενός φυσικού αριθμού με το 0 ισούται με τον ίδιο αριθμό. α+0=α Αντιμεταθετική ιδιότητα. Με βάση την οποία
Διαβάστε περισσότεραΟρισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0.
ΜΕΡΟΣ Α. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ,α 0 337. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ ME α 0 Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής = α + β + γ με α 0. Η συνάρτηση = α +β+γ με α > 0 Η γραφική παράσταση της συνάρτησης
Διαβάστε περισσότεραΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»
ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 2018 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ
ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 017-018 ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 018 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Γ Γυμνασίου ΗΜΕΡΟΜΗΝΙΑ: Δευτέρα, 4 Ιουνίου 018 ΧΡΟΝΟΣ: ώρες ΒΑΘΜΟΣ:. ΥΠΟΓΡΑΦΗ ΚΑΘΗΓΗΤΗ/ΤΡΙΑΣ
Διαβάστε περισσότεραΜΕΡΟΣ Α 2 Ô. º π. Πραγματικοί αριθμοί
ΜΕΡΟΣ Α º π Ô Πραγματικοί αριθμοί ΕΙΣΑΩΙΚΟ ΣΗΜΕΙΩΜΑ ª ÚÈ ÙÒÚ Ô ÌÂ Û Ó ÓÙ ÛÂÈ Ê ÛÈÎÔ, Î Ú ÈÔ Î È ÚËÙÔ ÚÈıÌÔ. ÙÔ ÙÂÏÂ Ù Ô Â ÌÂ ÂÍÂÙ ÛÂÈ ÙË ÂÎ ÈÎ ÙÔ apple Ú ÛÙ ÛË, Ë ÔappleÔ Ù Ó ÁÓˆÛÙ ÛÂ appleï appleâúèô
Διαβάστε περισσότερα3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή
ΣΥΝΑΡΤΗΣΗ y=α/ Η ΥΠΕΡΒΟΛΗ.5 Η ΣΥΝΑΡΤΗΣΗ y=α/-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή Δύο ποσά λέγονται αντιστρόφως ανάλογα, όταν η τιμή του ενός πολλαπλασιαστεί επί έναν αριθµό, τότε η τιµή του
Διαβάστε περισσότεραστ) συν30 0 ΑΠΑΝΤΗΣΗ Εύκολα αντιστοιχίζουμε σύμφωνα με τον παραπάνω πίνακα α) i, β) iii, γ) i, δ) v,ε) iii,στ) v
ΜΕΡΟΣ Β. ΤΡΙΩΝΟΜΕΤΡΙΚΟΙ ΡΙΘΜΟΙ ΤΩΝ ΩΝΙΩΝ,5 ΚΙ 79. ΤΡΙΩΝΟΜΕΤΡΙΚΟΙ ΡΙΘΜΟΙ ΤΩΝ ΩΝΙΩΝ,5 ΚΙ Πίνακας τριγωνομετρικών αριθμών των γωνιών,5 και ημίτονο συνημίτονο εφαπτομένη 5 ΕΡΩΤΗΣΕΙΣ ΚΤΝΟΗΣΗΣ. Σε κάθε αριθμό
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΙΣ ΔΕΥΤΕΡΟΒΑΘΜΙΕΣ ΕΞΙΣΩΣΕΙΣ
1. Να λύσετε τις εξισώσεις ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΔΕΥΤΕΡΟΒΑΘΜΙΕΣ ΕΞΙΣΩΣΕΙΣ 3 50 3 5 0 0 ή 3 5 0 0 ή 3 5 0 ή 8 50 8 5 αδύνατη 3 60 3 6 6 3 3 4 510, α = 4, β = -5 και γ = 1 Δ = 4 5 4 4 15169 5 9 4 53 8 1 ή 4 410
Διαβάστε περισσότεραΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ' ΓΥΜΝΑΣΙΟΥ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ ΘΕΩΡΙΑ :
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ' ΓΥΜΝΑΣΙΟΥ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Θέμα 1 ον ΘΕΩΡΙΑ : α) Τι καλείται αριθμητική παράσταση και τι καλείται αλγεβρική παράσταση ; β) Να συμπληρώσετε
Διαβάστε περισσότεραΒασικές Γεωμετρικές έννοιες
Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο
Διαβάστε περισσότερα: :
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
Διαβάστε περισσότερα4.4 Η ΠΥΡΑΜΙ Α ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ
1 4.4 Η ΠΥΡΜΙ ΚΙ Τ ΣΤΟΙΧΕΙ ΤΗΣ ΘΕΩΡΙ 1. Πυραµίδα Ονοµάζεται ένα στερεό του οποίου µία έδρα είναι ένα οποιοδήποτε πολύγωνο και όλες οι άλλες έδρες του είναι τρίγωνα µε κοινή κορυφή. ύο πυραµίδες φαίνονται
Διαβάστε περισσότεραΑ ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους
Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΠΑΡΑΓΡΑΦΟΣ Β.1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΣΚΗΣΕΙΣ
ΠΑΡΑΓΡΑΦΟΣ Β.1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΣΚΗΣΕΙΣ 1) Στον παρακάτω πίνακα τα ευθύγραμμα τμήματα ΑΒ, ΑΓ και ΒΓ είναι οι πλευρές ενός o ορθογωνίου τριγώνου ΑΒΓ με Â 90. Να συμπληρώσετε τον πίνακα αυτό. ΑΒ 6 3
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. Μέρος Β Κεφάλαιο 1ο Εμβαδά επίπεδων σχημάτων Πυθαγόρειο Θεώρημα 1.4 Πυθαγόρειο Θεώρημα
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Μέρος Β Κεφάλαιο 1ο Εμβαδά επίπεδων σχημάτων Πυθαγόρειο Θεώρημα 1.4 Πυθαγόρειο Θεώρημα Τι παρατηρήσατε στο video; 1η δραστηριότητα (Φύλλο Εφαρμογής (1) Στο ορθογώνιο τρίγωνο ΑΒΓ
Διαβάστε περισσότερα2 Ο ΓΥΜΝΑΣΙΟ ΚΕΡΚΥΡΑΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 2010 ΤΑΞΗ: Β ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ
Ο ΓΥΜΝΑΣΙΟ ΚΕΡΚΥΡΑΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 00 ΤΑΞΗ: Β ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΩΡΙΑ Α. Να αντιστοιχίσετε κάθε στοιχείο της πρώτης στήλης με το αντίστοιχο στοιχείο
Διαβάστε περισσότερα6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ
6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ ΘΕΩΡΙΑ. Λόγος οµοειδών µεγεθών : Ονοµάζουµε λόγο δύο οµοιειδών µεγεθών, που εκφράζονται µε την ίδια µονάδα µέτρησης, το πηλίκο των µέτρων τους. 2. Αναλογία: Η ισότητα δύο
Διαβάστε περισσότερα