1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ. Ορισμοί. Πυθαγόρειο θεώρημα. Δηλαδή Ε 1 =Ε 2 +Ε 3 ή α 2 =β 2 +γ 2 Το αντίστροφο του πυθαγορείου θεωρήματος
|
|
- Ἥλιος Βυζάντιος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΜΕΡΟΣ 1.4 ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ 37 Ορισμοί 1.4 ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ Πθαγόρειο θεώρημα Σε κάθε ορθογώνιο τρίγωνο το άθροισμα των τετραγώνων των δύο καθέτων πλερών είναι ίσο µε το τετράγωνο της ποτείνοσας. Στο διπλανό σχήμα το εμβαδόν το μεγάλο τετραγώνο Ε 1 (πο δημιοργείται με πλερά την ποτείνοσα) είναι ίσο με το άθροισμα των εμβαδών των δύο μικρών τετραγώνων Ε και Ε 3 (πο δημιοργούνται με πλερές τις δύο κάθετες πλερές αντίστοιχα) ηλαδή Ε 1 =Ε +Ε 3 ή α =β +γ Το αντίστροφο το πθαγορείο θεωρήματος ν σε ένα τρίγωνο, το τετράγωνο της μεγαλύτερης πλεράς είναι ίσο µε το άθροισμα των τετραγώνων των δύο άλλων πλερών, τότε η γωνία πο βρίσκεται απέναντι από τη μεγαλύτερη πλερά είναι ορθή. ΕΡΩΤΗΣΕΙΣ ΚΤΝΟΗΣΗΣ 1. Στις παρακάτω ερωτήσεις 1-3 τα τρίγωνα είναι ορθογώνια στο. Να επιλέξετε τη σωστή απάντηση:
2 38 ΜΕΡΟΣ ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ 1. x = 7 cm 9 cm 10 cm 1 cm 6cm x 8 cm. x = cm 3 cm 4 cm 5 cm 5 cm x 4 cm 3. x = 14 cm 0 cm 4 cm 30 cm 10 cm 6 cm x 4. β = και γ = γ 17 cm β=15 και γ=8 β=13 και γ=10 β=1 και γ=13 β=8 και γ=9 β ΠΝΤΗΣΗ Στο 1 η σωστή απάντηση είναι το γιατί x = x = 100 x = 10 cm. Στο η σωστή απάντηση είναι το γιατί x = 5 4 x = 9 x = 3 cm Στο 3 η σωστή απάντηση είναι το γιατί x = 6 10 x = 576 x = 4 cm Στο 4 η σωστή απάντηση είναι το γιατί x = x = 89 x = 17 cm
3 ΜΕΡΟΣ 1.4 ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ 39 Σ Κ Η Σ Ε Ι Σ ΣΚΗΣΗ 1 Να βρείτε το εμβαδόν το μπλε τετραγώνο στα επόμενα σχήματα. 5 m 5,76 m 9 m 1 m 0,64 m 1 m Στο πρώτο σχήμα το εμβαδόν το μπλε τετραγώνο είναι x = 5 9 = 16 cm Στο δεύτερο σχήμα το εμβαδόν το μπλε τετραγώνο είναι x = 5,76 + 1= 6,76 cm Στο τρίτο σχήμα το εμβαδόν το μπλε τετραγώνο είναι x = 1 0,64 = 0,36 cm ΣΚΗΣΗ Να αποδείξετε ότι τα επόμενα τρίγωνα είναι ορθογώνια
4 40 ΜΕΡΟΣ ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ = = 65 = = = 400 = = = 89 = 17 Εφαρμόζομε το αντίστροφο το πθαγορείο θεωρήματος. ΣΚΗΣΗ 3 α) δίνεται ένα τρίγωνο µε μήκη πλερών 6 cm, 8 cm και 10 cm. Να αποδείξετε ότι το τρίγωνο είναι ορθογώνιο. β) Να αποδείξετε ότι το τρίγωνο πο έχει διπλάσιες πλερές από τις πλερές το, καθώς και το τρίγωνο πο έχει τις μισές πλερές από τις πλερές το, είναι επίσης ορθογώνιο. α) = = 100 = 10 β) = = 400 = = = 5 = 5 Εφαρμόζομε το αντίστροφο το πθαγορείο θεωρήματος. ΣΚΗΣΗ 4 Το τρίγωνο το παρακάτω σχήματος είναι ισοσκελές µε = = 10 dm και = 1 dm. Να πολογίσετε το εμβαδόν το τετραγώνο πο έχει πλερά ίση µε το ύψος το τριγώνο. 10 dm 10 dm 1 dm = 10 6 = = 64 Εφαρμόζομε το πθαγόρειο θεώρημα στο Ε 64 dm τρίγωνο. τετραγώνο = =
5 ΜΕΡΟΣ 1.4 ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ 41 ΣΚΗΣΗ 5 Να πολογίσετε το εμβαδόν το μπλε τετραγώνο το οποίο έχει πλερά ίση µε τη διαγώνιο το ορθογώνιο. 4 m 1 m = = 577 Ε 577 m τετραγώνο = = Εφαρμόζομε το πθαγόρειο θεώρημα στο τρίγωνο B. ΣΚΗΣΗ 6 ια να σχηματίσει ορθή γωνία µε δύο ξύλινα δοκάρια (όπως λέμε για να γωνιάσει τα δοκάρια), ένας τεχνίτης μετράει στο ένα δοκάρι = 30 cm και στο άλλο = 40 cm. Στη σνέχεια, τα τοποθετεί κατάλληλα, ώστε να είναι = 50 cm. Μπορείτε να εξηγήσετε γιατί είναι σίγορος ότι η γωνία πο σχηματίζον τα δοκάρια είναι ορθή; A 30 cm cm 50 cm
6 4 ΜΕΡΟΣ ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ B = + Εφαρμόζομε το αντίστροφο το πθαγορείο 50 = θεωρήματος. 500 = = 500 ΣΚΗΣΗ 7 Ο χαρταετός το διπλανού σχήματος είναι ρόμβος µε διαγώνιες 1dm και 16dm. Να βρείτε την περίμετρο και το εμβαδόν της επιφάνειας το χαρταετού. 0 = Ο + 0 Εφαρμόζομε το πθαγόρειο θεώρημα στο τρίγωνο 6 8 Ο. = + Επειδή όλες οι πλερές το ρόμβο είναι ίσες η περίμετρος θα είναι τετραπλάσια της πλεράς το. = Το εμβαδόν της επιφάνειας το χαρταετού θα είναι = 10 dm τέσσερις φορές το εμβαδόν ενός ορθογωνίο τριγώνο στα οποία χωρίζεται ο ρόμβος από τις διαγώνιες το και είναι Π χαρταετού = 4.10 = 40 dm ίσα. Ε χαρταετού ΣΚΗΣΗ 8 = = 96 dm H διατομή ενός καναλιού είναι σχήματος ισοσκελούς τραπεζίο µε πλερές = = 5 m, = 7 m και = 13 m. Να πολογίσετε το ύψος το καναλιού. Ε 13 m Ζ 5 m x x 5 m 7 m
7 ΜΕΡΟΣ 1.4 ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ 43 Ε=Ζ=3 m x = 5 3 x = 16 x = 4 m Τα εθύγραμμα τμήματα Ε, Ζ είναι ίσα γιατί τα τρίγωνα Ε και Ζ είναι ίσα και λόγω το ότι το τμήμα ΕΖ=7 m, Ε+Ζ=13-7=6 m και Ε=Ζ=6:=3m. Εφαρμόζομε το πθαγόρειο θεώρημα στο τρίγωνο Ε. ΣΚΗΣΗ 9 Ποια από τις τοποθεσίες Ε,, είναι πλησιέστερα στην πόλη ; Ε 17 m 1 m 8 m 9 m = Ε = 17 = 5 = 15 m = = 9 = 5 = 15 m Ε Εφαρμόζομε το πθαγόρειο θεώρημα στο τρίγωνο Ε. Εφαρμόζομε το πθαγόρειο θεώρημα στο τρίγωνο. Άρα οι τοποθεσίες και είναι πλησιέστερα στην πόλη. ΣΚΗΣΗ 10 Στο παρακάτω σχήμα να αποδείξετε ότι το τρίγωνο είναι ορθογώνιο.
8 44 ΜΕΡΟΣ ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ A Ζ Ε = = 4 = 0 = 0 = 6 = 45 = 45 = 8 = Ε = 65 = 65 + = Ζ Ε + Ζ Εφαρμόζομε το πθαγόρειο θεώρημα στο τρίγωνο. Εφαρμόζομε το πθαγόρειο θεώρημα στο τρίγωνο Ε. Εφαρμόζομε το πθαγόρειο θεώρημα στο τρίγωνο Ζ. Παρατηρούμε τέλος ότι = + (65=45+0) Επομένως λόγω το αντίστροφο το πθαγορείο θεωρήματος το τρίγωνο είναι ορθογώνιο με ορθή γωνία την πο βρίσκεται απέναντι από την μεγαλύτερη πλερά
9 ΜΕΡΟΣ 1.4 ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ 45 ΕΠΝΛΗΠΤΙΚΕΣ ΣΚΗΣΕΙΣ ΚΕΦΛΙΟΥ 1 ο 1. Σ ένα τραπέζιο η μία βάση το είναι διπλάσια της άλλης. ν το ύψος το τραπεζίο είναι 8 cm και έχει εμβαδόν 60 cm, να πολογίσετε τα μήκη των δύο βάσεων το παραπάνω τραπεζίο. ( + β) Υποθέτομε ότι οι δύο βάσεις είναι β η μικρή και η μεγάλη. Ε =. Ε = ( + β). Χρησιμοποιούμε τον τύπο το εμβαδού το Ε = ( β + β). Ε = 3β. ( + β) τραπεζίο. Ε =..60 = 3β.8 4β = 10 β = 10 4 = 5 cm και =.β = 10 cm Προκύπτει μετά την αντικατάσταση =β εξίσωση με άγνωστο το β την οποία και λύνομε.. Να αποδείξετε ότι το εθύγραμμο τμήμα πο ενώνει τα μέσα των βάσεων ενός τραπεζίο το χωρίζει σε δύο τραπέζια με ίσα εμβαδά. ( ) ( ΜΝ) ( Μ + Ν) ΜΝ =. ΜΚ A M B = ( Μ + Ν) ( ΜΝ) = ( ΜΝ) γιατί Μ = Μ, Ν και ΜΚ κοινό ύψος. ΜΚ = Ν Κ Ν Χρησιμοποιούμε τον τύπο το εμβαδού το ( + β) τραπεζίο. Ε =. 3. Σε τραπέζιο η βάση είναι διπλάσια από την. Να αποδείξετε ότι το τρίγωνο έχει εμβαδόν ίσο με τα /3 το εμβαδού το τραπεζίο. ( ) ( + ) + Χρησιμοποιούμε τον τύπο το εμβαδού το τραπεζίο. Ε =. =. =. = ( + β) =. =.. =.( ) γιατί και το εμβαδού το τριγώνο β.. E =. ( ) Οπότε = = 3 ( ) = ( ). =. Τα ύψη το τραπεζίο και το τριγώνο είναι ίσα.
10 46 ΜΕΡΟΣ ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ 4. Σ ένα τραπέζιο η περίμετρός το είναι 36 cm και το εμβαδόν το είναι 55 cm. ν οι μη παράλληλες πλερές το έχον μήκος 6 και 8 cm να βρείτε το ύψος το = 36 Η περίμετρος το τραπεζίο είναι το άθροισμα των πλερών το. ντικαθιστούμε τις δύο μη παράλληλες πλε = 36 + = = ρές με 6 cm και 8 cm αντίστοιχα. Χρησιμοποιούμε τον τύπο το εμβαδού το τραπεζίο. Ε =. ( ) ( + ) =. ( + β) 55 =. 11. = 55 = = 5 cm ντικαθιστώντας το +=. Λύνομε την εξίσωση ως προς. 5. ίνεται τραπέζιο με βάσεις και και οι διαγώνιές το, τέμνονται στο Ο. Να σγκρίνετε τα εμβαδά των τριγώνων: α) και β) Ο και Ο.. ( ) = A B α) ( ) = (). ( ) = Ο ( Ο) = ( ) ( Ο) β) ( Ο) = ( ) ( Ο) (Ο)=(Ο) Και στις δύο περιπτώσεις τα δεύτερα μέλη είναι ίσα. 6. ν η περίμετρος ορθογωνίο τριγώνο είναι 39 cm, η ποτείνοσα το 16 cm και η μια κάθετη πλερά το κατά 3 cm μεγαλύτερη από την άλλη, να πολογίσετε το εμβαδόν το τριγώνο. x + x = 39 Υποθέτομε ότι η μια κάθετη πλερά είναι x οπότε η άλλη κάθετη πλερά θα είναι x + x = x+3. Με την βοήθεια της περιμέτρο βρίσκομε το x λύνοντας την εξίσωση. x = 0 Χρησιμοποιώντας τον τύπο το εμβαδού x = 10 cm το ορθογωνίο τριγώνο πο είναι το ημιγινόμενο των δύο καθέτων πλερών βρί- x. ( x + 3) E = = = 65 cm σκομε και το εμβαδόν το τριγώνο.
11 ΜΕΡΟΣ 1.4 ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ Στο ορθογώνιο τραπέζιο το ύψος το A είναι 5 cm και το εμβαδόν το είναι 45 cm. Να βρεθούν οι βάσεις το, αν η μία είναι διπλάσια της άλλης. ( ) ( β + ) Ε = + β β Χρησιμοποιούμε τον τύπο το εμβαδού το. 45 =.5 + β 90 15β = 90 β = = 6 cm 15 = β =.6 = 1 cm ( ) τραπεζίο. Ε =. ντικαθιστώντας το με β,το =5 cm και το εμβαδόν το τραπεζίο Ε=55 cm. 8. Σε ένα τρίγωνο τετραπλασιάζομε τη βάση το και πενταπλασιάζομε το αντίστοιχο ύψος. Τι σμβαίνει στο εμβαδόν; β. Χρησιμοποιούμε τον τύπο το εμβαδού Ε = ενός τριγώνο αντικαθιστώντας τη βάση με το τετραπλάσιο της και το ύψος με το πενταπλάσιο το. Παρατηρούμε ότι το νέο 4β.5 β. Ε = = 0. = 0. Ε εμβαδόν είναι εικοσαπλάσιο το προηγούμενο. 9. Σε ένα ορθοκανονικό σύστημα αξόνων να σχεδιάσετε την εθεία με εξίσωση y = Ο,75x. ν είναι το σημείο της με τεταγμένη 3, να βρείτε την τετμημένη το και το μήκος Ο. fx () = 0,75 x 5 4 y=0,75x 3 A(4,3) O(0,0) B(4,0) Η τεταγμένη το είναι 4 και το μήκος το Ο είναι: Χρησιμοποιώντας το πθαγόρειο θεώρημα στο ορθογώνιο τρίγωνο Ο είναι: Ο = Ο + Ο = Ο = 5 Ο = 5 cm.
12 48 ΜΕΡΟΣ ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ 10. Ένα ορθογώνιο έχει διαστάσεις 3x και 4x και η διαγώνιός το είναι 5 cm. Να βρείτε τις διαστάσεις το ορθογωνίο, την περίμετρο και το εμβαδόν το. ( 3x) ( 4x) 9x x + = Χρησιμοποιούμε το πθαγόρειο θεώρημα + 16x 5 = 5 x = 5 = 65 5x 3x = 3.5 = 15 cm,4x = 4.5 = 0 cm Π = = = 70 cm Ε = β. = 15.0 = 300 cm = 65 σε ένα από τα δύο ορθογώνια τρίγωνα πο δημιοργούνται. Επομένως οι δύο διαστάσεις είναι 15cm και 0 cm αντίστοιχα. Η περίμετρος είναι 70 cm. Το εμβαδόν είναι 300 cm. 1 o ΚΡΙΤΗΡΙΟ ΞΙΟΛΟΗΣΗΣ 1 ο ΚΕΦΛΙΟΥ ΜΕΡΟΥΣ Να επιλέξετε τη σωστή απάντηση 1 = 6cm Το εμβαδόν το τριγώνο είναι: Κ= cm = 9cm Κ Το ύψος Η πο αντιστοιχεί στην πλερά Η είναι: 3 ίνεται ορθογώνιο τρίγωνο Το εμβαδόν το τριγώνο είναι: με πλερές = 4cm 4 και = 3 cm Η ποτείνοσα είναι: 5 Το ύψος πο αντιστοιχεί στην ποτείνοσα είναι: A B 6 ν το εμβαδόν το τριγώνο είναι 5 cm A και είναι το μέσο της,τότε το εμβαδόν το τριγώνο είναι: B 7 ν το εμβαδόν το τριγώνο είναι 4 cm A,τότε το εμβαδόν το τριγώνο είναι: ,,4 4, B α α
13 ΜΕΡΟΣ 1.4 ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ 49 Να επιλέξετε τη σωστή απάντηση 8 Το εμβαδόν το παραλληλογράμμο ΕΖ A B E cm Ζ είναι: cm 4 cm Το ύψος ισούται: 1,6 1,4 10 A B Το εμβαδόν το ορθογωνίο είναι 1 cm. Το εμβαδόν το γαλάζιο παραλληλογράμμο είναι: 11 Το εμβαδόν το παραλληλογράμμο ΕΖΗΘ Ε Ζ Κ είναι 16 cm και το Λ είναι το μέσο της ΘΗ. Το εμβαδόν το γαλάζιο τριγώνο Θ Λ Η είναι: 1 Το εμβαδόν το παραλληλογράμμο A B Κ Λ είναι 16 cm. Τα Ε και Ε Ζ Ζ είναι τα μέσα των Ν Μ πλερών και και τα ΚΝΕ, ΚΛΜΝ, ΛΖΜ είναι παραλληλόγραμμα. Το εμβαδόν το γαλάζιο σχήματος είναι:
14 50 ΜΕΡΟΣ ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ o ΚΡΙΤΗΡΙΟ ΞΙΟΛΟΗΣΗΣ 1 ο ΚΕΦΛΙΟΥ ΜΕΡΟΥΣ ΣΚΗΣΗ 1 Να σγκρίνετε τα εμβαδά των γαλάζιων και των γκρι τριγώνων, αν τα ορθογώνια το διπλανού σχήματος είναι ίσα. ΣΚΗΣΗ Ένα χωράφι σχήματος ορθογωνίο έχει μήκος 65 m και πλάτος 0 m. Θέλομε να βάλομε λίπασμα και ξέρομε ότι χρειάζονται 0 kg για κάθε 100 m. Πόσα κιλά λίπασμα Θα χρειαστούμε; ΣΚΗΣΗ 3 Να σμπληρώσετε τον παρακάτω πίνακα για τις διάφορες τιμές των βάσεων, το ύψος και το εμβαδού τραπεζίων. άση μικρή άση μεγάλη Ύψος Εμβαδόν 5 cm 7 cm 4 cm.. 8 cm 5 cm 4 cm 3 cm.. 7 cm 8 cm 9 cm 16 cm. 75 cm ΣΚΗΣΗ 4 Μια πλατεία έχει σχήμα ορθογωνίο με διαστάσεις 30 m και 15 m. Θέλομε να τη στρώσομε με τετραγωνικές πλάκες πλεράς 0,5 m και αξίας 5 η καθεμία. Να πολογίσετε: α) το εμβαδόν της αλής. β) τον αριθμό των πλακών πο θα χρειαστούν για το στρώσιμο και τα χρήματα πο θα πληρώσομε. ΣΚΗΣΗ 5 Τα τετράγωνα και ΕΖΗ το διπλανού σχήματος έχον εμβαδόν 9 cm και 16 cm αντίστοιχα. Να βρείτε το εμβαδόν το τριγώνο Ε και το μήκος της Ε. Ε 16 cm^ Ζ 9 cm^ Η
15 ΜΕΡΟΣ 1.4 ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ 51 ΠΡΕΙΜ ΙΣΚΛΙΣ ΜΕ ΦΥΛΛΟ ΕΡΣΙΣ ΠΡΕΙΜ: Ενότητα: Πθαγόρειο θεώρημα. Στόχοι: Να «εξοικειωθούν» οι μαθητές με το Πθαγόρειο θεώρημα και με προβλήματα πο σχετίζονται με ατό. Μέθοδος: Μεικτή (καθοδηγούμενη - ανακαλπτική). Φύλλο εργασίας 1. ίνεται ορθογώνιο τρίγωνο με πλερές 3 cm, 4 cm, 5 cm. α) Κατασκεάζομε στο εξωτερικό μέρος το τριγώνο τετράγωνα με πλερές τις πλερές το. β) Οι τελείες χωρίζον τις πλερές το τετραγώνο σε εθύγραμμα τμήματα μήκος 1 cm. Να χωρίσετε τα τετράγωνα Ε, ΘΙ, και ΖΗ σε τετραγωνάκια πλεράς 1 cmη. γ) Το Ε χωρίζεται σε.τετραγωνάκια και έχει εμβαδόν...cm. Το ΘΙ χωρίζεται σε τετραγωνάκια και έχει εμβαδόν...cm. Το ΖΗ χωρίζεται σε... τετραγωνάκια και έχει εμβαδόν... cm δ) Παρατηρούμε ότι (Ε) + (ΘΙ) =... και επομένως + =... ΕΝΙΚ: Σε κάθε... τρίγωνο το τετράγωνο της ποτείνοσας είναι ίσο με.. Το τρίγωνο είναι ορθογώνιο με = 90. ν α = 15 και β = 4, τότε γ =... ή γ =... ή γ = ν α= 10 και γ = 6, τότε β =... ή β =... ή β =. ν β = 1 και γ = 7, τότε α =... ή α =... ή α = Ένα τρίγωνο έχει α = cm, β = cm και γ = cm 3 3 Είναι α =... β =... γ =... οπότε β + γ =... Παρατηρούμε ότι... επομένως σμπεραίνομε ότι η γωνία...είναι ορθή.
16 5 ΜΕΡΟΣ ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ ΕΝΙΚ: ν σε ένα τρίγωνο το τετράγωνο της μεγαλύτερης πλεράς είναι ίσο με τότε το τρίγωνο είναι ορθογώνιο με ορθή γωνία 4. Να εξετάσετε αν το τρίγωνο ΚΛΜ είναι ορθογώνιο. ν είναι ορθογώνιο, να προσδιορίσετε ποια γωνία το είναι ορθή.
1.3. Εμβαδά επίπεδων σχημάτων
1.3. μβαδά επίπεδων σχημάτων 1 cm 1 cm μβαδόν τετραγώνο ς θεωρήσομε ένα τετράγωνο πλεράς cm. Μπορούμε να το χωρίσομε σε = = «τετραγωνάκια» πλεράς 1 cm, καθένα από τα οποία έχει εμβαδόν 1 cm. Άρα, το τετράγωνο
2.3 ΠΡΟΒΛΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ
ΜΕΡΟΣ Α.3 ΠΡΟΒΛΗΜΑΤΑ 79.3 ΠΡΟΒΛΗΜΑΤΑ Σύμφωνα με τα προηγούμενα δεν μπορούμε να πολογίσομε µε ακρίβεια την τιμή ενός άρρητο αριθμού. Στα διάφορα προβλήματα πο θα σναντούμε άρρητος αριθμούς θα τος προσεγγίζομε
ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ
ΜΕΡΟΣ ΚΕΦΛΙΟ 1 Ο ΕΩΜΕΤΡΙ 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ 1. Ποια ονομάζονται κύρια και ποια δευτερεύοντα στοιχεία τριγώνων; Κύρια στοιχεία ενός τριγώνου ονομάζουμε τις πλευρές και τις γωνίες του. Δευτερεύοντα στοιχεία
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΠΑΡΑΓΡΑΦΟΣ Β.1.3 ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ ΑΣΚΗΣΕΙΣ. 2 cm
ΠΑΡΑΡΑΦΟΣ Β.1.3 ΕΜΒΑΑ ΕΠΙΠΕΩΝ ΣΧΗΜΑΤΩΝ Τετράγωνο -Ορθογώνιο ΑΣΚΗΣΕΙΣ 1) Ένα τετράγωνο έχει εμβαδό 81 cm 2. Με πόσο ισούται η πλευρά του; (Απάντηση: 9 cm) 2) Ένα τετράγωνο έχει περίμετρο 32 m. Nα υπολογίσετε
Γ Ε Ω Μ Ε Τ Ρ Ι Α - Κ Ε Φ Α Λ Α Ι Ο 1
Ε Ω Μ Ε Τ Ρ Ι Α - Κ Ε Φ Α Λ Α Ι Ο 1 Εμβαδά Επίπεδων Σχημάτων & Πυθαγόρειο Θεώρημα Η συλλογή των ασκήσεων προέρχεται από μια ποικιλία πηγών, σημαντικότερες από τις οποίες είναι το Mathematica.gr, παλιότερα
1. Γενικά για τα τετράπλευρα
1. ενικά για τα τετράπλευρα Ένα τετράπλευρο θα λέγεται κυρτό αν η προέκταση οποιασδήποτε πλευράς του αφήνει το σχήμα από το ίδιο μέρος (στο ίδιο ημιεπίπεδο, όπως λέμε καλύτερα). κορυφές γωνία εξωτερική
1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ
1 1.4 ΠΥΘΑΟΡΕΙΟ ΘΕΩΡΗΜΑ ΘΕΩΡΙΑ 1. Πυθαγόρειο θεώρηµα : Σε κάθε ορθογώνιο τρίγωνο το τετράγωνο της υποτείνουσας είναι ίσο µε το άθροισµα των τετραγώνων των καθέτων πλευρών. γ α α = β + γ β. Αντίστροφο Πυθαγορείου
ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο
ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο τέλος της πρότασης αν αυτή είναι Σωστή και Λ αν αυτή είναι Λάθος: ύο τρίγωνα είναι ίσα αν έχουν ίσες
Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Α Σ.
Μ Ν Σ Υ Κ Σ Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Σ. 1. Να γράψετε τους τύπους του εμβαδού των : (α) τετραγώνου (β) ορθογωνίου παραλληλογράμμου (γ) παραλληλογράμμου (δ) τριγώνου (ε) ορθογωνίου τριγώνου (στ) τραπεζίου.
5.10 5.11. 2 η ιδιότητα της διαµέσου. 4. Ορισµός Ισοσκελές τραπέζιο λέγεται το τραπέζιο του οποίου οι µη παράλληλες πλευρές είναι ίσες.
5.0 5. ΘΕΩΡΙ. Ορισµοί Τραπέζιο λέγεται το τετράπλευρο που έχει µόνο δύο πλευρές παράλληλες. άσεις τραπεζίου λέγονται οι παράλληλες πλευρές του. Ύψος τραπεζίου λέγεται η απόσταση των βάσεων. ιάµεσος τραπεζίου
ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος )
Πυθαγόρειο ενικό Λύκειο Σάμου ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ ( α μέρος ) Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό
5. Τα μήκη των βάσεων ενός τραπεζίου είναι 8 cm και 12 cm και το ύψος του είναι 7. Να βρείτε το εμβαδό του.
1 ΑΣΚΗΣΕΙΣ 1. Ένα παραλληλόγραμμο ΑΒΓΔ έχει μια πλευρά ίση με 48 και το αντίστοιχο σε αυτή την πλευρά ύψος είναι 4,5 dm. Να βρείτε το εμβαδό του παραλληλογράμμου 2. Ένα παραλληλόγραμμο έχει εμβαδό 72 2
στ) συν30 0 ΑΠΑΝΤΗΣΗ Εύκολα αντιστοιχίζουμε σύμφωνα με τον παραπάνω πίνακα α) i, β) iii, γ) i, δ) v,ε) iii,στ) v
ΜΕΡΟΣ Β. ΤΡΙΩΝΟΜΕΤΡΙΚΟΙ ΡΙΘΜΟΙ ΤΩΝ ΩΝΙΩΝ,5 ΚΙ 79. ΤΡΙΩΝΟΜΕΤΡΙΚΟΙ ΡΙΘΜΟΙ ΤΩΝ ΩΝΙΩΝ,5 ΚΙ Πίνακας τριγωνομετρικών αριθμών των γωνιών,5 και ημίτονο συνημίτονο εφαπτομένη 5 ΕΡΩΤΗΣΕΙΣ ΚΤΝΟΗΣΗΣ. Σε κάθε αριθμό
Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις κατανόησης
0. 0.3 σκήσεις σχολικού βιβλίου σελίδας 7 8 Ερωτήσεις κατανόησης. Να γράψετε τους τύπους υπολογισµού του εµβαδού Τετραγώνου Ορθογωνίου i Παραλληλογράµµου iν) Τριγώνου ν) Τραπεζίου πάντηση Ε = α Ε = α β
ΕΙ Η ΤΕΤΡΑΠΛΕΥΡΩΝ. ( Παραλληλόγραµµα Τραπέζια ) Παραλληλόγραµµο, λέγεται το τετράπλευρο
Παραλληλόγραµµο, λέγεται το τετράπλευρο ΕΙΗ ΤΕΤΡΠΛΕΥΡΩΝ ( Παραλληλόγραµµα Τραπέζια ) που έχει τις απέναντι πλευρές του παράλληλες δηλ. // και //. ΙΙΟΤΗΤΕΣ ΠΡΛΛΗΛΟΡΜΜΟΥ: 1. Οι απέναντι πλευρές του είναι.
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x. Να λυθούν οι εξισώσεις: α) 3x x 3 3 5x x β) 4 3 x x x 0
ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 08/04/10
ΥΣΙΣ ΙΑΩΝΙΣΜΑ ΩΜΤΡΙΑ Α ΥΚΙΟΥ ΘΜΑ ο 08/04/0 Α. Να αποδείξετε ότι η διάµεσος ορθογωνίου τριγώνου που φέρουµε από την κορυφή της ορθής γωνίας είναι ίση µε το µισό της υποτείνουσας. Θεωρία σχολικό βιβλίο σελ.09
ΜΕΡΟΣ Β 1.4 ΟΜΟΙΟΘΕΣΙΑ ΟΜΟΙΟΘΕΣΙΑ
ΜΕΡΟΣ.4 ΟΜΟΙΟΘΕΣΙ 45. 4 ΟΜΟΙΟΘΕΣΙ Το ομοιόθετο σημείου ν πάρουμε δύο σημεία Ο, και στην ημιευθεία Ο πάρουμε ένα σημείο ', τέτοιο ώστε Ο = 2 O, τότε λέμε ότι το σημείο είναι ο- μοιόθετο του με κέντρο Ο
3.4 Ι ΙΟΤΗΤΕΣ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ
1 3.4 ΙΙΤΗΤΕΣ ΠΡΛΛΗΛΡΜΜΥ ΡΘΩΝΙΥ ΡΜΥ ΤΕΤΡΩΝΥ ΤΡΠΕΖΙΥ ΙΣΣΚΕΛΥΣ ΤΡΠΕΖΙΥ ΘΕΩΡΙ 1. Ιδιότητες παραλληλογράµµου Το σηµείο τοµής των διαγωνίων του είναι κέντρο συµµετρίας (Το κέντρο συµµετρίας) ι διαγώνιες διχοτοµούνται,
ΑΣΚΗΣΗ 1 Ποιο από τα δύο σχήματα Α, Β έχει το μεγαλύτερο εμβαδόν;
ΜΕΡΟΣ Β. ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ-ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ 05. ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΗΣ ΕΠΙΦΑΝΕΙΑΣ Ορισμός Το εμβαδόν μιας επίπεδης επιφάνειας είναι ένας θετικός αριθμός, που εκφράζει την έκταση που καταλαμβάνει η επιφάνεια
Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ
ΚΥΠΡΙΑΝΟΣ ΕΥΑΓΓΕΛΟΣ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Το τετράγωνο μιας κάθετης πλευράς είναι ίσο με την υποτείνουσα επί την προβολή της πλευράς στην υποτείνουσα. ΑΒ 2 = ΒΓ ΑΔ ή ΑΓ 2 = ΒΓ ΓΔ Σε κάθε
Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.
ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» ΤΑΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ 1. Μεσοκάθετος ενός ευθύγραμμου τμήματος ΑΒ ονομάζεται η ευθεία που είναι κάθετη
Ενότητα: Τετράπλευρα (Ιδιότητες Ταξινόμηση) Keywords: parallelogram, rectangular, rhombus, square, diagonals, height.
Νέο Αναλυτικό Πρόγραμμα Σπουδών Σχολικό έτος 2016-17 Σπύρος Γ. Γλένης spyrosglenis@gmail.com Ενότητα: Τετράπλευρα (Ιδιότητες Ταξινόμηση) Keywords: parallelogram, rectangular, rhombus, square, diagonals,
Ερωτήσεις ανάπτυξης. 1. ** Έστω τρίγωνο ΑΒΓ και έστω, Ε, Ζ τα µέσα των πλευρών ΑΒ, ΒΓ και ΓΑ αντίστοιχα. Να δείξετε ότι: α) ( ΕΖ) = (ΖΓΕ)
Ερωτήσεις ανάπτυξης 1. ** Έστω τρίγωνο ΑΒ και έστω, Ε, Ζ τα µέσα των πλευρών ΑΒ, Β και Α αντίστοιχα. Να δείξετε ότι: α) ( ΕΖ) = (ΖΕ) 1 β) ( ΕΖ) = (ΑΒ). 4 2. ** Να δείξετε ότι το εµβαδόν τυχόντος τετραπλεύρου
Τι ονομάζουμε εμβαδόν μιας επίπεδης επιφάνειας; Αναφέρετε ονομαστικά τις μονάδες μέτρησης επιφανειών.
1 Ονοματεπώνυμο μαθητή : Ημερομηνία :.../.../20... Μαθηματικές έννοιες: Εμβαδόν, Τετραγωνικό Μέτρο, Τετραγωνικό Δεκάμετρο, Τετραγωνικό Εκατοστόμετρο, Τετραγωνικό Χιλιοστόμετρο, Στρέμμα. Θυμόμαστε- Μαθαίνουμε:
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο «ΓΕΩΜΕΤΡΙΑ»
ΕΠΝΛΗΠΤΙΚΕΣ ΣΚΗΣΕΙΣ ΜΘΗΜΤΙΚΩΝ ΥΜΝΣΙΟΥ ΜΕΡΟΣ ο «ΕΩΜΕΤΡΙ». 1. Να υπολογίσετε τα εμβαδά των σχημάτων,, χρησιμοποιώντας ως μονάδα μέτρησης εμβαδών το. Τι παρατηρείτε; ρίσκουμε ότι τα εμβαδά των,, είναι : 5,
ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012
ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011 2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012 ΜΑΘΗΜΑ : Μαθηματικά ΒΑΘΜΟΣ ΤΑΞΗ : Β ΑΡΙΘΜΗΤΙΚΩΣ : ΔΙΑΡΚΕΙΑ : 2 ώρες ΟΛΟΓΡΑΦΩΣ : ΗΜΕΡΟΜΗΝΙΑ : 15.06.2012 ΥΠ. ΚΑΘΗΓΗΤΗ/ΤΡΙΑΣ:
2.4 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ 30 Ο 45 Ο 60 Ο
.4 ΤΡΙΩΝΟΜΕΤΡΙΚΟΙ ΡΙΘΜΟΙ 0 Ο 45 Ο 60 Ο ΘΕΩΡΙ. Τριγωνοµετρικοί αριθµοί 0 ο, 45 ο, 60 ο : ηµίτονο συνηµίτονο εφαπτοµένη 0 ο 45 ο 60 ο ΣΚΗΣΕΙΣ. Στο διπλανό πίνακα, σε κάθε πληροφορία της στήλης, να επιλέξετε
Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία
Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού
Ερωτήσεις ανάπτυξης. (ΑΒΓ) = 4 ( ΕΖ) ή ( ΕΖ) = (ΑΒΓ) Θα δείξουµε ότι (ΑΒΓ ) = ΑΓ. Πράγµατι είναι: (Α Γ) = (ΑΒΓ) = Εποµένως (Α Γ) + (ΑΒΓ) =
Ερωτήσεις ανάπτυξης. α) Επειδή τα Ζ,, Ε είναι µέσα των πλευρών τριγώνου είναι Ζ // Ε και Ε // Ζ. Άρα το τετράπλευρο Ζ Ε είναι παραλληλόγραµµο. Η διαγώνιος ΖΕ του παραλληλογράµµου το χωρίζει σε δύο ισοδύναµα
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο «ΓΕΩΜΕΤΡΙΑ»
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΣ ΜΘΗΜΤΙΚ ΥΜΝΣΙΟΥ ΜΕΡΟΣ ο «ΕΩΜΕΤΡΙ» Τι καλείται εμαδόν επίπεδης επιφάνειας; Το εμαδόν μιας επίπεδης επιφάνειας είναι ένας θετικός αριθμός, πο εκφράζει την έκταση πο καταλαμάνει η επιφάνεια
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ
2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και
ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ)
ΩΜΤΡΙ ΛΥΚΙΟΥ (ΤΡΠΖ ΘΜΤΩΝ) GI_V_GEO_2_18975 ίνεται τρίγωνο AB με AB=9, A=15. πό το βαρύκεντρο φέρνουμε ευθεία παράλληλη στην πλευρά B που τέμνει τις AB,A στα,e αντίστοιχα. α) Να αποδείξετε ότι A = 2 AB
24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ 1 Ο. ΘΕΜΑ 2 Ο : Δίνεται ΑΒΓ ισοσκελές (ΑΒ=ΑΓ) τρίγωνο.αν ΒΔ και ΓΕ οι διχοτόμοι των γωνιών Β και
ΔΙΩΝΙΣΜ 1 Ο ΘΕΜ 1 Ο : ) Να αποδείξετε ότι : Το ευθύγραμμο τμήμα που ενώνει τα μέσα τα των δύο πλευρών τριγώνου είναι παράλληλο προς την τρίτη πλευρά και ίση με το μισό της.(13 μονάδες) ) Να χαρακτηρίσετε
1 ΘΕΩΡΙΑΣ...με απάντηση
1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν
ΘΕΩΡΙΑ ( ΚΑΡΤΕΣΙΑΝΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ )
ΘΕΩΡΙΑ ( ΚΑΡΤΕΣΙΑΝΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ ) Έχουμε δύο κάθετους άξονες x x και y y με κοινή αρχή 0. Από ένα σημείο Μ του επιπέδου φέρνουμε τις κάθετες στους δύο άξονες x x και y y. Ονομάζουμε τετμημένη του σημείου
2. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ
ΜΕΡΟΣ Α.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 193. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ Με την βοήθεια των εξισώσεων δευτέρου βαθμού λύνουμε πολλά προβλήματα της καθημερινής ζωής και διαφόρων επιστημών.
ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ
ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό σας. ΚΕΦΑΛΑΙΟ 1 1. Να συμπληρώσετε
ΘΕΜΑΤΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ
Επιμέλεια: ιώργος Ράπτης ΘΕΤ ΣΤΗΝ ΕΩΕΤΡΙ ΛΥΚΕΙΟΥ ΘΕ 1 ο. Να αποδείξετε ότι το εμβαδό τραπεζίου με βάσεις 1, και ύψος υ δίνεται από τον τύπο: ( 1+ ) υ Ε= ονάδες 1 B. ν φν, λν και αν είναι: η γωνία, η πλευρά
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α
1 ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ 5 η ΕΚ 1. Οι πλευρές ενός τριγώνου σε cm είναι = 3x 3, = 3x + 1 και = x και η περίµετρος Π του τριγώνου είναι Π = 8cm. Να βρείτε τα µήκη των πλευρών του τριγώνου. Να δείξτε ότι το τρίγωνο
Ο λόγος που σχηματίζεται, αν διαιρέσουμε την απέναντι κάθετη πλευρά
ΜΕΡΟΣ. ΗΜΙΤΟΝΟ ΚΙ ΣΥΝΗΜΙΤΟΝΟ ΟΞΕΙΣ ΩΝΙΣ 61 Ορισμοί. ΗΜΙΤΟΝΟ ΚΙ ΣΥΝΗΜΙΤΟΝΟ ΟΞΕΙΣ ΩΝΙΣ Ημίτονο γωνίας Ο λόγος που σχηματίζεται, αν διαιρέσουμε την απέναντι κάθετη πλευρά μιας οξείας γωνίας ω ενός ορθογωνίου
Λ υ σ α ρ ι. Μ α θ η μ α τ ι κ α B Γ υ μ ν α σ ι ο υ. Γ ε ω μ ε τ ρ ι α - Τ ρ ι γ ω ν ο μ ε τ ρ ι α. Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς
Λ υ σ α ρ ι Μ α θ η μ α τ ι κ α B υ μ ν α σ ι ο υ ε ω μ ε τ ρ ι α - Τ ρ ι γ ω ν ο μ ε τ ρ ι α Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς 1 Ε μ β α δ ο ν Ε π ι π ε δ η ς Ε π ι φ α ν ε ι α ς σ κ η
Μαθηματικά προσανατολισμού Β Λυκείου
Μαθηματικά προσανατολισμού Β Λυκείου Συντεταγμένες Διανύσματος wwwaskisopolisgr wwwaskisopolisgr Συντεταγμένες στο επίπεδο Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι το διάνυσμα i OI
ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ Όνομα μαθητή /τριας: Τμήμα: Αρ.
ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 013-014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 014 ΤΑΞΗ: B ΜΑΘΗΜΑ: Μαθηματικά ΔΙΑΡΚΕΙΑ: ώρες ΗΜΕΡΟΜΗΝΙΑ: 03 / 6 / 014 Βαθμός: Ολογράφως: Υπογραφή: Όνομα μαθητή /τριας:
Ιωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται αριθμητική και τι αλγεβρική παράσταση; Μία παράσταση, που περιέχει πράξεις με αριθμούς ονομάζεται αριθμητική παράσταση. Μία παράσταση, που περιέχει πράξεις
ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο
3. α) Να λύσετε την εξίσωση x 2 = 3. β) Να σχηματίσετε εξίσωση δευτέρου βαθμού με ρίζες, τις ρίζες της εξίσωσης του α) ερωτήματος.
. Δίνεται η εξίσωση λ + 4(λ ) = 0, με παράμετρο λ R α) Να βρείτε τη διακρίνουσα της εξίσωσης. β) Να αποδείξετε ότι η παραπάνω εξίσωση έχει ρίζες πραγματικές για κάθε λ R. γ) Αν, είναι οι ρίζες της παραπάνω
ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...
Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο
ΠΑΡΑΛΛΗΛΟΓΡΑΜΜA. Ιδιότητες παραλληλογράμμων
εωμετρία και Λυκείου ΠΡΛΛΗΛΟΡΜΜA Ορισμός Παραλληλόγραμμο λέγεται το τετράπλευρο που έχει τις απέναντι πλευρές του παράλληλες. ηλαδή το τετράπλευρο είναι παραλληλόγραμμο, όταν // και //. Ιδιότητες παραλληλογράμμων
ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια
ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια 184 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Να αντιστοιχίσετε κάθε στοιχείο της στήλης (Α) µε ένα µόνο στοιχείο της στήλης (Β): στήλη (Α) τετράπλευρα
ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 19/ 04/ 2012
ΕΠΩΝΥΜΟ:... ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 270727 222594 ΑΡΤΑΚΗΣ 12 - Κ. ΤΟΥΜΠΑ THΛ: 919113 949422 www.syghrono.gr ΗΜΕΡΟΜΗΝΙΑ:... ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 19/ 04/ 2012 ΘΕΜΑ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Β ΓΥΜΝΑΣΙΟΥ 2013
1. Τί ονομάζουμε απόλυτη τιμή ενός αριθμού α ; Ονομάζουμε απόλυτη τιμή ενός αριθμού α την απόστασή του από το 0 (μηδέν). ή Απόλυτη τιμή λέμε τον αριθμό χωρίς πρόσημο. 2.Πότε δύο αριθμοί λέγονται αντίθετοι;
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΆΛΓΕΒΡΑ - ΓΕΩΜΕΤΡΙΑ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ
1 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΆΛΓΕΒΡΑ - ΓΕΩΜΕΤΡΙΑ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 1. Να λυθούν οι παρακάτω εξισώσεις: 5 x - 3 + 10 2-5x + 10x= - 15 + 10x i. ( ) ( ) ( ) ii. 9( 8-x) -10( 9-x) -4( x - 1)
2.6 ΑΘΡΟΙΣΜΑ ΚΑΙ ΔΙΑΦΟΡΑ ΔΙΑΝΥΣΜΑΤΩΝ
ΜΕΡΟΣ 2.6 ΘΡΟΙΣΜ ΚΙ ΙΦΟΡ ΙΝΥΣΜΤΩΝ 293 2.6 ΘΡΟΙΣΜ ΚΙ ΙΦΟΡ ΙΝΥΣΜΤΩΝ Άθροισμα διανυσμάτων Το άθροισμα διανυσμάτων ρίσκεται με δύο τρόπους. Η μέθοδος του πολυγώνου Μεταφέρουμε τα διανύσµατα που χρειάζεται
ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ
ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10. ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΘΕΩΡΙΑ 1 (Πολυγωνικά χωρία) Ας θεωρήσουμε ένα πολύγωνο, για παράδειγμα
Άσκηση 4η Να βρεθεί ο τριψήφιος αριθμός που τα ψηφία του είναι ανάλογα των αριθμών 1, 2, 3 κατά σειρά και διαιρείται από το 9. Άσκηση 7η.
Άσκηση 1η Αν η εξίσωση είναι αόριστη, τότε: α) Να δειχθεί ότι η εξίσωση είναι αδύνατη β) Να λυθεί η ανίσωση γ) Αν ισχύει ότι να βρεθεί ο αριθμός Α Άσκηση 2η Αν η εξίσωση έχει λύση μεγαλύτερη του και η
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΑ
ΡΠΤΕΣ ΠΡΟΩΙΚΕΣ ΕΞΕΤΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΪΟΥ - ΙΟΥΝΙΟΥ ΜΘΗΜΤΙΚ ΣΤ () ΘΕΩΡΙ ΘΕΜ 1: (α) Να χαρακτηρίσετε καθεμία από τις παρακάτω προτάσεις ως «Σωστή» ή «Λάθος» : 1. Η ευθεία με εξίσωση y = 3x περνάει από την αρχή
3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ
1 3.5 ΕΜΒ Ν ΚΥΚΛΙΚΥ ΙΣΚΥ ΘΕΩΡΙ Εµβαδόν κυκλικού δίσκου ακτίνας ρ : Ε = πρ Σηµείωση : Tο εµβαδόν του κυκλικού δίσκου, χάριν ευκολίας αναφέρεται σαν εµβαδόν του κύκλου. ΣΧΛΙ Για το εµβαδόν του κυκλικού δίσκου
ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ
ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0. ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 0. ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 0.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΘΕΩΡΙΑ (Πολυγωνικά χωρία) Ας θεωρήσουμε ένα πολύγωνο, για παράδειγμα
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Μέρος Β Κεφάλαιο 4ο Γεωμετρικά Στερεά Χρύσα Παπαγεωργίου Μαθηματικός - Πληροφορικός Το ορθό πρίσμα και τα στοιχεία του Κάθε ορθό πρίσμα έχει: Δύο έδρες παράλληλες, που είναι ίσα
ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ
ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι
4.4 Η ΠΥΡΑΜΙ Α ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ
1 4.4 Η ΠΥΡΜΙ ΚΙ Τ ΣΤΟΙΧΕΙ ΤΗΣ ΘΕΩΡΙ 1. Πυραµίδα Ονοµάζεται ένα στερεό του οποίου µία έδρα είναι ένα οποιοδήποτε πολύγωνο και όλες οι άλλες έδρες του είναι τρίγωνα µε κοινή κορυφή. ύο πυραµίδες φαίνονται
Γ Ε Ω Μ Ε Τ Ρ Ι Α - Κ Ε Φ Α Λ Α Ι Ο 2
Ε Ω Μ Ε Τ Ρ Ι - Κ Ε Φ Λ Ι Ο 2 Τριγωνομετρία ΛΟΟΣ ΕΥΘΥΡΜΜΩΝ ΤΜΗΜΤΩΝ α α β α β α β 1. ν 2, να υπολογίσετε τους λόγους :,, β β β α β 2. Σε ένα ισόπλευρο τρίγωνο με πλευρά 6 cm και ύψος, να υπολογίσετε τους
Καλή Επιτυχία!!! ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...
Αµυραδάκη 0, Νίκαια (10-4903576) ΝΟΕΜΒΡΙΟΣ 011 ΘΕΜΑ 1 Ο Να αποδείξετε ότι, σε ένα ορθογώνιο τρίγωνο, το τετράγωνο µιας κάθετης πλευράς του ισούται µε το γινόµενο της υποτείνουσας επί την προβολή της στην
ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β
ΥΜΝΑΣΙΟ - 010 48 Α. Τι λέγεται τετραγωνική ρίζα ενός θετικού αριθμού α και πώς συμβολίζεται αυτή; Β. Ποιος αριθμός ονομάζεται άρρητος;. Πώς ορίζονται οι πραγματικοί αριθμοί; Α. Τι λέγεται ημίτονο μιας
Τετραγωνική ρίζα πραγματικού αριθμού
Τετραγωνική ρίζα του θετικού αριθμού α, ονομάζεται ο θετικός αριθμός χ, όταν χ = α. Ορίζουμε επίσης ότι: 0 0. Δηλαδή αν α, x > 0 και x, τότε x. Συνέπειες του ορισμού Για κάθε πραγματικό αριθμό x ισχύει:
1. Να εξετάσετε αν οποιοδήποτε τετράγωνο είναι και ορθογώνιο παραλληλόγραμμο. Να διατυπώσετε τα επιχειρήματά σας.
ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΘΕΜΑ 1 ο 1. Να εξετάσετε αν οποιοδήποτε τετράγωνο είναι και ορθογώνιο παραλληλόγραμμο. Να διατυπώσετε τα επιχειρήματά σας. 2. Να δείξετε με παραδείγματα σχημάτων ορθογωνίων
4.5 Ο ΚΩΝΟΣ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥ
1 4.5 Ο ΚΩΝΟΣ ΚΙ Τ ΣΤΟΙΧΕΙ ΤΟΥ ΘΕΩΡΙ 1. Κώνος : ν φανταστούµε ότι το ορθογώνιο τρίγωνο στρέφεται γύρω από την κάθετη πλευρά του κατά µία πλήρη περιστροφή, προκύπτει το στερεό το οποίο λέγεται κώνος. 2.
Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ
Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 η Να αποδείξετε ότι στις ομόλογες πλευρές δύο ίσων τριγώνων αντιστοιχούν ίσες διάμεσοι. Α Α ΑΠΟΔΕΙΞΗ Β Γ Β Γ Θα δείξουμε ότι ΑΜ=Α
ΔΡΑΣΤΗΡΙΟΤΗΤΑ. Θυμόμαστε - Μαθαίνουμε Κύρια στοιχεία τριγώνου. Σκεφτόμαστε. Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων. Όχι κάθετες πλευρές
- 218 - Μέρος Kεφάλαιο 3 ο - Τρίγωνα - Παραλληλόγραμμα - Τραπέζια.3.1. Στοιχεία τριγώνου - Είδη τριγώνων Θυμόμαστε - Μαθαίνουμε Κύρια στοιχεία τριγώνου κορυφή Κάθε τρίγωνο έχει τρεις κορυφές,,, τρεις πλευρές,,
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του
2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε.
11η Κυπριακή Μαθηματική Ολυμπιάδα πρίλιος 010 Χρόνος: 60 λεπτά ΛΥΚΕΙΟΥ 1. Το τελευταίο ψηφίο του αριθμού 1 3 5 Ε 9 7. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 του 100 αυξάνονται κατά 9 μονάδες όταν αντιστραφούν
Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0.
ΜΕΡΟΣ Α. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ,α 0 337. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ ME α 0 Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής = α + β + γ με α 0. Η συνάρτηση = α +β+γ με α > 0 Η γραφική παράσταση της συνάρτησης
Β Γυμνασίου. Θέματα Εξετάσεων
υμνασίου Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων Θέμα 1. α. Ποια ποσά λέγονται ανάλογα και ποια σχέση τα συνδέει; β. Τι γνωρίζετε για τη γραφική παράσταση της συνάρτησης y=αx
ΚΕΦΑΛΑΙΟ 5ο ΠΑΡΑΛΛΗΛOΓΡΑΜΜΑ - ΤΡΑΠΕΖΙΑ. Εισαγωγή
ΚΦΛΙΟ 5ο ΠΡΛΛΗΛOΡΜΜ - ΤΡΠΙ ισαγωγή. Τι καλείται τετράπλευρο ; Πόσες διαγώνιες έχει ένα κυρτό τετράπλευρο ; Τι καλείται παραλληλόγραμμο και τι τραπέζιο ; Το ευθύγραμμο σχήμα που έχει τέσσερις πλευρές λέγεται
ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 2018 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ
ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 017-018 ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 018 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Γ Γυμνασίου ΗΜΕΡΟΜΗΝΙΑ: Δευτέρα, 4 Ιουνίου 018 ΧΡΟΝΟΣ: ώρες ΒΑΘΜΟΣ:. ΥΠΟΓΡΑΦΗ ΚΑΘΗΓΗΤΗ/ΤΡΙΑΣ
Γενικό Ενιαίο Λύκειο Γεωμετρία - Τάξη Α
ενικό νιαίο Λύκειο εωμετρία - Τάξη 61 Θέματα εξετάσεων περιόδου Μαΐου-Ιουνίου στην εωμετρία Τάξη! Λυκείου ενικό νιαίο Λύκειο εωμετρία - Τάξη 6. Να αποδείξετε ότι διάμεσος τραπεζίου είναι παράλληλη προς
ΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων
ΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / Σελίδα 37 Στο παρακάτω σχήμα σχεδιάστε την διάμεσο ΑΜ, την διάμεσο ΒΛ και την διάμεσο ΓΝ. Τι παρατηρείτε; Να κατασκευάσετε
1.3 ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ. Ορισμοί Εμβαδόν τετραγώνου. Το εμβαδόν ενός τετραγώνου πλευράς α ισούται µε α 2.
ΜΡΟΣ Β 1.3 ΜΒΑΔΑ ΠΙΠΔΩΝ ΣΧΗΜΑΤΩΝ 1 Ορισμοί μβαδόν τετραγώνου 1.3 ΜΒΑΔΑ ΠΙΠΔΩΝ ΣΧΗΜΑΤΩΝ Το εμβαδόν ενός τετραγώνου πλευράς α ισούται µε α. E α α α μβαδόν ορθογωνίου Το εμβαδόν ενός ορθογωνίου µε πλευρές
ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ. Γεωμετρικά σχήματα - Η περίμετρος. Ενότητα 8. β τεύχος
ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ 46 Γεωμετρικά σχήματα - Η περίμετρος Ενότητα 8 β τεύχος Γεωμετρικά σχήματα-η περίμετρος 46 1η Άσκηση Να κυκλώσεις όλα τα κανονικά πολύγωνα: 60 ο 108 ο 108 ο 120
2 η δεκάδα θεµάτων επανάληψης
1 η δεκάδα θεµάτων επανάληψης 11. Σε κάθε τρίγωνο να αποδείξετε ότι το τετράγωνο µιας πλευράς που βρίσκεται απέναντι από οξεία γωνία, ισούται µε το άθροισµα των τετραγώνων των δύο άλλων πλευρών ελαττωµένο
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ
ΠΝΗΠΤΙ ΘΜΤ ΜΘΗΜΤΙΩΝ ΥΜΝΣΙΟΥ ΘΜ 1 ίνονται οι αλγεβρικές παραστάσεις x 1 3 x x 1 10x 19 και B x x 5 x 4. α) Να κάνετε τις πράξεις και να δείξετε ότι A x 3x 9x 7 και B 3x 6x 7x 54. β) Να παραγοντοποιήσετε
ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»
ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:
ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού
ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού 97 98 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθμό, να υπολογιστεί
Μ Α Θ Η Μ Α Τ Ι Κ Α Β Γ Υ Μ Ν Α Σ Ι Ο Υ
Μ Α Θ Η Μ Α Τ Ι Κ Α Β Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Ερωτήσεις θεωρίας Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Δώστε ένα παράδειγμα σχετικό με την έννοια της μεταβλητής 2. Να αναφέρετε
Βασικές Γεωμετρικές έννοιες
Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο
ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 2018 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ
ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 017-018 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 018 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: B Γυμνασίου ΗΜΕΡΟΜΗΝΙΑ: Τετάρτη, 6 Ιουνίου 018 ΧΡΟΝΟΣ: ώρες ΒΑΘΜΟΣ:. ΥΠΟΓΡΑΦΗ ΚΑΘΗΓΗΤΗ/ΤΡΙΑΣ
ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. ΚΕΦΑΛΑΙΟ 10ο ΕΜΒΑΔΑ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΠΙΜΕΛΕΙΑ: ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ
ΕΩΜΕΤΡΙ ΛΥΚΕΙΟΥ ΚΕΦΛΙΟ 0ο ΕΜ ΕΠΙΜΕΛΕΙ ΥΕΡΙΝΟΣ ΣΙΛΗΣ 57 ΚΕΦΛΙΟ 0ο ΕΜ Πολυγωνικά χωρία - Πολυγωνικές επιφάνειες. Τι καλούμαι πολυγωνικό χωρίο και πως ονομάζεται αυτό ; Πότε δύο πολυγωνικά χωρία λέγονται
Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α.
Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 014-015 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α. ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν
ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ Ερώτηση 1 η Ποια καλούνται κύρια και ποια δευτερεύοντα στοιχεία ενός τριγώνου; Τι ονομάζεται τριγωνική ανισότητα; Κύρια στοιχεία ενός τριγώνου είναι οι πλευρές και οι γωνίες του. Οι
Επαναληπτικές Ασκήσεις
Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την
ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ. Εμβαδό τετραγώνου, ορθογωνίου και ορθογώνιου τριγώνου. Ενότητα 8. β τεύχος
ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ 48 Ενότητα 8 Εμβαδό τετραγώνου, ορθογωνίου και ορθογώνιου τριγώνου β τεύχος Εμβαδό τετραγώνου, ορθογωνίου και ορθογώνιου τριγώνου 48 1η Άσκηση Να συμπληρώσεις τον
Ερωτήσεις κατανόησης σελίδας 114. Ασκήσεις σχολικού βιβλίου σελίδας Στα παρακάτω τραπέζια να βρείτε τα x, ψ ω, και θ
5.0 5. σκήσεις σχολικού βιβλίου σελίδας 4 5 ρωτήσεις κατανόησης σελίδας 4. Στα παρακάτω τραπέζια να βρείτε τα x, ψ ω, και θ 3 3 (α) x 0 ψ 4 (β) x ψ 7 (γ) x (δ) θ x+ 3x ω 0 ο πάντηση + 0 Στο σχήµα (α) το
(1) (2) A ΑE Α = AΒ (ΑΒΕ) (Α Ε)
9. Τα τρίγωνα και έχουν κοινή γωνία, άρα: () () A E AB A E A (1) Όµοια τα τρίγωνα και, άρα: () () A E AB A A () E Όµως από το θεώρηµα του Θαλή: A A () ( // ) () () πό (1), (), () έχουµε. () () Άρα () ()
Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες
Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία
ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ
ΜΕΡΟΣ Α ο ΚΕΦΑΛΑΙΟ. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών. Ονομάζεται αλγεβρική παράσταση μια παράσταση
ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ
ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Βασικά θεωρήματα Σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του είναι ίσο με το γινόμενο της υποτείνουσας επί την προβολή της