Θέματα (& Λύσεις) Εξετάσεων Φεβρουαρίου 2014:
|
|
- Ἀρίσταρχος Βλαστός
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΔΙΔΑΣΚΩΝ: ΚΧ ΓΙΑΝΝΑΚΟΓΛΟΥ, Καθηητής ΕΜΠ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΦΕΒΡΟΥΑΡΙΟΣ 04 Θέματα (& Λύσεις) Εξετάσεων Φεβρουαρίου 04: ΘΕΜΑ (6 μονάδες) Συμπιέζουμε αέρα (τέλειο αέριο) από τις συνθήκες (Τ t, t ) στις (Τ t5, t5 ), με δύο τρόπους: (α) Με ένα μονοβάθμιο αξονικό συμπιεστή (δείκτες θέσεων 6 5) Συμβολίστε με η M και η Μ τους πολυτροπικούς βαθμούς απόδοσης της βαθμίδας και της κινητής της πτερύωσης, αντίστοιχα (β) Με ένα διβάθμιο αξονικό συμπιεστή ( η πρώτη βαθμίδα, 4 5 η δεύτερη) Για την πρώτη βαθμίδα, συμβολίστε με η και η τους πολυτροπικούς βαθμούς απόδοσης της πρώτης βαθμίδας και της κινητής της πτερύωσης, αντίστοιχα Οι αντίστοιχες ποσότητες ια τη δεύτερη βαθμίδα συμβολίζονται με η και η Ισχύει η η Σε κάθε βαθμίδα, είτε του μονοβάθμιου είτε του διβάθμιου, η αύξηση εντροπίας ισομοιράζεται μεταξύ της κινητής και της σταθερής πτερύωσης Δείξτε ότι η Μ η η και η Μ η η Κάντε το θερμοδυναμικό διάραμμα και ια τις δύο περιπτώσεις, με κοινά σημεία τα και 5 Να φανούν οι επιπτώσεις των ισοτήτων που αποδείξατε στο διάραμμα (καθαρό σκίτσο, χωρίς διφορούμενα σημεία) Μην αλλάξετε τα σύμβολα που ορίστηκαν παραπάνω ΘΕΜΑ (4 μονάδες) Ακτινικός συμπιεστής κινείται από ηλεκτρικό κινητήρα ισχύoς 550 kw χωρίς μηχανικές απώλειες και συμπιέζει αέρα (τέλειο αέριο) που δέχεται απευθείας από το περιβάλλον Η ταχύτητα περιστροφής της πτερωτής είναι 0000 PM Η σχετική ταχύτητα στην έξοδο της πτερωτής (σε διάμετρο ίση με 46cm) σχηματίζει, με την ακτινική κατεύθυνση, ωνία 5 μοιρών με φορά αντίθετη της περιστροφής Στην ίδια θέση της πτερωτής που έχει 7 πτερύια, η ακτινική συνιστώσα της ταχύτητας είναι 8ms Βρείτε την παροχή μάζας που διακινείται και, με βάση τη σχέση του tanitz, τα όρια (κάτω και πάνω) μέσα στα οποία μπορεί να βρίσκεται η τιμή του παράοντα ολίσθησης σ
2 ΔΙΔΑΣΚΩΝ: ΚΧ ΓΙΑΝΝΑΚΟΓΛΟΥ, Καθηητής ΕΜΠ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΦΕΒΡΟΥΑΡΙΟΣ 04 Λύση Θέματος : Το παρακάτω σκαρίφημα δείχνει τη θερμοδυναμική μεταβολή στο μονοβάθμιο ( 6 5) και διβάθμιο ( η πρώτη και 4 5 η δεύτερη βαθμίδα του) συμπιεστή Οι κατακόρυφες ραμμές-οδηοί (σταθερής εντροπίας) ισαπέχουν Μιας και θα δειχθεί ότι όλες οι κινητές πτερυώσεις έχουν ίδιο πολυτροπικό βαθμό απόδοσης, έχει προσεχθεί ώστε το σημείο να κείται στην καμπύλη της πολυτροπικής μεταβολής 6 Τα σημεία που σχεδιάζονται είναι ολικά και ο δείκτης ttotal παραλείπεται σε όλη την άσκηση η οποία δεν ασχολείται με τα αντίστοιχα στατικά σημεία Η λεπτότερη καμπύλη ραμμή είναι η πολυτροπική μεταβολή των δύο συμπιεστών (με βάση αυτό που θα αποδειχθεί) Υπάρχουν αρκετοί τρόποι ια να λυθεί η άσκηση Παρακάτω επιλέεται ένας από αυτούς Για την πρώτη βαθμίδα του διβάθμιου συμπιεστή, όπου ( ), είναι ln C, ln C με C,, η και η και με αντικατάσταση προκύπτει ότι ln ln η η ή τελικά η η () Προφανώς, τα ίδια ισχύουν και στη δεύτερη βαθμίδα αλλά και στο μονοβάθμιο συμπιεστή, δηλαδή h 5 4 6
3 ΔΙΔΑΣΚΩΝ: ΚΧ ΓΙΑΝΝΑΚΟΓΛΟΥ, Καθηητής ΕΜΠ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΦΕΒΡΟΥΑΡΙΟΣ 04 η η () η M η M () Αφού η η, από τις () και () συνάεται ότι η η Επειδή οι μεταβολές και 5 διέπονται από τον ίδιο εκθέτη πολυτροπικής μεταβολής, ο ίδιος εκθέτης θα διέπει και τη συνολική μεταβολή 5, άρα θα είναι η M η η Τέλος, συνδυάζοντας τις () και () ή () και (), άμεσα απορρέει ότι η M η η Σχόλια από τη διόρθωση: Τα σημεία και 6 πρέπει να είναι στην ίδια ισεντροπική (κατακόρυφο) Πολλοί σπουδαστές δεν το έλαβαν υπόψη ή δεν το σχεδίασαν σωστά Η πολυτροπική μεταβολή πρέπει να είναι «πάνω» στην 6 Αλλιώς δεν θα είχαν το ίδιο πολυτροπικό βαθμό απόδοσης Επίσης συνηθισμένο λάθος
4 ΔΙΔΑΣΚΩΝ: ΚΧ ΓΙΑΝΝΑΚΟΓΛΟΥ, Καθηητής ΕΜΠ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΦΕΒΡΟΥΑΡΙΟΣ 04 Λύση Θέματος : Ο αέρας εισέρχεται στο συμπιεστή απευθείας από το περιβάλλον, άρα χωρίς συστροφή (V u 0msec), και η ισχύς P που συναλλάσσει ρευστό και πτερωτή (είναι η ισχύς του ηλεκτρικού κινητήρα, αφού ο μηχανικός βαθμός απόδοσης είναι 00% ή, αλλιώς, η μετάδοση ίνεται χωρίς μηχανικές απώλειες) διέπεται από την εξίσωση του Euler στη μορφή P mu & Vu Στην έξοδο της πτερωτής είναι V r 8 και m πν d π ,46 U 48,7m ενώ β -5 ο Από το εκεί τρίωνο ταχυτήτων ο Wu Vr tan β 8 tan( 5 ) 55,0m Vu Wu + U 55,0 + 48,7 46,69m Οπότε, η διακινούμενη παροχή μάζας είναι P m& UVu ,676kg 48,7 46,69 Κατά tanitz, ο παράοντας ολίσθησης είναι 0,6π σ n + Φ tan β () όπου n7 (πτερύια) και ο συντελεστής παροχής είναι V 8 Φ r 0,45 U 48,7 ο Λόω του φαινομένου της ολίσθησης της ροής στη θέση, θα είναι πάντα β > β ή β > 5 ή ο tan( β) > tan( 5 ) Με βάση την τελευταία ανισότητα και τη σχέση () καταλήουμε στην ανισότητα σ > 0, 8685 Δεδομένου ότι η θεωρητικά μέιστη τιμή του παράοντα ολίσθησης είναι η σ, τότε τα όρια (κάτω και πάνω) μέσα στα οποία μπορεί να βρίσκεται η τιμή του παράοντα ολίσθησης είναι 0,8685 < σ < Σχόλια από τη διόρθωση: Η έκφραση «συμπιεστής κινείται από ηλεκτρικό κινητήρα χωρίς μηχανικές απώλειες» δεν μπορεί να σημαίνει ότι η ροή είναι ισεντροπική (άχρηστη παραδοχή, έτσι κι αλλιώς), όπως κάποιοι θεώρησαν!
5 ΔΙΔΑΣΚΩΝ: ΚΧ ΓΙΑΝΝΑΚΟΓΛΟΥ, Καθηητής ΕΜΠ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΦΕΒΡΟΥΑΡΙΟΣ 04 Η έκφραση «η σχετική ταχύτητα στην έξοδο της πτερωτής σχηματίζει, με την ακτινική κατεύθυνση, ωνία 5 μοιρών με φορά αντίθετη της περιστροφής» μεταφράζεται προφανώς σε β -5 ο Προσοχή στο πρόσημο! Για άλλη μια φορά, ένα μη-αμελητέο ποσοστό των ραπτών αστόχησε στην πρώτη αριθμητική αντικατάσταση, αυτή ια την εύρεση του U, μη διαιρώντας τη διάμετρο δια δύο, οπότε όλα τα αριθμητικά αποτελέσματα της άσκησης να είναι εξωπραματικά! Παραπάνω δόθηκε ως απάντηση στο δεύτερο ερώτημα η ανισότητα 0,8685 < σ < Κατά τη διόρθωση έιναν δεκτές, ως απόλυτα σωστές, αιτιολοημένες απαντήσεις σπουδαστών που λχ δέχθηκαν ότι, αφού β -5 ο, τα πτερύια είναι οπισθοκλινή, άρα η μεαλύτερη τιμή που μπορεί ο να λάβει η ωνία μετάλλου στη θέση είναι η β 0 Δεδομένου ότι, όπως δείχθηκε, ο β 5 >, η διπλή ανισότητα ια την ποσότητα σ o ο 0 > β > 5 οδήησε σε ίδιο κάτω και διαφορετικό άνω όριο ΓΕΝΙΚΗ ΠΑΡΑΤΗΡΗΣΗ: Τα οκτασέλιδα τυπολόια που επιτρέπεται να έχετε μαζί σας στις εξετάσεις πρέπει να είναι άραφα Περιέχουν ότι ακριβώς χρειάζεστε ια να λύσετε τα θέματα των εξετάσεων Δεν υπάρχει λόος να ρισκάρετε
Σταθμοί Παραγωγής Ενέργειας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολοικού Τομέα Σταθμοί Παραωής Ενέρειας Ενότητα 4: Αεριοστρόβιλοι Δρ Γεώριος Αλέξης Τμήμα Μηχανολόων Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 9 ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ
ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΟΚΙΝΗΤΗΡΩΝ ΚΑΙ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΔΙΔΑΚΤΙΚΗ ΠΕΡΙΟΧΗ: ΕΡΓΑΣΤΗΡΙΟ ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ Υπεύθυνος: Επικ. Καθηητής Δρ. Α. ΦΑΤΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ
Διαβάστε περισσότεραΑΚΤΙΝΙΚΟΣ ΣΥΜΠΙΕΣΤΗΣ. ΘΕΡΜΙΚΕΣ ΣΤΡΟΒΙΛΟΜΗΧΑΝΕΣ (5 ο Εξάμηνο Σχολής Μηχ.Μηχ. ΕΜΠ) Κυριάκος Χ. Γιαννάκογλου Kαθηγητής ΕΜΠ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης ης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΘΕΡΜΙΚΕΣ ΣΤΡΟΒΙΛΟΜΗΧΑΝΕΣ (5 ο Εξάμηνο Σχολής Μηχ.Μηχ. ΕΜΠ) Ο ΦΥΓΟΚΕΝΤΡΙΚΟΣ
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 12 ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ
ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΟΚΙΝΗΤΗΡΩΝ ΚΑΙ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΔΙΔΑΚΤΙΚΗ ΠΕΡΙΟΧΗ: ΕΡΓΑΣΤΗΡΙΟ ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ Υπεύθυνος: Επικ. Καθηγητής Δρ. Α. ΦΑΤΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ
Διαβάστε περισσότεραΚεφάλαιο 9 Θερμικές στροβιλομηχανές
Κεφάλαιο 9 Θερμικές στροβιλομηχανές Σύνοψη Θεωρία ροής βαθμίδας αξονικού στροβιλοσυμπιεστή Επίδοση πολυβάθμιων στροβιλομηχανών Ακτινικοί συμπιεστές / Γενικά χαρακτηριστικά / Μορφολοία βαθμίδας / Η αύξηση
Διαβάστε περισσότεραΚεφάλαιο 5 Η στροφορμή στις ρευστοδυναμικές μηχανές
Κεφάλαιο 5 Η στροφορμή στις ρευστοδυναμικές μηχανές Σύνοψη Απόδοση του νόμου της στροφορμής σε ροϊκά συστήματα Αξονοσυμμετρικοί όκοι ελέχου Αντλίες, Στρόβιλοι Θεωρία πτερυώσεων (τρίωνα ταχυτήτων Θεωρητική
Διαβάστε περισσότεραΓΝΩΣΕΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης ης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΘΕΡΜΙΚΕΣ ΣΤΡΟΒΙΛΟΜΗΧΑΝΕΣ (5 ο Εξάμηνο Σχολής Μηχ.Μηχ. ΕΜΠ) ΣΥΝΟΨΗ ΕΠΑΝΑΛΗΨΗ
Διαβάστε περισσότεραΑΣΚΗΣΗ 1 η. r 1. Σε κύκλο ισόογκης καύσης (OTTO) να αποδειχθούν ότι: Οθεωρητικόςβαθμόςαπόδοσηςείναι:. Η μέση θεωρητική πίεση κύκλου είναι:. th 1.
ΑΣΚΗΣΗ η Σε κύκλο ισόοκης καύσης (OO) να αποδειχθούν ότι: Οθεωρητικόςβαθμόςαπόδοσηςείναι:. Η μέση θεωρητική πίεση κύκλου είναι:. q R q q tot ΑΣΚΗΣΗ η Δ tot q q q ( ) cv ( ) cv q q q ΑΣΚΗΣΗ η q q Από αδιαβατικές
Διαβάστε περισσότεραΥδροδυναµικέςΜηχανές
ΥδροδυναµικέςΜηχανές Τρίγωνα ταχυτήτων στροβιλοµηχανών Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κατσαπρακάκης Κυλινδρικέςσυντεταγµένες Στα σχήµατα παριστάνονται αξονικές τοµές και όψεις
Διαβάστε περισσότεραΘέματα Εξετάσεων Φεβρουαρίου 2013:
ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΦΕΒΡΟΥΑΡΙΟΣ Θέματα Εξετάσεων Φεβρουαρίου : ΘΕΜΑ (μονάδες.) Καμπύλη Bezier δημιουργείται από σημεία ελέγχου, που κατά σειρά είναι τα: (,), (K,) και (,). Η συντεταγμένη Κ του ενδιάμεσου
Διαβάστε περισσότεραΘέματα (& Λύσεις) Εξετάσεων Σεπτεμβρίου 2012:
ΘΕΡΜΙΚΕ ΤΡΟΒΙΛΟΜΗΧΑΝΕ ΔΙΔΑΚΩΝ: Κ.Χ. ΓΙΑΝΝΑΚΟΓΛΟΥ, Καθηητής ΕΜΠ ΕΞΕΤΑΤΙΚΗ ΠΕΡΙΟΔΟ: ΕΠΤΕΜΡΙΟ 0 Θέματα (& Λύσεις) Εξετάσεων ετεμβρίου 0: ΘΕΜΑ (6,5 μονάδες) χεδιάζεται, με αραδοχές μονοδιάστατης ανάυσης (σταθερά
Διαβάστε περισσότεραε = = 9,5 =, γ=1,4, R = 287 J/KgK, Q = Cv ΔT = P2 Εξισώσεις αδιαβατικών μεταβολών: T [Απ: (β) 1571,9 Κ, 4808976 Pa, (γ) 59,36%, (δ) 451871,6 Pa] ΛΥΣΗ
ΑΣΚΗΣΗ Μείμα αέρα-καυσίμου σε στοιχειομετρική αναλοία εκλύει θερμότητα 5 Kcl/Kg κατά τη καύση του εντός κυλίνδρου ΜΕΚ που λειτουρεί βασιζόμενη στο θερμοδυναμικό κύκλο του Otto. Ο βαθμός συμπίεσης της μηχανής
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 5 ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ
ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΟΚΙΝΗΤΗΡΩΝ ΚΑΙ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΔΙΔΑΚΤΙΚΗ ΠΕΡΙΟΧΗ: ΕΡΓΑΣΤΗΡΙΟ ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ Υπεύθυνος: Επικ. Καθηγητής Δρ. Α. ΦΑΤΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ
Διαβάστε περισσότεραΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 12 ΙΟΥΝΙΟΥ 2017 ΕΚΦΩΝΗΣΕΙΣ
ΘΕΜΑ Α ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 1 ΙΟΥΝΙΟΥ 017 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει σωστά την
Διαβάστε περισσότεραΙ Α Γ Ω Ν Ι Σ Μ Α ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. Θέµα 1 ο. α. Το σύστηµα των ηλεκτρικών φορτίων έχει δυναµική ενέργεια
Ι Α Γ Ω Ν Ι Σ Μ Α ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΙΚΗΣ & ΕΧΝΟΛΟΓΙΚΗΣ ΚΑΕΥΘΥΝΣΗΣ Θέµα ο Στις παρακάτω ερωτήσεις να ράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το ράµµα που αντιστοιχεί στη σωστή απάντηση..
Διαβάστε περισσότεραΠρέσσες κοχλία. Κινηματική Δυνάμεις Έργο. Πρέσσες κοχλία. Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ
Πρέσσες κοχλία Κινηματική Δυνάμεις Έργο Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Πρέσσες κοχλία Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons και δημιουργήθηκε στο πλαίσιο του Έργου των Ανοικτών
Διαβάστε περισσότεραΑσκήσεις Κεφ. 2, Δυναμική υλικού σημείου Κλασική Μηχανική, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 29 Μαΐου 2012 1. Στο υλικό σημείο A ασκούνται οι δυνάμεις F 1 και F2 των οποίων
Διαβάστε περισσότεραΜΟΝΟΔΙΑΣΤΑΤΗ ΑΝΑΛΥΣΗ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ. Αποτελέσματα Αναγωγής Μετρήσεων Εργαστηριακής Άσκησης
ΜΟΝΟΔΙΑΣΤΑΤΗ ΑΝΑΛΥΣΗ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ Αποτελέσματα Αναγωγής Μετρήσεων Εργαστηριακής Άσκησης Μέτρηση Χαρακτηριστικής Καμπύλης Βαθμίδας Αξονικού Συμπιεστή Ονοματεπώνυμο Σπουδαστή: Πατρώνυμο Σπουδαστή:
Διαβάστε περισσότεραΤεχνική Οδηγία 5 Ανάλυση συµπαγών πλακών
CSI Hellas, εκέµβριος 2003 Τεχνική Οδηία 5 Ανάλυση συµπαών πλακών Η τεχνική οδηία 5 παρέχει βασικές πληροφορίες ια την πλακών. ανάλυση Γενικά. Το Adaptor αναλύει µόνο συµπαείς ορθοωνικές πλάκες, συνεχείς
Διαβάστε περισσότεραΜΟΝΟΔΙΑΣΤΑΤΗ ΑΝΑΛΥΣΗ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ Αποτελέσματα Αναγωγής Μετρήσεων Εργαστηριακής Άσκησης
ΜΟΝΟΔΙΑΣΤΑΤΗ ΑΝΑΛΥΣΗ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ Αποτελέσματα Αναγωγής Μετρήσεων Εργαστηριακής Άσκησης Μέτρηση Χαρακτηριστικής Καμπύλης Βαθμίδας Αξονικού Συμπιεστή Ονοματεπώνυμο Σπουδαστή: Κωδικός Σπουδαστή:
Διαβάστε περισσότεραΘεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:
Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η
Διαβάστε περισσότερα6 Εξαναγκασμένη ροή αέρα
6 Εξαναγκασμένη ροή αέρα 6.1 Εισαγωγή Όταν θέτουμε σε κίνηση κάποια μόρια ενός ρευστού μέσω μιας αντλίας ή ενός φυσητήρα, η κίνηση μεταδίδεται και στα υπόλοιπα μόρια του ρευστού μέσω των αλληλεπιδράσεων
Διαβάστε περισσότεραΕργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής
Εργαστήριο Μηχανικής Ρευστών Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Ονοματεπώνυμο:Κυρκιμτζής Γιώργος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Γ Ημερομηνία εκτέλεσης Πειράματος : 12/4/2000 Ημερομηνία
Διαβάστε περισσότεραΕΥΕΛΙΚΤΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ΗΜΥ 499
ΕΥΕΛΙΚΤΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ΗΜΥ 499 ΓΡΑΜΜΕΣ ΜΕΤΑΦΟΡΑΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ρ Ανδρέας Σταύρου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τα Θέµατα Γραµµές
Διαβάστε περισσότεραΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΤΟΙΧΕΙΑ ΑΝΤΛΙΩΝ
ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΤΟΙΧΕΙΑ ΑΝΤΛΙΩΝ (Από Β.Μ.Π. Ευγενίδου Ιδρύματος, Αθήνα 2015) Επιμέλεια : Ράπτης Κων/νος Δρ. Μηχανολόγος Μηχανικός Ε.Μ.Π. Ασπρόπυργος 2018 Σελίδα 1 από 7 Χαρακτηριστικά Στοιχεία Αντλιών
Διαβάστε περισσότεραΘέματα Εξετάσεων Σεπτεμβρίου 2012:
ο ΕΞΑΜΗΝΟ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΣΕΠΤΕΜΒΡΙΟΣ Θέματα Εξετάσεων Σεπτεμβρίου : ΘΕΜΑ (μονάδες ) Καμπύλη Bezier δημιουργείται από σημεία ελέγχου, που κατά σειρά είναι τα: (,), (?,?),
Διαβάστε περισσότεραΑσκήσεις 6 ου Κεφαλαίου
Ασκήσεις 6 ου Κεφαλαίου 1. Μία ράβδος ΟΑ έχει μήκος l και περιστρέφεται γύρω από τον κατακόρυφο άξονα Οz, που είναι κάθετος στο άκρο της Ο με σταθερή γωνιακή ταχύτητα ω. Να βρεθεί r η επαγώμενη ΗΕΔ στη
Διαβάστε περισσότεραΠαραδοχή: ο αέρας είναι τέλειο αέριο µε ειδική σταθερά 287 J/kgK και συντελεστή αδιαβατικής µεταβολής 1.4
ΑΛΕΞΑΝ ΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΘΕΣΣΑΑΟΝΙΚΗΣ Α Εξεταστική Περίοδος - 4 Μαΐου 2007 ΜΕ ΒΟΗΘΗΜΑΤΑ - ΙΑΡΚΕΙΑ : 1 ώρα 40' ΕΡΩΤΗΣΕΙΣ 1. Αφού συµβουλευτείτε τα αποτελέσµατα σχετικών επιλυµένων ασκήσεων,
Διαβάστε περισσότεραΔΙΑΝΥΣΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
ΔΙΑΝΥΣΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. ΔΙΑΝΥΣΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΟ ΣΥΝΕΧΕΙΑ Ορισμός. Αν τα και είναι τα μοναδιαία διανύσματα των αξόνων και αντίστοιχα η συνάρτηση που ορίζεται από τη σχέση όπου (συνιστώσες) είναι
Διαβάστε περισσότεραΕσωτερικές Αλληλεπιδράσεις Νο 3.
Το θέμα του 05, (επαναληπτικές) Εσωτερικές λληλεπιδράσεις Νο 3. Δύο ράβδοι είναι συνδεδεμένες στο άκρο τους και σχηματίζουν σταθερή γωνία 60 ο μεταξύ τους, όπως φαίνεται στο Σχήμα. Οι ράβδοι είναι διαφορετικές
Διαβάστε περισσότεραΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΓΩΝΙΣΜΑ ΚΡΟΥΣΕΙΣ- ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ-ΘΕΡΜΟΔΥΝΑΜΙΚΗ
ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΓΩΝΙΣΜΑ ΚΡΟΥΣΕΙΣ- ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ-ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ημερομηνία: 15/2/15 Διάρκεια διαγωνίσματος: 18 Υπεύθυνος καθηγητής: Τηλενίκης Ευάγγελος ΖΗΤΗΜΑ 1 Ο Στις
Διαβάστε περισσότερα2ο Γενικό Λύκειο Λευκάδας Άγγελος Σικελιανός 03 Ιουνίου Ενδεικτικές απαντήσεις
ο ενικό Λύκειο Λευκάδας Άελος Σικελιανός 3 Ιουνίου 5 ΘΕΜ Ενδεικτικές απαντσεις β, δ, 3, 4 α, 5 α Λάθος, β Σωστ, Σωστ, δ Λάθος, ε Λάθος. ΘΕΜ Β Β. Σωστ είναι η α. ος τρόπος Έστω ΔΤ η αύξηση της θερμοκρασίας
Διαβάστε περισσότεραΤ.Ε.Ι. ΠΑΤΡΑΣ / Σ.Τ.ΕΦ. Πάτρα Τμήμα: ΜΗΧΑΝΟΛΟΓΙΑΣ. Εξέταση στο μάθημα «Ηλεκτρικές Μηχανές»
Τ.Ε.Ι. ΠΑΤΡΑΣ / Σ.Τ.ΕΦ. Πάτρα 26-1-2012 Τμήμα: ΜΗΧΑΝΟΛΟΓΙΑΣ Εξέταση στο μάθημα «Ηλεκτρικές Μηχανές» ΠΡΟΣΟΧΗ: Για οποιοδήποτε σύμβολο χρησιμοποιήσετε στις πράξεις σας, να γράψετε ξεκάθαρα τι αντιπροσωπεύει
Διαβάστε περισσότεραγραπτή εξέταση στο μάθημα
3η εξεταστική περίοδος από 9/03/5 έως 9/04/5 γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Τάξη: Α Λυκείου Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητής: Θ Ε Μ Α Α Στις ερωτήσεις Α-Α4 να επιλέξετε τη σωστή απάντηση.
Διαβάστε περισσότεραΥ ΡΑΥΛΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ
Υ ΡΑΥΛΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ ΓΕΝΙΚΑ ΓΙΑ ΤΑ ΙΚΤΥΑ ίκτυο αγωγών είναι ένα σύνολο αγωγών που συνδέονται µεταξύ τους σε σηµεία που λέγονται κόµβοι Σχηµατίζουν είτε ανοικτούς κλάδους µε τη µορφή ενός δένδρου είτε
Διαβάστε περισσότεραΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 2 ΕΡΓΟ ΑΕΡΙΟΥ
ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ ΕΡΓΟ ΑΕΡΙΟΥ Κατά την εκτόνωση ενός αερίου, το έρο του είναι θετικό ( δηλαδή παραόμενο). Κατά την συμπίεση ενός
Διαβάστε περισσότεραΓιάννης Γιάκας. Συστήματα αναφοράς και μονάδες μέτρησης Γραμμικά κινηματικά χαρακτηριστικά Γωνιακά κινηματικά χαρακτηριστικά Βλητική 2/12/2013
Γιάννης Γιάκας Ύλη προόδου Συστήματα αναφοράς και μονάδες μέτρησης Γραμμικά κινηματικά χαρακτηριστικά Γωνιακά κινηματικά χαρακτηριστικά Βλητική 1 Συστήματα Αναφοράς M.K.S. ( m, Kg, sec ) C.G.S. ( cm, gr,
Διαβάστε περισσότεραΣχεδιασμός Θαλάμων και Στύλων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανικών Μεταλλείων Μεταλλουρών Σχεδιασμός Θαλάμων και Στύλων Ανδρέας Μπενάρδος Δρ. Μηχανικός Μεταλλείων Μεταλλουρός Ε.Μ.Π. Μέθοδος Θαλάμων και Στύλων (Room and Pillar)
Διαβάστε περισσότεραγραπτή εξέταση στη ΦΥΣΙΚΗ B κατεύθυνσης
η εξεταστική περίοδος από 4/0/5 έως 08//5 γραπτή εξέταση στη ΦΥΣΙΚΗ B κατεύθυνσης Τάξη: Β Λυκείου Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητές: Θ Ε Μ Α A Στις ερωτήσεις Α-Α4 να επιλέξετε τη σωστή απάντηση.
Διαβάστε περισσότεραΠαραγωγή Ηλεκτρικής Ενέργειας. 6ο Εξάμηνο Ηλεκτρολόγων Μηχανικών και Μηχανικών Ηλεκτρονικών Υπολογιστών. 1η Σειρά Ασκήσεων.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχ. και Μηχ. Υπολογιστών Ακαδ. Έτος 00- Τομέας Ηλεκτρικής Ισχύος Αθήνα 5//0 Κ. Βουρνάς, Κ. Ντελκής, Π. Γεωργιλάκης Παράδοση,,,4: //0 Παράδοση 5, 6: 5/4/0
Διαβάστε περισσότερα1. * Η γραφική παράσταση µιας συνάρτησης f έχει εφαπτοµένη στο x 0 την ευθεία y = αx + β, µε α 0, όταν. είναι + είναι -
Ερωτήσεις πολλαπλής επιλογής. * Η γραφική παράσταση µιας συνάρτησης f έχει εφαπτοµένη στο την ευθεία = α + β, µε α, όταν Α. ( Β. η f είναι συνεχής στο = α R Γ. η f δεν είναι συνεχής στο. το όριο Ε. το
Διαβάστε περισσότεραΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την
Διαβάστε περισσότερα2g z z f k k z z f k k z z V D 2g 2g 2g D 2g f L ka D
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΥΔΡΑΥΛΙΚΗ ΚΑΙ ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ ΕΞΕΤΑΣΗ ΠΡΟΟΔΟΥ ΝΟΕΜΒΡΙΟΥ 017 Άσκηση 1 1. Οι δεξαμενές Α και Β, του Σχήματος 1, συνδέονται με σωλήνα
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 22 Ιανουαρίου, 2019
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι Ιανουαρίου, 9 Καλή σας επιτυχία. Πρόβλημα Α Ένα σωματίδιο μάζας m κινείται υπό την επίδραση του πεδίου δύο σημειακών ελκτικών κέντρων, το ένα εκ των οποίων
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ 2.1 ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΒΑΘΜΟΙ ΑΠΟΔΟΣΗΣ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΑΣΚΗΣΕΙΣ ΠΕΡΙΕΧΟΜΕΝΑ ΔΙΑΛΕΞΗΣ
ΠΕΡΙΕΧΟΜΕΝΑ ΔΙΑΛΕΞΗΣ 2.1 ΠΕΡΙΕΧΟΜΕΝΑ 2.1 ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ 2.1 2.1.1 ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΑΡΧΗ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΜΑΖΑΣ 2.1.2 1 ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ ΑΡΧΗ ΔΙΑΤΗΡΗΣΗΣ ΕΝΕΡΓΕΙΑΣ 2.1.3 2 ος ΝΟΜΟΣ NEWTON
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7 ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ
ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΟΚΙΝΗΤΗΡΩΝ ΚΑΙ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΔΙΔΑΚΤΙΚΗ ΠΕΡΙΟΧΗ: ΕΡΓΑΣΤΗΡΙΟ ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ Υπεύθυνος: Επικ. Καθηγητής Δρ. Α. ΦΑΤΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ Α. Θέµα 1 ο Να επιλέξετε τη σωστή απάντηση σε κάθε µία από τις παρακάτω ερωτήσεις:
ΔΙΑΓΩΝΙΣΜΑ Α Θέµα ο Να επιλέξετε τη σωστή απάντηση σε κάθε µία από τις παρακάτω ερωτήσεις: Σύµφωνα µε την κινητική θεωρία των ιδανικών αερίων η σχέση που συνδέει την πίεση του αερίου µε τις ταχύτητες των
Διαβάστε περισσότεραΠαραγωγή Ηλεκτρικής Ενέργειας 6ο Εξάμηνο Ηλεκτρολόγων Μηχανικών και Μηχανικών Ηλεκτρονικών Υπολογιστών Ροή Ε. 1η Σειρά Ασκήσεων
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχ. και Μηχ. Υπολογιστών Ακαδ. Έτος 0- Τομέας Ηλεκτρικής Ισχύος Αθήνα, 0 Μαρτίου 0 Καθηγητής Κ.Βουρνάς Παράδοση,,5: 8// Λέκτωρ Σ. Καβατζά 6,,4: /4/ Παραγωγή
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. Να εξετάσετε αν είναι ίσες οι συναρτήσεις f, g όταν: x x 2 x x. x x g x. ln x ln x 1 και
Α ΟΜΑΔΑ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Να εξετάσετε αν είναι ίσες οι συναρτήσεις, όταν: () με R και (). Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ Το πεδίο ορισμού της είναι A R. Επομένως A A R Α Θα εξετάσουμε αν για κάθε R ισχύει.
Διαβάστε περισσότεραΣυλλογή Ασκήσεων Υδραυλικής Συνδυασμένες εφαρμογές Ισοζυγίων Μάζας & Ενέργειας
Συλλοή Ασκήσεων Υδραυλικής Συνδυασμένες εφαρμοές Ισοζυίων Μάζας & Ενέρειας Άσκηση.7 Λειτουρία σωλήνα Pitot. Ένα σκέλος μανομέτρου έχει στόμιο στραμμένο προς τη ροή, έτσι ώστε η ταχύτητα στο στόμιο να είναι
Διαβάστε περισσότεραΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ
ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ Η εξίσωση αυτή εκφράζει μια σχέση μεταξύ της πίεσης, της θερμοκρασίας και του ειδικού όγκου. P v = R Όπου P = πίεση σε Pascal v = Ο ειδικός
Διαβάστε περισσότερα2ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 4 εκέµβρη 2016 Φυσική Προσανατολισµού - Μηχανική - ΙΙ. Ενδεικτικές Λύσεις. Θέµα Α
2ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 4 εκέµβρη 2016 Φυσική Προσανατολισµού - Μηχανική - ΙΙ Ενδεικτικές Λύσεις Θέµα Α Α.1 Σώµα εκτελεί οριζόντια ϐολή, Η επιτάχυνση που δέχεται το σώµα µέχρι να ϕτάσει
Διαβάστε περισσότεραΤο μισό του μήκους του σωλήνα, αρκετά μεγάλη απώλεια ύψους.
Πρόβλημα Λάδι πυκνότητας 900 kg / και κινηματικού ιξώδους 0.000 / s ρέει διαμέσου ενός κεκλιμένου σωλήνα στην κατεύθυνση αυξανομένου υψομέτρου, όπως φαίνεται στο παρακάτω Σχήμα. Η πίεση και το υψόμετρο
Διαβάστε περισσότεραΉπιες Μορφές Ενέργειας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ήπιες Μορφές Ενέργειας Ενότητα 2: Αιολική Ενέργεια - Αιολικές Μηχανές Καββαδίας Κ.Α. Τμήμα Μηχανολογίας Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΚΙΝΗΣΕΙΣ ΦΟΡΤΙΩΝ ΣΕ Ο.Μ.Π. 1. Στο σχήμα δίνονται δύο ομογενή μαγνητικά πεδία με εντάσεις μέτρων Β 2 =2Β 1
1. Στο σχήμα δίνονται δύο ομογενή μαγνητικά πεδία με εντάσεις μέτρων Β 2 =2Β 1. Ένα φορτισμένο σωματίδιο μπαίνει στο πρώτο από το μέσον Ο της πλευράς ΑΓ με ταχύτητα υ 0 και αφού διαγράψει τεταρτοκύκλιο,
Διαβάστε περισσότεραΕ Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο Τ Ο Μ Ε Α Σ Φ Υ Σ Ι Κ Η Σ
Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο Σ Χ Ο Λ Η Ε Φ Α Ρ Μ Ο Σ Μ Ε Ν Ω Ν Μ Α Θ Η Μ Α Τ Ι Κ Ω Ν Κ Α Ι Φ Υ Σ Ι Κ Ω Ν Ε Π Ι Σ Τ Η Μ Ω Ν Τ Ο Μ Ε Α Σ Φ Υ Σ Ι Κ Η Σ Κανονικ εξέταση στο µάθηµα ΕΙ ΙΚΗ
Διαβάστε περισσότεραΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ
ΘΕΜΑ Α ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 3 ΜΑΪOY 016 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει
Διαβάστε περισσότερα1. ** α) Αν η f είναι δυο φορές παραγωγίσιµη συνάρτηση, να αποδείξετε ότι. β α. = [f (x) ηµx] - [f (x) συνx] β α. ( )
Ερωτήσεις ανάπτυξης. ** α) Αν η f είναι δυο φορές παραγωγίσιµη συνάρτηση, να αποδείξετε ότι β ( f () f () ) + α ηµ d β α = [f () ηµ] - [f () συν] β α. ( ) β) Αν f () = ηµ, να αποδείξετε ότι f () + f ()
Διαβάστε περισσότεραΥδροδυναμική. Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση: Στρωτή και τυρβώδης ροή Γραμμικές απώλειες
Υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση: Στρωτή και τυρβώδης ροή Γραμμικές απώλειες Τεράστια σημασία του ιξώδους: Ύπαρξη διατμητικών τάσεων που δημιουργούν απώλειες ενέργειας Είδη ροών
Διαβάστε περισσότεραΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ
Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 7 ο : Κρίσιμη
Διαβάστε περισσότεραΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α1-Α4 να ράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το ράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Θέµα 1 (25 µονάδες) Ένα εκκρεµές µήκους l κρέµεται έτσι ώστε η σηµειακή µάζα να βρίσκεται ακριβώς
Διαβάστε περισσότερα1. Η γραφική παράσταση της συνάρτησης y = 2x + β διέρχεται από το σημείο Α( 1, 2). Να βρείτε τον αριθμό β.
Γραμμικές Εξισώσεις. Η γραφική παράσταση της συνάρτησης = + β διέρχεται από το σημείο Α(, ). Να βρείτε τον αριθμό. ίνεται η ευθεία = + (α ). Να βρείτε την τιμή του α, ώστε η γραφική παράσταση της συνάρτησης
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ (7 Ο ΕΞΑΜΗΝΟ)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ (7 Ο ΕΞΑΜΗΝΟ) Νίκος Μ. Κατσουλάκος Μηχανολόγος Μηχανικός Ε.Μ.Π., PhD, Msc ΜΑΘΗΜΑ 4-2 ΑΤΡΑΚΤΟΙ ΑΞΟΝΕΣ - ΣΤΡΟΦΕΙΣ
Διαβάστε περισσότεραΕρωτήσεις ανάπτυξης. α) να βρείτε το σηµείο x 0. β) να αποδείξετε ότι η κλίση της εφαπτοµένης της
Ερωτήσεις ανάπτυξης. ** Η συνάρτηση είναι παραγωγίσιµη στο R και η ευθεία (ε) είναι εφαπτοµένη της C στο σηµείο (0, (0)). Μετακινούµε τη C παράλληλα προς τους άξονες, όπως φαίνεται στο σχήµα, και ονοµάζουµε
Διαβάστε περισσότεραΚινηματική ρευστών. Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του
301 Κινηματική ρευστών Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του Είδη ροής α) Σταθερή ή μόνιμη = όταν σε κάθε σημείο του χώρου οι συνθήκες ροής, ταχύτητα, θερμοκρασία, πίεση και πυκνότητα,
Διαβάστε περισσότεραΔίνεται η επαγόμενη τάση στον δρομέα συναρτήσει του ρεύματος διέγερσης στις 1000στρ./λεπτό:
ΑΣΚΗΣΗ 1 Η Ένας κινητήρας συνεχούς ρεύματος ξένης διέγερσης, έχει ονομαστική ισχύ 500kW, τάση 1000V και ρεύμα 560Α αντίστοιχα, στις 1000στρ/λ. Η αντίσταση οπλισμού του κινητήρα είναι RA=0,09Ω. Το τύλιγμα
Διαβάστε περισσότερα1.3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. 1. Ορισµός της παραγώγου συνάρτησης
. ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ. Ορισµός της παραγώγου συνάρτησης Έστω µια συνάρτηση µε πεδίο ορισµού Α, και Β το σύνολο των Α στα οποία η είναι παραγωγίσιµη. Τότε ορίζεται νέα συνάρτηση µε την οποία κάθε
Διαβάστε περισσότεραΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΟΥΝΙΟΥ 2007
ΤΕΙ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΣΤΕΦ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΔΙΔΑΣΚΩΝ: Δρ. Π. Β. Μαλατέστας, Καθηγητής ΗΜΕΡΟΜΗΝΙΑ : 5//7 Μάθημα : Ηλεκτρική Κίνηση ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΟΥΝΙΟΥ 7 ΘΕΜΑ ο (4%) Κινητήρας με γραμμική χαρακτηριστική
Διαβάστε περισσότεραΑσκήσεις 7 ου Κεφαλαίου
7η Εργασία στο Μάθημα Γενική Φυσική ΙΙΙ - Τμήμα Τ1 Ασκήσεις 7 ου Κεφαλαίου 1. Κάτω από έναν οριζόντιο αγώγιμο δακτύλιο ακτίνας r που διαρρέεται από ρεύμα Ι τοποθετείται ένας ισχυρός μαγνήτης. Αν το μαγνητικό
Διαβάστε περισσότεραΘΕΜΑ Υ ΡΟ ΥΝΑΜΙΚΩΝ ΜΗΧΑΝΩΝ Ι
1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ TOMEAΣ ΡΕΥΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ Υ ΡΟ ΥΝΑΜΙΚΩΝ ΜΗΧΑΝΩΝ ΘΕΜΑ Υ ΡΟ ΥΝΑΜΙΚΩΝ ΜΗΧΑΝΩΝ Ι ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Η εκπόνηση του Θέµατος και η εκπόνηση της Εργαστηριακής
Διαβάστε περισσότεραΣύστημα. Ανοικτά Συστήματα. Περιβάλλον. Γενικό Ροϊκό Πεδίο. Όγκος Ελέγχου, Επιφάνεια Ελέγχου. Θερμότητα. Ροή Μάζας. Ροή Μάζας.
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι ΠΡΩΤΟΣ ΝΟΜΟΣ ΣΕ ΑΝΟΙΚΤΑ ΣΥΣΤΗΜΑΤΑ Περιβάλλον Ροή Μάζας Έργο Ανοικτά Συστήματα Σύστημα Θερμότητα Ροή Μάζας Κεφάλαιο4, Ενότητα 1, Διαφάνεια 1 Κεφάλαιο4, Ενότητα 1, Διαφάνεια Γενικό Ροϊκό
Διαβάστε περισσότεραΜακροσκοπική ανάλυση ροής
Μακροσκοπική ανάλυση ροής Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Μακροσκοπική ανάλυση Όγκος ελέγχου και νόμοι της ρευστομηχανικής Θεώρημα μεταφοράς Εξίσωση συνέχειας Εξίσωση ορμής
Διαβάστε περισσότεραυναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 22.
υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 0-0 ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι -. - υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 0-0 Cprigh ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 0. Με επιφύλαξη παντός
Διαβάστε περισσότεραΛύσεις θεμάτων προσομοίωσης 1-Πανελλαδικές Εξετάσεις 2016
Λύσεις θεμάτων προσομοίωσης -Πανελλαδικές Εξετάσεις 06 Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 06 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής»
Διαβάστε περισσότεραΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/10/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/1/1 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σε σώμα μάζας m = 1Kg ασκείται η δύναμη F
Διαβάστε περισσότερα13 Γενική Μηχανική 2 Δυνάμεις Nόμοι του Newton 15/9/2014
3 Γενική Μηχανική Δυνάμεις Nόμοι του Newton 5/9/04 Η Φυσική της Α Λυκείου σε 8.00 sec. Η έννοια της Δύναμης Οι νόμοι της κίνησης Η έννοια της δύναμης Όταν ένα αντικείμενο αλλάζει την ταχύτητά του (είτε
Διαβάστε περισσότεραΦυσική Β Λυκείου Θετικού Προσανατολισμού Σχ. έτος Επαναληπτικό Διαγώνισμα Φυσικής Β Λυκείου Θετικού Προσανατολισμού.
Επαναληπτικό Διαγώνισμα Φυσικής Β Λυκείου Θετικού Προσανατολισμού Θέμα 1ο Στις παρακάτω προτάσεις 1.1 1.4 να επιλέξτε την σωστή απάντηση που συμπληρώνει σωστά την πρόταση (4x5=20 μονάδες) 1.1. Για ένα
Διαβάστε περισσότερα. Υπολογίστε το συντελεστή διαπερατότητας κατά Darcy, την ταχύτητα ροής και την ταχύτητα διηθήσεως.
Μάθημα: Εδαφομηχανική Ι, 7 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Επιστημονικός Συνεργάτης Τμήματος Πολιτικών Έργων Υποδομής, Δρ Πολιτικός Μηχανικός Ε.Μ.Π. Θεματική περιοχή: Υδατική ροή
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ ÅÐÉËÏÃÇ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 07 ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Μ. Τετάρτη Απριλίου 07 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α - Α4 να γράψετε να γράψετε στο απαντητικό
Διαβάστε περισσότερα13 Γενική Μηχανική 2 Δυνάμεις Nόμοι του Newton 15/9/2014
13 Γενική Μηχανική Δυνάμεις Nόμοι του Newton 15/9/014 Η Φυσική της Α Λυκείου σε 8.100 sec. Η έννοια της Δύναμης Οι νόμοι της κίνησης Η έννοια της δύναμης Όταν ένα αντικείμενο αλλάζει την ταχύτητά του (είτε
Διαβάστε περισσότεραΘΕΜΑ ΥΔΡΟΔΥΝΑΜΙΚΩΝ ΜΗΧΑΝΩΝ Ι
1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ TOMEAΣ ΡΕΥΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΔΡΟΔΥΝΑΜΙΚΩΝ ΜΗΧΑΝΩΝ ΘΕΜΑ ΥΔΡΟΔΥΝΑΜΙΚΩΝ ΜΗΧΑΝΩΝ Ι ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Η εκπόνηση του θέματος και η εκπόνηση της εργαστηριακής
Διαβάστε περισσότερα(1) ταχύτητα, v δεδομένη την πιο πάνω κατανομή θερμοκρασίας; 6. Γιατί είναι σωστή η προσέγγιση του ερωτήματος [2]; Ποια είναι η
ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ Σειρά Ασκήσεων σε Συναγωγή Θερμότητας Οι λύσεις θα παρουσιαστούν στις παραδόσεις του μαθήματος μετά την επόμενη εβδομάδα. Για να σας φανούν χρήσιμες στην κατανόηση της ύλης του μαθήματος,
Διαβάστε περισσότεραΘέµα 1 ο. iv) πραγµατοποιεί αντιστρεπτές µεταβολές.
ΜΑΘΗΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ Θέµα 1 ο α) Ορισµένη ποσότητα ιδανικού αερίου πραγµατοποιεί µεταβολή AB από την κατάσταση A (p, V, T ) στην κατάσταση B (p, V 1, T ). i) Ισχύει V 1 = V. ii) Η µεταβολή παριστάνεται
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 1: ΥΔΡΑΥΛΙΚΗ ΑΓΩΓΩΝ ΥΠΟ ΠΙΕΣΗ Άσκηση 1 (5.0 μονάδες). 8 ερωτήσεις x 0.625/ερώτηση
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΥΔΡΑΥΛΙΚΗ ΚΑΙ ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ ΕΞΕΤΑΣΗ ΠΡΟΟΔΟΥ ΝΟΕΜΒΡΙΟΥ 2017 Παραλλαγή Α ΟΝΟΜΑΤΕΠΩΝΥΜΟ:. ΕΝΟΤΗΤΑ 1: ΥΔΡΑΥΛΙΚΗ ΑΓΩΓΩΝ ΥΠΟ ΠΙΕΣΗ
Διαβάστε περισσότεραΝΟΕΜΒΡΙΟΣ 2012 ΘΕΜΑ 1 Ο. σε ένα άλλο σηµείο M. α. 10cm β. 14cm γ. -14cm δ. 6cm Μονάδες 5
ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια (210 4903576) ΤΑΞΗ...Α ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΦΥΣΙΚΗ... ΝΟΕΜΒΡΙΟΣ 2012 ΘΕΜΑ 1 Ο Για τις παρακάτω ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό
Διαβάστε περισσότεραΧειµερινό Εξάµηνο Η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΕΡΓ. ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ&ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΘΕΡΜΟ ΥΝΑΜΙΚΗ II Χειµερινό Εξάµηνο 2006-2007 1 Η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ Άσκηση 1 Τα χαρακτηριστικά λειτουρίας µίας θερµο-ηλεκτρικής µονάδας µε βάση τον
Διαβάστε περισσότεραγραπτή εξέταση στη ΦΥΣΙΚΗ B θετικών σπουδών
η εξεταστική περίοδος από 9/0/5 έως 9/04/5 γραπτή εξέταση στη ΦΥΣΙΚΗ θετικών σπουδών Τάξη: Β Λυκείου Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητής: Θ Ε Μ Α Στις ερωτήσεις Α-Α4 να επιλέξετε τη σωστή απάντηση..
Διαβάστε περισσότεραΑγωγιμότητα στα μέταλλα
Η κίνηση των ατόμων σε κρυσταλλικό στερεό Θερμοκρασία 0 Θερμοκρασία 0 Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo
Διαβάστε περισσότεραΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ
ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Το έργο μίας από τις δυνάμεις που ασκούνται σε ένα σώμα. α. είναι μηδέν όταν το σώμα είναι ακίνητο β. έχει πρόσημο το οποίο εξαρτάται από τη γωνία
Διαβάστε περισσότεραΑσκήσεις Κεφ. 1, Κινηματική υλικού σημείου Κλασική Μηχανική, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 10 Απριλίου 2012 1. Αν το διάνυσμα θέσης υλικού σημείου είναι: r(t) = [ln(t
Διαβάστε περισσότεραΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ ΦΥΣΙΚΗ ΣΥΝΕΙΡΜΟΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 8 Ε_3.ΦλΘ(α) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ημερομηνία: Τετάρτη Απριλίου 8 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ ΕΡΩΤΗΣΗ Α Α Α3 Α4 Α5
Διαβάστε περισσότεραΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ, 8 Μαρτίου 2019 Διδάσκοντες: Βαρσάμης Χρήστος, Φωτόπουλος Παναγιώτης
ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 218-219 ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ, 8 Μαρτίου 219 Διδάσκοντες: Βαρσάμης Χρήστος, Φωτόπουλος Παναγιώτης ΘΕΜΑ 1 Διάρκεια εξέτασης 2 ώρες Υλικό σημείο κινείται ευθύγραμμα πάνω στον άξονα
Διαβάστε περισσότεραΔιαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση;
Κεφάλαιο 1 Διαφορικός Λογισμός 1.1 Συναρτήσεις Κατανόηση εννοιών - Θεωρία 1. Τι ονομάζουμε συνάρτηση; 2. Πως ορίζονται οι πράξεις της πρόσθεσης, της διαφοράς, του γινομένου και του πηλίκου μεταξύ δύο συναρτήσεων;
Διαβάστε περισσότεραΣώματα σε επαφή και Απλή Αρμονική Ταλάντωση
Σώματα σε επαφή και Απλή Αρμονική Ταλάντωση Σε όλες τις περιπτώσεις που θα εξετάσουμε το δάπεδο είναι λείο. Επίσης τα σύμβολα των διανυσματικών μεγεθών αντιπροσωπεύουν τις αλγεβρικές τους τιμές. Α. Η επιφάνεια
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ. Ηµεροµηνία: Μ. Τετάρτη 12 Απριλίου 2017 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 07 Ε_3.Φλ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Μ. Τετάρτη Απριλίου 07 ιάρκεια Εξέτασης: ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α - Α4 να γράψετε να γράψετε
Διαβάστε περισσότεραΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Αγγελίδης Π., Αναπλ. Καθηγητής ΚΕΦΑΛΑΙΟ 5 ΣΤΡΩΤΗ ΡΟΗ ΓΥΡΩ ΑΠΟ ΣΤΕΡΕΗ ΣΦΑΙΡΑ ΓΙΑ ΜΙΚΡΟΥΣ ΑΡΙΘΜΟΥΣ REYNOLDS
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ
166 Α. ΕΡΩΤΗΣΕΙΣ ΑΝΟΙΚΤΟΥ ΤΥΠΟΥ: ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ 1. Να αναφέρεται παραδείγματα φαινομένων που μπορούν να ερμηνευτούν με την μελέτη των ρευστών σε ισορροπία. 2. Ποια σώματα ονομάζονται ρευστά;
Διαβάστε περισσότεραΑπό το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46
ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................
Διαβάστε περισσότεραΣύστημα. Ανοικτά Συστήματα. Γενικό Ροϊκό Πεδίο. Περιβάλλον. Θερμότητα. Ροή Μάζας. Ροή Μάζας. Έργο
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι ΠΡΩΤΟΣ ΝΟΜΟΣ ΣΕ ΑΝΟΙΚΤΑ ΣΥΣΤΗΜΑΤΑ Όγκος και επιφάνεια ελέγχου Διατήρηση μάζας και ενέργειας Μόνιμες-Μεταβατικές διεργασίες Ισοζύγιο μάζας Έργο Ροής-Ισοζύγιο ενέργειας Διατάξεις μόνιμης
Διαβάστε περισσότερα