- 1 - Ασκήσεις Ψηφιακών Συστημάτων
|
|
- Νικόλας Δουμπιώτης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 - 1 - Ασκήσεις Ψηφιακών Συστημάτων Αλγεβρα Boole ΠINAKAΣ 1. Aξιώματα της άλγεβρας Boole (Huntington) Α0. a, b ε B και, το σύνολο B έχει δύο τουλάχιστον στοιχεία. Α1. a+b ε B, a.b ε B Κλειστότης A2. a+b=b+a, a.b=b.a Αντιμεταθετικότης A3. a+(b.c)=(a+b).(a+c), a.(b+c)=(a.b)+(a.c) Επιμεριστικότης A4. a+0=a, a.1=a Oυδέτερα Στοιχεία A5. a+ =1, a. =0 Υπαρξη Συμπληρώματος ΠINAKAΣ 2. Bασικά θεωρήματα της άλγεβρας Boole Θ1. a+a = a a.a = a Θ2. a+1 = 1 a.0 = 0 Θ3. a+(a.b) = a a.(a+b) = a Θ4. (a+b)+c = a+(b+c) (a.b).c =a.(b.c) Θ5. το a είναι μοναδικό (a ) =a Θ6. (a+b) = a.b' (ab) = a +b Θ7. a+a.β = a+b a.(a +β) = a.b Aσκήσεις 1. Nα ευρεθεί η δυϊκή μορφή των σχέσεων: α) F = (a+b ).(b+c+0) και F = a.b +b.c.1 β) a+(a.b) = a και a.(a+b) = a γ) (a+b) = a.b και (a.b) = a +b δ) a+a.b = a+b και a.(a +b) = a.b 2. Aσκηση: α) Nα αποδειχθεί ότι το αντίστροφο της σταθεράς "1" είναι το στοιχείο "0" β) Nα αποδειχθεί ότι: a+ab+ac+ad = a. γ) Nα αποδειχθεί ότι: (a+b+c+d) = a b c d δ) Nα απλοποιηθεί η παράσταση: F = x +y +xyz
2 - 2 - ε) Nα αποδείξετε πώς απλοποιείται η παράσταση: F = a+a b+a b c+a b c d+... στ) Nα ευρεθεί το συμπλήρωμα της F και κατόπιν να απλοποιηθεί: F = x (y +z )(x+y+z ) ζ) Nα αποδειχθεί εάν ισχύει ή όχι η σχέση: (x+y)(x +y)(x+y )(x +y ) = 0 η) Nα αποδειχθεί ότι: Eάν a+b=a+c και a +b=a +c τότε b=c θ) Nα αποδειχθεί ότι: Eάν a+b=a+c και ab=ac τότε b=c ι) Nα αποδειχθεί ότι: Eάν ab +a b=0 τότε a=b ια) Nα αποδειχθεί ότι δεν μπορεί να υπάρξει άλγεβρα Boole της οποίας το σύνολο B να περιέχει τρία στοιχεία, B={1,0,a} (Yπόδειξη: υπάρχει αντίστροφο του a;). ιβ) Nα ευρεθεί η δυϊκή της ακόλουθης σχέσης και κατόπιν να αποδειχθεί αλγεβρικά ότι ισχύει η ισότης της δυϊκής: x'y' + x'z + xz' = y'z' + x'z + xz' 3. Απλοποιήστε τις ακόλουθες παραστάσεις: a) x +y +xyz d) a+a b+a b c+a b c d+... b) (x +xyz )+(x +xyz )(x+x y z) e) xy+y z +wxz c) xy+wxyz +x y f) w x +x y +w z +yz 4. Να ευρεθεί το συμπλήρωμα των ακολούθων παραστάσεων καί κατόπιν να απλοποιηθεί: a) x (y +z )(x+y+z ) b) (x+y+z )(y+x z )(z+x y ) c) w +(x +y+y z )(x+y z) 5. Να αποδειχθεί εάν ισχύουν ή όχι οι ακόλουθες σχέσεις: a) (x+y)(x +y)(x+y )(x +y )=0 b) xy+x y +x yz=xyz +x y +yz c) xyz+wy z +wxz=xyz+wy z +wxy d) xy+x y +xy z=xz+x y +x y z 6. Η ακόλουθη παράσταση απλοποιείται ως εξής: uvw+uwxy+uvxz+xyz = uw(v+xy)+(xz(uv+y) = uw(uv+xy)+xz(uv+xy) = (uw+xz)(uv+xy) Απλοποιήστε τις ακόλουθες παραστάσεις μετατρέποντας τις σε γινόμενα δύο παραγόντων:
3 - 3 - a) wxyz + w x y z + w xy z + wx yz b) vwx + vwyz + wxy + vxyz 7. Η δυϊκή συνάρτηση fd μιάς συναρτήσεως f(x1,..,xn) προκύπτει από την αντιμετάθεση + <=>. καί 0 <=> 1 α) Δείξτε ότι fd = ~f(~x1,..,~xn) β) Να ευρεθεί μία συνάρτηση τριών μεταβλητών που να είναι δυϊκή του εαυτού της γ) Αποδείξτε ότι γιά κάθε συνάρτηση f καί γιά κάθε δίτιμη μεταβλητή a η συνάρτηση g=af+a fd είναι δυϊκή του εαυτού της 8. Αποδείξτε ότι γιά κάθε άλγεβρα Boole ισχύουν οι σχέσεις: α) εάν a+b=a+c καί a +b=a +c τότε b=c b) εάν a+b=a+c καί a b=a c τότε b=c 9. Δείξτε ότι ισχύουν ή όχι οι σχέσεις; α) Εάν α(+)β = 0 τότε α=β όπου (+) Exclusive OR β) Εάν α(+)γ = β(+)γ τότε α=β γ) α(+)β = α (+)β δ) ~(α(+)β) = α (+)β = α(+)β ε) α(+){β+γ} = {α(+)β} + {α(+)γ} στ) Εάν α(+)β(+)γ = δ τότε α(+)β = γ(+)δ καί α=β(+)γ(+)δ 10. Να αποδειχθούν γιά οποιαδήποτε άλγεβρα Boole: α) εάν x=0 τότε ισχύει y=xy +x y, και αντιστρόφως. β) άν x+y=x+z και x +y=x +z να αποδειχθεί ότι y=z. γ) άν x+y=0 να αποδειχθεί ότι x=0 και y=0. δ) άν xy=1 να αποδειχθεί ότι x=1 και y=1. ε) άν xy +x y=0 να αποδειχθεί ότι x=y. ΔITIMH AΛΓEBPA ΠINAKAΣ 3. Πίνακας Aληθείας των πράξεων OR AND NOT
4 - 4 - α β α+β α.β α α Δοθέντος ότι οι μεταβλητές a, b, c, d είναι δίτιμες: Nα ευρεθούν οι τιμές των a, b, c, d που ικανοποιούν το σύστημα εξισώσεων: a +ab = 0 ab = ac ab+ac +cd = c d 12. Oι λογικές πράξεις τού αθροίσματος +, τού γινομένου., τής αντιστροφής ', ορίζονται από τόν ακόλουθο πίνακα Πίνακας Αληθείας: OR AND NOT α β α+β α.β α α' Nα αποδειχθεί ότι δέν υπάρχει άλλος συνδυασμός επιλογών Πινάκων Aληθείας που να ικανοποιεί τα αξιώματα. Λογισμός των Προτάσεων 13. Πέντε φίλοι ο Aρης, ο Bασίλης, ο Γιώργος, ο Δημήτρης και ο Eρμής θέλουν να πάνε εκδρομή αλλά θέτουν κάποιες προϋποθέσεις γιά την συμμετοχή τους σ αυτή. H εκδρομή θα γίνει εάν πληρούνται όλες οι ακόλουθες προϋποθέσεις: α) ή ο A ή ο B ή και οι δυό πρέπει να πάνε, β) ή ο Γ ή ο E ή αλλά όχι και οι δυό πρέπει να πάνε, γ) ή ο A και ο Γ θα πάνε μαζί ή κανείς τους, δ) εάν πάει ο Δ τότε πρέπει να πάει και ο E,
5 - 5 - ε) εάν πάει ο B τότε πρέπει να πάνε μαζί ο A και ο Δ. Zητούνται: (α) να απλοποιηθεί το σύνολο των προϋποθέσεων, (β) να ευρεθεί εάν θα γίνει οπωσδήποτε η εκδρομή και (γ) υπό ποιές απλούστερες προϋποθέσεις θα γινόταν η εκδρομή. 14. Δίδονται οι εξείς προτάσεις: α. Η ο Ανδρέας ψεύδεται ή ο Βασίλης πήγε στην Κίνα ή ο Γιώργος δέν είναι παρών. β. Εάν ο Βασίλης δέν πήγε στην Κίνα τότε ή ο Ανδρέας λέει την αλήθεια ή ο Γιώργος είναι παρών. γ. Συμπέρασμα: Συνεπώς ο Βασίλης πήγε στην Κίνα. Ζητείται να ευρεθεί εάν το ανωτέρω συμπέρασμα (γ) αληθεύει δηλ. μπορεί να προκύψει, αναμφίβολα, από τις προτάσεις α καί β. 15. Ενας υποψήφιος γιά να επιλεγεί σε μία θέση πρέπει να πληροί τουλάχιστον μία από τις εξής προϋποθέσεις: α) να είναι γυναίκα, παντρεμένη, 25 ετών καί άνω β) γυναίκα, κάτω των 25 ετών γ) άνδρας, παντρεμένος, κάτω των 25 ετών, που να μήν του έχει συμβεί αυτοκινητιστικό ατύχημα δ) άνδρας, παντρεμένος, με αυτοκινητιστικό ατύχημα ε) άνδρας, παντρεμένος, 25 ετών καί άνω, χωρίς αυτοκινητιστικό ατύχημα Ορίζουμε τις εξής μεταβλητές: α=1 εάν ο υποψήφιος έχει αυτοκινητιστικό ατύχημα π=1 είναι παντρεμένος γ=1 είναι γυναίκα κ=1 είναι κάτω των 25 ετών Ζητούνται: α) να ευρεθεί η συνάρτηση f(α,π,γ,κ) που αντιστοιχεί στό πρόβλημα β) να απλοποιηθεί η συνάρτηση f καί να ορισθεί ένα αντίστοιχο αλλά απλούστερο σύνολο προϋποθέσεων επιλογής 16. Aσκηση: α) Eνα κύκλωμα Λ με διακόπτες A, B, Γ, Δ συμπεριφέρεται σύμφωνα με τη σχέση: Λ = A.(B+Γ).Δ
6 - 6 - Nα σχεδιάσετε το διάγραμμα του κυλώματος και να σχηματίσετε ένα πίνακα που να καταγράφει τις καταστάσεις των διακοπτών γιά τις οποίες το κύκλωμα Λ άγει ή όχι. β) Στο ακόλουθο κύκλωμα Λ οι διακόπτες A1 και A2 είναι συνδεδεμένοι μεταξύ τους έτσι ώστε όταν ο διακόπτης A1 είναι ανοικτός ο A2 είναι κλειστός και αντίστροφα δηλ. A1 = A2. Zητείται να απλοποιηθεί το κύκλωμα. A 1 B A 2 ΛOΓIKEΣ ΣYNAPTHΣEIΣ A Θεωρήματα Aνάπτυξης Συναρτήσεων (Shannon): α) f(x1,...,xk,...,xn) = xk.f(x1,...,1,...,xn) +.f(x1,...,0,...,xn) β) f(x1,...,xk,...,xn) = [xk+ f(x1,...,0,...,xn)].[ + f(x1,...,1,...,xn)] B Γενικευμένο θεώρημα του de Morgan : f (x1,...,xn, +,., 0, 1) = f(,...,,., +, 1, 0) 17. Mιά συνάρτηση δύο μεταβλητών ονομάζεται συμμετρική όταν δεν αλλάζει εάν ανταλλάξουμε τις μεταβλητές της δηλ. f(x,y) = f(y,x). Nα αποδείξτε ότι η συνάρτηση f(x,y) = xy +x y είναι συμμετρική. 18. Nα κατασκευαστεί το συγχωνευμένο διάγραμμα BDD της συνάρτησης: f(x,y,z) = x+y(z+x ) 19. Δίδεται η συνάρτηση: f(x,y,z) = [x.y.z ] + [x.y.z ] + [x.y.z] + [x.y ] Zητείται να ευρεθεί πρώτα η δυϊκή της f δηλ. η fd και κατόπιν να ευρεθεί η αντίστροφη της fd δηλ. η (fd). Nα συγκριθεί η (fd) με τη συνάρτηση f. KANONIKH ΠAPAΣTAΣH
7 Aσκηση: α) Nα αναπτυχθεί (α) σε Kανονικό Aθροισμα Γινομένων και (β) σε Kανονικό Γινόμενο Aθροισμάτων η συνάρτηση: f(x,y,z) = z +y(x +z) β) Nα αποδειχθεί με την βοήθεια της Kανονικής τους Παράστασης ότι οι συναρτήσεις f1 και f2 ταυτίζονται, όπου: f1(x,y,z) = z +y(x +z) f2(x,y,z) = y+z 21. Να ευρεθεί το κανονικό άθροισμα γινομένων καί γινόμενο αθροισμάτων των συναρτήσεων: a) f(x,y,z) = z+(x +y)(x+y ) b) f(x,y,z) = x+(x y +x z)' 22. Αποδείξτε ότι κάθε δίτιμη συνάρτηση μπορεί να αναπτυχθεί ως εξής: f(x1,..,xk,xk+1,..,xn) = Σi fi(x1,..,xk).mi(xk+1,..,xn) όπου: f0(x1,..,xk) = f(x1,..,xk,0,..,0), f1(x1,..,xk) = f(x1,..,xk,0,..,1) κλπ. mi(xk+1,..,xn) είναι ο ελάχιστος όρος i 23. Nα ευρεθούν όλες οι συναρτήσεις F(x,y) που πληρούν την σχέση: x.f = x.y ΛOΓIKEΣ ΠYΛEΣ 24. Xρησιμοποιόντας τους συμβολισμούς των πυλών: α) Nα κατασκευασθεί το κυκλωματικό διάγραμμα που υλοποιεί τη συνάρτηση: f(x,y,z) = xy +z+x y Mε ποιό άλλο είδος πύλης μπορεί να υλοποιηθεί; β) Ποιό είναι το κυκλωματικό διάγραμμα της συνάρτησης: f(w,x,y,z) = (wx +yz) γ) Σ ένα δικαστήριο αποφασίζουν τρείς δικαστές A, B και Γ. Kάθε δικαστής έχει μπροστά του ένα διακόπτη με δύο καταστάσεις "0" και "1". Oταν η απόφαση του είναι
8 - 8 - αθωωτική θέτει το διακόπτη στο "1". Oταν είναι καταδικαστική στο "0". H τελική απόφαση "αθώος" ή "ένοχος" λαμβάνεται από τους τρείς δικαστές κατά πλειοψηφία. Nα κατασκευαστεί το διάγραμμα ενός ψηφιακού κυκλώματος που θα δίνει την τιμή "1" όταν η τελική απόφαση είναι αθωωτική και "0" όταν είναι καταδικαστική. δ) Nα γίνει το κυκλωματικό διάγραμμα που υλοποιεί τη συνάρτηση f(w,x,y,z), όπου η συνάρτηση παίρνει την τιμή f=1 όταν συμβαίνει [ w=y και ] ενώ στις υπόλοιπες περιπτώσεις είναι f=0. ε) Nα αποδειχθεί ότι γιά την πράξη XOR ισχύει η επιμεριστική ιδιότητα: x(y! z) = (x.y)! (x.z) στ) Nα αποδειχθεί ότι γιά την πράξη XOR ισχύει η προσεταιριστική ιδιότητα: (x! y)! z = x! (y! z)= x! y! z 25. Nα αποδειχθεί ότι τα ακόλουθα σύνολα συναρτήσεων-πράξεων είναι συναρτησιακώς πλήρη. α) {NOR} β) {NAND} γ) {OR, NOT} δ) {AND, NOT} 26. Aσκηση: α) Δείξτε ότι η συνάρτηση f(x,y,z) παριστά μιά πρωτόγονη πράξη: f(x,y,z) = x yz+xy +y z β) H συνάρτηση πλειοψηφίας M(x,y,z) ισούται με "1" όταν δύο τουλάχιστον μεταβλητές της έχουν την τιμή "1", όπου: M(x,y,z) = xy+xz+yz Δείξτε ότι η M(x,y,z) μαζί με την πράξη του συμπληρώματος και την σταθερά 0 αποτελούν ένα σύστημα πράξεων συναρτησιακώς πλήρες. γ) Δείξτε ότι η συνάρτηση f(a,b,c) = a bc + ab + b c παριστά μία πρωτόγονη πράξη 27. Κάθε συνάρτηση μπορεί να παρασταθεί σαν άθροισμα ελαχίστων όρων. Αποδείξτε ότι κάθε συνάρτηση δύο μεταβλητών μπορεί να παρασταθεί ως ακολούθως: f(x,y) = b0(+)b1y(+)b2x(+)b3xy f(x,y) = c0x y (+)c1x y(+)c2xy (+)c3xy όπου τα b καί c είναι σταθερές. Πώς προσδιορίζονται οι b καί c?
9 Η συνάρτηση πλειοψηφίας Μ(x,y,z): M(x,y,z) = xy+xz+yz = (x+y)(x+z)(y+z) ισούται με 1 όταν δύο τουλάχιστον από τις μεταβλητές της έχουν την τιμή 1. Δείξτε ότι: α) M(a,b,M(c,d,c)) = M(M(a,b,c),d,M(a,b,c)) b) η M(x,y,z) μαζί με την πράξη του συμπληρώματος καί την σταθερά 0 αποτελούν ένα σύστημα πράξεων συναρτησιακώς πλήρες 29. Να σχεδιασθεί ένα κύκλωμα διακοπτών που να έχει την ακόλουθη συνάρτηση μεταφοράς: Τ = Α(Β+C D )+A B 30. Σε πολλά αυτοκίνητα χρησιμοποιείται κάποιος βομβητής γιά να ειδοποιεί στις περιπτώσεις που η ζώνη ασφαλείας δέν είναι δεμένη ή το κλειδί ξεχάστηκε στην μηχανή ή τα φώτα έμειναν ανοικτά. Οι συνθήκες κάτω από τις οποίες ενεργοποιείται ο βομβητής είναι: α) το κλειδί βρίσκεται στόν διακόπτη όταν η πόρτα είναι ανοικτή καί ο κινητήρας είναι σταματημένος β) τα φώτα είναι ανοικτά όταν το κλειδί δέν είναι στην μηχανή γ) η ζώνη του οδηγού δέν είναι δεμένη καί ο κινητήρας λειτουργεί δ) η θέση του συνοδηγού είναι κατηλειμένη καί η ζώνη του δέν είναι δεμένη όταν λειτουργεί ο κινητήρας Να κατασκευασθεί η λογική συνάρτηση που ενεργοποιεί τον βομβητή. 31. Να παραχθεί η ικανή και αναγκαία συνθήκη γιά μιά συνάρτηση f(x1,...,xn) ώστε η παράσταση: P = f(x 1,..,x k,..,x n ) (+) f(x 1,..,~x k,..,x n ) να είναι εκ ταυτότητος μηδέν. Ας σημειωθεί ότι μόνον μία μεταβλητή, η x k, αντιστρέφεται και ότι (+) σημαίνει XOR. Η παράσταση P ονομάζεται Boolean Διαφορά και χρησιμοποιείται στην διάγνωση βλαβών ψηφιακών κυκλωμάτων. 32. Δίδεται η λογική πύλη (συνάρτηση) Τ(a, b, c) = Σ(3, 5, 6). Ζητείται: α) Να αποδειχθεί ότι η πύλη Τ μαζί με την λογική σταθερά 1 αποτελούν ένα συναρτησιακώς πλήρες σύνολο πράξεων. β) Να πραγματοποιηθεί η συνάρτηση:
10 f(w, x, y, z)=σ(0, 1, 2, 4, 7, 8, 9, 10, 12, 15) χρησιμοποιόντας δύο πύλες Τ καί την σταθερά 1 (να μετατραπεί προηγουμένως σε γινόμενο αθροισμάτων). 33. Nα αποδειχθούν ότι: α) το πλήθος των διαφορετικών, μή ισοδυνάμων, λογικών παραστάσεων n μεταβλητών είναι (2 2 ) n. β) το πλήθος όλων των λογικών γινομένων (όρων)μέχρι n μεταβλητών είναι 3 n -1.
3. Απλοποίηση Συναρτήσεων Boole
3. Απλοποίηση Συναρτήσεων Boole 3. Μέθοδος του χάρτη Η πολυπλοκότητα ψηφιακών πυλών που υλοποιούν μια συνάρτηση Boole σχετίζεται άμεσα με την πολύπλοκότητα της αλγεβρικής της έκφρασης. Η αλγεβρική αναπαράσταση
Διαβάστε περισσότεραΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ. ιδάσκων : ρ. Β. ΒΑΛΑΜΟΝΤΕΣ. Πύλες - Άλγεβρα Boole 1
ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ιδάσκων : ρ. Β. ΒΑΛΑΜΟΝΤΕΣ Πύλες - Άλγεβρα Boole 1 ΕΙΣΑΓΩΓΗ Α)Ηλεκτρονικά κυκλώµατα Αναλογικά κυκλώµατα Ψηφιακά κυκλώµατα ( δίτιµα ) V V 2 1 V 1 0 t t Θετική λογική: Ο V 1 µε V 1 =
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 1 4. ΑΛΓΕΒΡΑ BOOLE ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΜΕΡΟΣ Α 2 Άλγεβρα
Διαβάστε περισσότεραΕλίνα Μακρή
Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,
Διαβάστε περισσότεραΠανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Άλγεβρα Boole και Λογικές Πύλες 2. Επιμέλεια Διαφανειών: Δ.
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Άλγεβρα Boole και Λογικές Πύλες Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Αξιωματικός Ορισμός Άλγεβρας Boole Άλγεβρα Boole: είναι μία
Διαβάστε περισσότεραΔυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα
Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα 1. Για a=1, b=1 και c=0, υπολογίστε τις τιμές των λογικών παραστάσεων ab c, a+b +c, a+b c και ab +c Δώστε τα σύνολα τιμών των δυαδικών μεταβλητών a,
Διαβάστε περισσότεραΛογική Σχεδίαση Ψηφιακών Συστημάτων
Πανεπιστήμιο Θεσσαλίας Τμήμα Πληροφορικής Λογική Σχεδίαση Ψηφιακών Συστημάτων Σταμούλης Γεώργιος georges@uth.gr Δαδαλιάρης Αντώνιος dadaliaris@uth.gr Δυαδική Λογική Η δυαδική λογική ασχολείται με μεταβλητές
Διαβάστε περισσότεραΜΕΡΟΣ 1 ο : Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα
ΜΕΡΟΣ 1 ο : Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα 1. Για a=1, b=1 και c=0, υπολογίστε τις τιμές των λογικών παραστάσεων ab c, a+b +c, a+b c και ab +c Δώστε τα σύνολα τιμών των δυαδικών
Διαβάστε περισσότεραΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΛΓΕΒΡΑ BOOLE 2017, Δρ. Ηρακλής Σπηλιώτης Γενικοί ορισμοί Αλγεβρική δομή είναι ένα σύνολο στοιχείων και κάποιες συναρτήσεις με πεδίο ορισμού αυτό το σύνολο. Αυτές οι συναρτήσεις
Διαβάστε περισσότεραΨηφιακά Συστήματα. 4. Άλγεβρα Boole & Τεχνικές Σχεδίασης Λογικών Κυκλωμάτων
Ψηφιακά Συστήματα 4. Άλγεβρα Boole & Τεχνικές Σχεδίασης Λογικών Κυκλωμάτων Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016.
Διαβάστε περισσότεραΨηφιακή Σχεδίαση Εργαστήριο Τ.Ε.Ι. ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜ. ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ
Ψηφιακή Σχεδίαση Εργαστήριο Τ.Ε.Ι. ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜ. ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2015-2016 Άλγεβρα Boole (Boolean Algebra) Βασικοί ορισμοί Η άλγεβρα Boole μπορεί να οριστεί
Διαβάστε περισσότεραΠανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Απλοποίηση Συναρτήσεων Boole. Επιμέλεια Διαφανειών: Δ.
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Απλοποίηση Συναρτήσεων Boole Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Απλοποίηση Συναρτήσεων Boole Η πολυπλοκότητα του κυκλώματος
Διαβάστε περισσότερα3 η Θεµατική Ενότητα : Απλοποίηση Συναρτήσεων Boole. Επιµέλεια διαφανειών: Χρ. Καβουσιανός
3 η Θεµατική Ενότητα : Απλοποίηση Συναρτήσεων oole Επιµέλεια διαφανειών: Χρ. Καβουσιανός Απλοποίηση Συναρτήσεων oole Ø Η πολυπλοκότητα του κυκλώµατος που υλοποιεί µια συνάρτηση oole σχετίζεται άµεσα µε
Διαβάστε περισσότερα2. Άλγεβρα Boole και Λογικές Πύλες
2. Άλγεβρα Boole και Λογικές Πύλες 2.1 Βασικοί ορισμοί Η άλγεβρα Boole μπορεί να οριστεί με ένα σύνολο στοιχείων, ένα σύνολο τελεστών και ένα σύνολο αξιωμάτων. Δυαδικός τελεστής ορισμένος σε ένα σύνολο
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 3 ο Αλγεβρα BOOLE και Λογικές Πύλες
ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΑΕΡΟΣΚΑΦΩΝ ΤΕΙ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΕΙΣΑΓΩΓΗ στους Η/Υ Διδάσκουσα Δρ. Β. Σγαρδώνη 2013-14 ΚΕΦΑΛΑΙΟ 3 ο Αλγεβρα BOOLE και Λογικές Πύλες Α. ΑΛΓΕΒΡΑ Boole Η Άλγεβρα Boole (Boolean algebra) πήρε
Διαβάστε περισσότεραΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ
Τµήµα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρµατης Τηλεπικοινωνίας ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ Μάθηµα 3: Απλοποίηση συναρτήσεων Boole ιδάσκων: Καθηγητής Ν. Φακωτάκης 3-1 Η µέθοδος του χάρτη H πολυπλοκότητα
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τμήμα Εφαρμοσμένης Πληροφορικής & Πολυμέσων. Ψηφιακή Σχεδίαση. Κεφάλαιο 2: Συνδυαστικά Λογικά
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τμήμα Εφαρμοσμένης Πληροφορικής & Πολυμέσων Ψηφιακή Σχεδίαση Κεφάλαιο 2: Συνδυαστικά Λογικά Κυκλώματα Γ. Κορνάρος Περίγραμμα Μέρος 1 Κυκλώματα Πυλών και
Διαβάστε περισσότεραK15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole
K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Ορισμός της δίτιμης άλγεβρας Boole Περιεχόμενα 1 Ορισμός της
Διαβάστε περισσότεραΠαράσταση αριθμών «κινητής υποδιαστολής» floating point
Παράσταση αριθμών «κινητής υποδιαστολής» floating point Με n bits μπορούμε να παραστήσουμε 2 n διαφορετικούς αριθμούς π.χ. με n=32 μπορούμε να παραστήσουμε τους αριθμούς από έως 2 32 -= 4,294,967,295 4
Διαβάστε περισσότεραΓ2.1 Στοιχεία Αρχιτεκτονικής. Γ Λυκείου Κατεύθυνσης
Γ2.1 Στοιχεία Αρχιτεκτονικής Γ Λυκείου Κατεύθυνσης Ορισμός άλγεβρας Boole Η άλγεβρα Boole ορίζεται, ως μία αλγεβρική δομή A, όπου: (α) Το Α είναι ένα σύνολο στοιχείων που περιέχει δύο τουλάχιστον στοιχεία
Διαβάστε περισσότεραΑναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ.
ΝΑΛΟΓΙΚΑ Άλγεβρα Boole Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ. ΝΑΛΟΓΙΚΑ Άλγεβρα Boole Οι αρχές της λογικής αναπτύχθηκαν από τον George Boole (85-884) και τον ugustus De
Διαβάστε περισσότεραΠανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 2: Αλγεβρα Boole, Δυαδική Λογική, Ελαχιστόροι, Μεγιστόροι Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών Συστημάτων και
Διαβάστε περισσότεραΚεφάλαιο 4. Λογική Σχεδίαση
Κεφάλαιο 4 Λογική Σχεδίαση 4.1 Εισαγωγή Λογικές συναρτήσεις ονομάζουμε εκείνες για τις οποίες μπορούμε να αποφασίσουμε αν είναι αληθείς ή όχι. Χειριζόμαστε τις λογικές προτάσεις στην συγγραφή λογισμικού
Διαβάστε περισσότεραΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ. Κεφάλαιο 3
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Κεφάλαιο 3 Δυαδική λογική Με τον όρο λογική πρόταση ή απλά πρόταση καλούμε κάθε φράση η οποία μπορεί να χαρακτηριστεί αληθής ή ψευδής με βάση το νόημα της. π.χ. Σήμερα
Διαβάστε περισσότεραΠρογραμματισμός Ηλεκτρονικών Υπολογιστών 1
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 3: Άλγεβρα Βοole και Λογικές Πράξεις Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΕλίνα Μακρή
Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,
Διαβάστε περισσότερα9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ
ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 61 9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ I. Βασική Θεωρία Οι πύλες NAND και NOR ονομάζονται οικουμενικές πύλες (universal gates) γιατί κάθε συνδυαστικό κύκλωμα μπορεί να υλοποιηθεί
Διαβάστε περισσότεραK15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα
K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Λογικές πύλες Περιεχόμενα 1 Λογικές πύλες
Διαβάστε περισσότεραΕνότητα 2 ΑΛΓΕΒΡΑ BOOLE ΛΟΓΙΚΕΣ ΠΥΛΕΣ
Ενότητα 2 ΛΓΕΡ BOOLE ΛΟΓΙΚΕΣ ΠΥΛΕΣ Άλγεβρα Boole Γενικές Γραμμές ξιώματα Huntington και Θεωρήματα ρχή του Δυϊσμού Λογικές πύλες NAND και NOR Υλοποιήσεις με πύλες NAND ή πύλεςnor πομονωτές τριών καταστάσεων
Διαβάστε περισσότεραΑΣΠΑΙΤΕ Εργαστήριο Ψηφιακών Συστημάτων & Μικροϋπολογιστών Εργαστηριακές Ασκήσεις για το μάθημα «Λογική Σχεδίαση» ΑΣΚΗΣΗ 3 ΠΙΝΑΚΕΣ KARNAUGH
ΑΣΚΗΣΗ 3 ΠΙΝΑΚΕΣ KARNAUGH 3.1 ΣΚΟΠΟΣ Η κατανόηση της απλοποίησης λογικών συναρτήσεων με χρήση της Άλγεβρας Boole και με χρήση των Πινάκων Karnaugh (Karnaugh maps). 3.2 ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ 3.2.1 ΑΠΛΟΠΟΙΗΣΗ
Διαβάστε περισσότεραΠρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων
Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΕΝΟΤΗΤΑ Μ1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Εκπαιδευτής: Γ. Π. ΠΑΤΣΗΣ, Επικ. Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών, ΤΕΙ Αθήνας ΚΑΘΟΛΙΚΕΣ ΠΥΛΕΣ NND NOR ΑΛΓΕΒΡΑ OOLE ΘΕΩΡΗΜΑ
Διαβάστε περισσότερασύνθεση και απλοποίησή τους θεωρήµατα της άλγεβρας Boole, αξιώµατα του Huntington, κλπ.
Εισαγωγή Εργαστήριο 2 ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ Σκοπός του εργαστηρίου είναι να κατανοήσουµε τον τρόπο µε τον οποίο εκφράζεται η ψηφιακή λογική υλοποιώντας ασκήσεις απλά και σύνθετα λογικά κυκλώµατα (χρήση του
Διαβάστε περισσότεραΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ
Τµήµα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρµατης Τηλεπικοινωνίας ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ιδάσκων: Καθηγητής Ν. Φακωτάκης Τµήµα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρµατης Τηλεπικοινωνίας ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ
Διαβάστε περισσότεραΕισαγωγή στους Ηλεκτρονικούς Υπολογιστές
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές 12 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.ntua.gr URL: http://users.ntua.gr/leo 1 GROUP I A Λ ΤΡΙΤΗ PC-Lab GROUP IΙ Μ Ω ΠΑΡΑΣΚΕΥΗ Central Κέντρο
Διαβάστε περισσότερα100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ
100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 1) Να μετατρέψετε τον δεκαδικό αριθμό (60,25) 10, στον αντίστοιχο δυαδικό 11111,11 111001,01 111100,01 100111,1 111100,01 2)
Διαβάστε περισσότερα4. ΝΟΜΟΙ ΔΥΑΔΙΚΗΣ ΑΛΓΕΒΡΑΣ
4. ΝΟΜΟΙ ΔΥΔΙΚΗΣ ΛΓΕΡΣ 4.1 ασικές έννοιες Εισαγωγή Η δυαδική άλγεβρα ή άλγεβρα oole θεμελιώθηκε από τον Άγγλο μαθηματικό George oole. Είναι μία "Λογική Άλγεβρα" για τη σχεδίαση κυκλωμάτων διακοπτών. Η
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ 8 Ο ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΟΣΤΟΛΙΑ ΠΑΓΓΕ Περιεχόμενα 2 Άλγεβρα Boole Ορισμοί Λογικές πράξεις Πίνακες αληθείας Πύλες
Διαβάστε περισσότερα2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες. Επιµέλεια διαφανειών: Χρ. Καβουσιανός
2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες Επιµέλεια διαφανειών: Χρ. Καβουσιανός Βασικοί Ορισµοί Δυαδικός Τελεστής (Binary Operator): σε κάθε ζεύγος από το Σ αντιστοιχίζει ένα στοιχείο του
Διαβάστε περισσότεραΕνότητα 5 ΑΠΛΟΠΟΙΗΣΗ ΛΟΓΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΔΥΟ ΕΠΙΠΕΔΩΝ
Ενότητα 5 ΑΠΛΟΠΟΙΗΣΗ ΛΟΓΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΔΥΟ ΕΠΙΠΕΔΩΝ Γενικές Γραμμές Χάρτης Karnaugh (K-map) Prime Implicants (πρωταρχικοί όροι) Διαδικασία Απλοποίησης με K-map ΑδιάφοροιΣυνδυασμοίΕισόδων Διεπίπεδες Υλοποιήσεις
Διαβάστε περισσότεραΨηφιακά Συστήματα. 3. Λογικές Πράξεις & Λογικές Πύλες
Ψηφιακά Συστήματα 3. Λογικές Πράξεις & Λογικές Πύλες Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016. [59382199] 2. Floyd
Διαβάστε περισσότεραΚεφάλαιο 4 : Λογική και Κυκλώματα
Κεφάλαιο 4 : Λογική και Κυκλώματα Σύνοψη Τα κυκλώματα που διαθέτουν διακόπτες ροής ηλεκτρικού φορτίου, χρησιμοποιούνται σε διατάξεις που αναπαράγουν λογικές διαδικασίες για τη λήψη αποφάσεων. Στην ενότητα
Διαβάστε περισσότεραΨηφιακά Συστήματα. 5. Απλοποίηση με χάρτες Karnaugh
Ψηφιακά Συστήματα 5. Απλοποίηση με χάρτες Karnaugh Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016. [59382199] 2. Floyd
Διαβάστε περισσότεραΗλεκτρονικοί Υπολογιστές ΙΙ
Ηλεκτρονικοί Υπολογιστές ΙΙ Ενότητα 3: Eφαρμογές Άλγεβρας Boole Τμήμα Οικονομικών Επιστημών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Διαβάστε περισσότεραΨηφιακά Συστήματα. 6. Σχεδίαση Συνδυαστικών Κυκλωμάτων
Ψηφιακά Συστήματα 6. Σχεδίαση Συνδυαστικών Κυκλωμάτων Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016. [59382199] 2. Floyd
Διαβάστε περισσότεραεπανενεργοποιηθεί Βιομηχανικά Ηλεκτρονικά - Κ.Ι.Κυριακόπουλος Control Systems Laboratory
Μετατροπέας Αναλογικού Σήµατος σε Ψηφιακό Ο δειγματολήπτης (S/H) παίρνει δείγματα του στιγμιαίου εύρους ενός σήματος και διατηρεί την τάση που αντιστοιχεί σταθερή, τροφοδοτώντας έναν κβαντιστή, μέχρι την
Διαβάστε περισσότεραΠρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων
Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΕΝΟΤΗΤΑ Μ ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Εκπαιδευτής: Γ. Π. ΠΑΤΣΗΣ, Επικ. Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών, ΤΕΙ Αθήνας ΜΕΘΟΔΟΣ ΑΠΛΟΠΟΙΗΣΗΣ ΛΟΓΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ ΜΕ
Διαβάστε περισσότερα6. Σχεδίαση Κυκλωμάτων Λογικής Κόμβων (ΚΑΙ), (Η)
6. Σχεδίαση Κυκλωμάτων Λογικής Κόμβων (ΚΑΙ), (Η) 6. Εισαγωγή Όπως έχουμε δει οι εκφράσεις των λογικών συναρτήσεων για την συγκεκριμένη σχεδίαση προκύπτουν εύκολα από χάρτη Καρνώ -Karnaugh. Έτσι βρίσκουμε
Διαβάστε περισσότεραΛογικές πύλες: Οι στοιχειώδεις δομικοί λίθοι των κυκλωμάτων
Λογικές πύλες Λογικές πύλες: Οι στοιχειώδεις δομικοί λίθοι των κυκλωμάτων Το υλικό(hardware) για την εκτέλεση των εντολών γλώσσας μηχανής(και κατ επέκταση όλων των προγραμμάτων), κατασκευάζεται χρησιμοποιώντας
Διαβάστε περισσότεραe-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ
e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ 1. Να μετατρέψετε τον δεκαδικό 16.25 σε δυαδικό. 2. Να μετατρέψετε τον δεκαδικό 18.75 σε δυαδικό και τον δεκαδικό 268 σε δεκαεξαδικό. 3. Να βρεθεί η βάση εκείνου του αριθμητικού
Διαβάστε περισσότεραΣυνδυαστικά Λογικά Κυκλώματα
Συνδυαστικά Λογικά Κυκλώματα Ένα συνδυαστικό λογικό κύκλωμα συντίθεται από λογικές πύλες, δέχεται εισόδους και παράγει μία ή περισσότερες εξόδους. Στα συνδυαστικά λογικά κυκλώματα οι έξοδοι σε κάθε χρονική
Διαβάστε περισσότερα( 1) R s S. R o. r D + -
Tο κύκλωμα που δίνεται είναι ένας ενισχυτής κοινής πύλης. Δίνονται: r D = 1 MΩ, g m =5mA/V, R s =100 Ω, R D = 10 kω. Υπολογίστε: α) την απολαβή τάσης β) την αντίσταση εισόδου γ) την αντίσταση εξόδου Οι
Διαβάστε περισσότεραΚεφάλαιο 5. Λογικά κυκλώματα
Κεφάλαιο 5 Λογικά κυκλώματα 5.1 Εισαγωγή Κάθε συνάρτηση boole αντιστοιχεί σε έναν και μοναδικό πίνακα αλήθειας. Εάν όμως χρησιμοποιήσουμε τα γραφικά σύμβολα των πράξεων, μπορούμε για κάθε συνάρτηση που
Διαβάστε περισσότεραK24 Ψηφιακά Ηλεκτρονικά 4: Σχεδίαση Συνδυαστικών Κυκλωμάτων
K24 Ψηφιακά Ηλεκτρονικά 4: Σχεδίαση Συνδυαστικών Κυκλωμάτων TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 1 2 3 4 Ένα ψηφιακό κύκλωμα με n εισόδους
Διαβάστε περισσότεραΕπιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΤΕΥΧΟΣ 6ο ΑΣΚΗΣΕΙΣ 501-600 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς
Διαβάστε περισσότεραΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ΙΟΥΝΙΟΥ 2014
ΤΕΧΝΙΚΗ ΣΧΟΛΗ ΜΑΚΑΡΙΟΣ Γ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2013 2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ΙΟΥΝΙΟΥ 2014 Κατεύθυνση: Θεωρητική Μάθημα: Ψηφιακά Ηλεκτρονικά Τάξη: Β Αρ. Μαθητών: 8 Κλάδος: Ηλεκτρολογία Ημερομηνία:
Διαβάστε περισσότεραΑρχιτεκτονικές Υπολογιστών BOOLEAN ALGEBRA
ΑΡΧΙΤΕΚΤΟΝΙΚΕΣ ΥΠΟΛΟΓΙΣΤΩΝ Μάθηµα: Αρχιτεκτονικές Υπολογιστών OOLEN LGER ιδάσκων: ναπλ. Καθ. Κ. Λαµπρινουδάκης clam@unp.gr Αρχιτεκτονικές Υπολογιστών ναπλ. Καθ. Κ. Λαµπρινουδάκης Άλγεβρα OOLE Οι µεταβλητές
Διαβάστε περισσότερα3. ΛΟΓΙΚΕΣ ΠΡΑΞΕΙΣ & ΛΟΓΙΚΕΣ ΠΥΛΕΣ
3. ΛΟΓΙΚΕΣ ΠΡΞΕΙΣ & ΛΟΓΙΚΕΣ ΠΥΛΕΣ 3. ΛΟΓΙΚΕΣ ΠΡΞΕΙΣ 3.. Εισαγωγή ντίθετα προς τις μαθηματικές πράξεις και τις μεταβλητές τους, στην λογική διαδικασία χρησιμοποιούμε τις λογικές μεταβλητές οι οποίες μπορούν
Διαβάστε περισσότεραΕνότητα 4 ΛΟΓΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΔΥΟ ΕΠΙΠΕΔΩΝ
Ενότητα 4 ΛΟΓΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΔΥΟ ΕΠΙΠΕΔΩΝ Γενικές Γραμμές Λογικές Συναρτήσεις 2 Επιπέδων Συμπλήρωμα Λογικής Συνάρτησης Πίνακας Αλήθειας Κανονική Μορφή Αθροίσματος Γινομένων Λίστα Ελαχιστόρων
Διαβάστε περισσότεραΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΛΟΓΙΚΕΣ ΠΥΛΕΣ OR, NOR, XOR
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΛΟΓΙΚΕΣ ΠΥΛΕΣ OR, NOR, XOR Σκοπός: Να επαληθευτούν πειραµατικά οι πίνακες αληθείας των λογικών πυλών OR, NOR, XOR. Να δειχτεί ότι η πύλη NOR είναι οικουµενική.
Διαβάστε περισσότεραΑΣΚΗΣΗ 3 ΣΥΝΔΥΑΣΤΙΚΑ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ: ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ
ΑΣΚΗΣΗ 3 ΣΥΝΔΥΑΣΤΙΚΑ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ: ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Αντικείμενο της άσκησης: Μεθοδολογία ανάλυσης και σχεδίασης συνδυαστικών λογικών κυκλωμάτων και λειτουργική εξομοίωση με το λογισμικό EWB. Συνδυαστικά
Διαβάστε περισσότεραΠανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 3: Ελαχιστοποίηση σε επίπεδο τιμών, Χάρτες Karnaugh, Πρωτεύοντες όροι Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών Συστημάτων
Διαβάστε περισσότεραΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 ΑΠΛΟΠΟΙΗΣΗ και ΥΛΟΠΟΙΗΣΗ ΛΟΓΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Σκοπός: Η κατανόηση της σχέσης µιας λογικής συνάρτησης µε το αντίστοιχο κύκλωµα. Η απλοποίηση λογικών συναρτήσεων
Διαβάστε περισσότερα5. ΤΕΧΝΙΚΕΣ ΑΠΛΟΠΟΙΗΣΗΣ
. ΤΕΧΝΙΚΕΣ ΑΠΛΟΠΟΙΗΣΗΣ. ΑΠΛΟΠΟΙΗΣΗ ΜΕ ΧΑΡΤΗ ΚΑΡΝΩ (Karnaugh).. Εισαγωγή Οι λογικές συναρτήσεις που προκύπτουν από τη λύση ενός πρακτικού προβλήματος δεν είναι πάντα στην απλούστερη μορφή τους. Μπορεί και
Διαβάστε περισσότεραx y z xy yz zx, να αποδείξετε ότι x=y=z.
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦ. ο A. Ταυτότητες, ιδιότητες δυνάμεων, διάταξη.1 Να παραγοντοποιήσετε τις παρακάτω παραστάσεις: 1. 15a x 15a y 5a x 5a y. a x a x a x a x 3 3 4 3 3 3 3. x 4xy 16 4 y
Διαβάστε περισσότερα5. ΤΕΧΝΙΚΕΣ ΑΠΛΟΠΟΙΗΣΗΣ
. ΤΕΧΝΙΚΕΣ ΑΠΛΟΠΟΙΗΣΗΣ. ΑΠΛΟΠΟΙΗΣΗ ΜΕ ΧΑΡΤΗ ΚΑΡΝΩ (Karnaugh).. Εισαγωγή Οι λογικές συναρτήσεις που προκύπτουν από τη λύση ενός πρακτικού προβλήματος δεν είναι πάντα στην απλούστερη μορφή τους. Μπορεί και
Διαβάστε περισσότεραΟρισμένες σελίδες του βιβλίου
Ορισμένες σελίδες του βιβλίου 7. Θεωρούμε το σύνολο αναφοράς 0,,. Να οριστούν τα σύνολα: Α. των τριψηφίων αριθμών που σχηματίζουν τα στοιχεία του Ω. Β. των τριψηφίων αριθμών με διαφορετικά ψηφία Γ. των
Διαβάστε περισσότεραΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 4: Ελαχιστοποίηση και Λογικές Πύλες ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη q Βελτιστοποίηση
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 1 5. ΑΛΓΕΒΡΑ BOOLE ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΜΕΡΟΣ Β 2 Επαναληπτική
Διαβάστε περισσότεραΙ. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E.
Ι. ΠΡΑΞΕΙΣ A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ Ορισµός Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E. Παραδείγµατα:. Η ισότητα x y = x y είναι µια πράξη επί του *. 2. Η ισότητα
Διαβάστε περισσότεραΎλη Λογικού Σχεδιασµού Ι
4 η Θεµατική Ενότητα : Συνδυαστική Λογική Ύλη Λογικού Σχεδιασµού Ι Κεφ 2 Κεφ 3 Κεφ 4 Κεφ 6 Συνδυαστική Λογική 2 Εισαγωγή Λογικά Κυκλώµατα Συνδυαστικά: Οι έξοδοι είναι συνάρτηση των εισόδων Ακολουθιακά:
Διαβάστε περισσότερα4.1 Θεωρητική εισαγωγή
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΥΑ ΙΚΟΣ ΑΘΡΟΙΣΤΗΣ-ΑΦΑΙΡΕΤΗΣ Σκοπός: Να µελετηθούν αριθµητικά κυκλώµατα δυαδικής πρόσθεσης και αφαίρεσης. Να σχεδιαστούν τα κυκλώµατα από τους πίνακες αληθείας
Διαβάστε περισσότερα2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες. Βασικοί Ορισµοί
2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες Βασικοί Ορισµοί υαδικός Τελεστής (Binary Operator): σε κάθε ζεύγος από το S αντιστοιχίζει ένα στοιχείο του S = set, σύνολο Συνηθισµένα Αξιώµατα (α,
Διαβάστε περισσότεραΕισαγωγή στα Ψηφιακά Συστήματα
Εισαγωγή στα Ψηφιακά Συστήματα Ασημόπουλος Νικόλαος Πατουλίδης Γεώργιος Παλιανόπουλος Ιωάννης Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗ ΛΟΓΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ VERILOG 2017, Δρ. Ηρακλής Σπηλιώτης Ελαχιστοποίηση λογικών συναρτήσεων Ο στόχος της ελαχιστοποίησης είναι η εύρεση της πιο απλοποιημένης
Διαβάστε περισσότεραΥ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων. Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design
Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής Τ.Ε.
Διαβάστε περισσότεραΚεφάλαιο 9. Ψηφιακά κυκλώματα - Άλγεβρα Boole
Κεφάλαιο 9. Ψηφιακά κυκλώματα - Άλγεβρα Boole Σύνοψη Στο κεφάλαιο αυτό παρουσιάζονται και αναλύονται οι βασικές αρχές λειτουργίας των ψηφιακών κυκλωμάτων, παρουσιάζεται η άλγεβρα Boole και πώς χρησιμοποιείται
Διαβάστε περισσότεραΕισαγωγή στην Πληροφορική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Εισαγωγή στην Πληροφορική Ενότητα 2: Ψηφιακή Λογική Ι Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ
ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ ΜΑΘΗΜΑ 2 ο ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ 2009-10 ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ 1 Άλγεβρα Βοοle η θεωρητική βάση των λογικών κυκλωμάτων Η άλγεβρα Βοοle ορίζεται επάνω στο σύνολο
Διαβάστε περισσότεραΨηφιακά Ηλεκτρονικά. Κεφάλαιο 1ο. Άλγεβρα Boole και Λογικές Πύλες. (c) Αμπατζόγλου Γιάννης, Ηλεκτρονικός Μηχανικός, καθηγητής ΠΕ17
Ψηφιακά Ηλεκτρονικά Κεφάλαιο 1ο Άλγεβρα Boole και Λογικές Πύλες Αναλογικά μεγέθη Αναλογικό μέγεθος ονομάζεται εκείνο που μπορεί να πάρει οποιαδήποτε τιμή σε μια περιοχή τιμών, όπως η ταχύτητα, το βάρος,
Διαβάστε περισσότεραΜετατροπή δυαδικών αριθμών
Κεφάλαιο 2o Συνδυαστικά κυκλώματα 2.1 Το δυαδικό σύστημα μέτρησης και η δυαδική λογική 2.1.1 Θεωρητικό Υπόβαθρο Οποιοσδήποτε αριθμός μπορεί να εκφραστεί σε σύστημα μέτρησης με βάση τον αριθμό β, με μια
Διαβάστε περισσότεραΑπλοποίηση λογικών συναρτήσεων. URL:
Ø ÖÓ Ü Ñ ÒÓ ÓØ Απλοποίηση λογικών συναρτήσεων ôö Ó Éº Ð Ü Ò Ö ÔÓÙÐÓ Ä ØÓÖ Èº º ¼» ¼ e-mail: alexandg@uop.gr URL: http://users.iit.demokritos.gr/~alexandg ÌÑ Ñ Ô Ø Ñ Ì ÕÒÓÐÓ Ì Ð Ô Ó ÒÛÒ ôò È Ö Õ Ñ Ò É ÖØ
Διαβάστε περισσότεραK15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων
K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού
Διαβάστε περισσότεραΆλγεβρα Boole, λογικές συναρτήσεις και κυκλώματα. URL:
Ø ÖÓ Ü Ñ ÒÓ ÓØ Άλγεβρα Boole, λογικές συναρτήσεις και κυκλώματα ôö Ó Éº Ð Ü Ò Ö ÔÓÙÐÓ Ä ØÓÖ Èº º ¼» ¼ e-mail: alexandg@uop.gr URL: http://users.iit.demokritos.gr/~alexandg ÌÑ Ñ Ô Ø Ñ Ì ÕÒÓÐÓ Ì Ð Ô Ó ÒÛÒ
Διαβάστε περισσότεραΕισαγωγή στους Υπολογιστές
Εισαγωγή στους Υπολογιστές Ενότητα 11: Βασικές έννοιες ψηφιακής λογικής Βασίλης Παλιουράς Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Γιατί χρησιμοποιούμε
Διαβάστε περισσότεραΟικουμενικές Πύλες (ΝΑΝD NOR), Πύλη αποκλειστικού Η (XOR) και Χρήση KarnaughMaps
ΗΜΥ211 Εργαστήριο Ψηφιακών Συστηµάτων Οικουμενικές Πύλες (ΝΑΝD NOR), Πύλη αποκλειστικού Η (XOR) και Χρήση KarnaughMaps ιδάσκων: ρ. Γιώργος Ζάγγουλος Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και
Διαβάστε περισσότεραn. Έστω αποτελείται από όλους τους πίνακες που αντιμετατίθενται με ένα συγκεκριμένο μη μηδενικό nxn πίνακα Τ:
Η ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ καθώς είναι από τα σημαντικότερα κομμάτια της Άλγεβρας με τις περισσότερες εφαρμογές ΔΕΝ πρέπει να αποστηθίζεται και κυρίως ΔΕΝ πρέπει να γίνεται αντιπαθητική. Για τη σωστή εκμάθηση
Διαβάστε περισσότεραΣυναρτήσεων Boole. Η Μέθοδος του Χάρτη
3 η Θεµατική Ενότητα : Απλοποίηση Συναρτήσεων Boole m 0 m x y x y m 2 m 3 xy xy Η Μέθοδος του Χάρτη H Αλγεβρική Έκφραση µίας συνάρτησης δεν είναι µοναδική. Στόχος η εύρεση της µικρότερης. Απαιτείται συστηµατική
Διαβάστε περισσότεραf(x, y, z) = y z + xz
Λύσεις θεμάτων Εξεταστικής Περιόδου Ιανουαρίου Φεβρουαρίου 27 ΘΕΜΑ Ο (2, μονάδες) Δίνεται η λογική συνάρτηση : f (, y, z ) = ( + y )(y + z ) + y z. Να συμπληρωθεί ο πίνακας αλήθειας της συνάρτησης. (,
Διαβάστε περισσότεραΨηφιακή Λογική και Σχεδίαση
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 26-7 Ψηφιακή Λογική και Σχεδίαση (σχεδίαση συνδυαστικών κυκλωμάτων) http://mixstef.github.io/courses/comparch/ Μ.Στεφανιδάκης Το τρανζίστορ
Διαβάστε περισσότεραΜ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ
Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ 1 ΜΕΡΟΣ Α ΚEΦΑΛΑΙΟ 1 Ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. ΕΡΩΤΗΣΗ Τι ονομάζουμε
Διαβάστε περισσότεραΕισαγωγή. Συνδυαστικά: Οι έξοδοι είναι συνάρτηση των εισόδων
4 η Θεµατική Ενότητα : Συνδυαστική Λογική Εισαγωγή Λογικά Κυκλώµατα Συνδυαστικά: Οι έξοδοι είναι συνάρτηση των εισόδων Ακολουθιακά: Οι έξοδοι είναι συνάρτηση των εισόδων και της κατάστασης των στοιχείων
Διαβάστε περισσότεραΣυνδυαστικά Κυκλώματα
3 Συνδυαστικά Κυκλώματα 3.1. ΣΥΝΔΥΑΣΤΙΚΗ Λ ΟΓΙΚΗ Συνδυαστικά κυκλώματα ονομάζονται τα ψηφιακά κυκλώματα των οποίων οι τιμές της εξόδου ή των εξόδων τους διαμορφώνονται αποκλειστικά, οποιαδήποτε στιγμή,
Διαβάστε περισσότεραΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΔΥΑΣΤΙΚΗ ΛΟΓΙΚΗ 2017, Δρ. Ηρακλής Σπηλιώτης Συνδυαστικά και ακολουθιακά κυκλώματα Τα λογικά κυκλώματα χωρίζονται σε συνδυαστικά (combinatorial) και ακολουθιακά (sequential).
Διαβάστε περισσότεραΕισαγωγή στην Πληροφορική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Εισαγωγή στην Πληροφορική Ενότητα 2: Ψηφιακή Λογική Ι Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Διαβάστε περισσότεραΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων
ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Συνδυαστική Λογική / Κυκλώματα (Μέρος B) Διδάσκουσα: Μαρία Κ Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Βελτιστοποίηση
Διαβάστε περισσότερα9 ο Μαθητικό Συνέδριο Πληροφορικής Κεντρικής Μακεδονίας. "My Binary Logic" Ένας προσομοιωτής λογικών πυλών στο Scratch
9 ο Μαθητικό Συνέδριο Πληροφορικής Κεντρικής Μακεδονίας Θεσσαλονίκη, 25-28 Απριλίου 2017, ΝΟΗΣΙΣ "My Binary Logic" Ένας προσομοιωτής λογικών πυλών στο Scratch Κωνσταντίνος Παρασκευόπουλος Καθηγητής Πληροφορικής
Διαβάστε περισσότεραΑ. Οι πραγματικοί αριθμοί και οι πράξεις τους
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ - -. Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Αν + y = -, να βρείτε τις τιμές των παραστάσεων: α A = + y + ( + y β B = ( - y -( y γ Γ = -(
Διαβάστε περισσότεραC D C D C D C D A B
Απλοποίηση µέσω Πίνακα Karnaugh: Παράδειγµα - 2 Στον παρακάτω πίνακα έχει ήδη γίνει το «βήμα- 1». Επομένως: Βήμα 2: Δεν υπάρχουν απομονωμένα κελιά. Βήμα 3: Στο ζεύγος (3,7) το κελί 3 γειτνιάζει μόνο με
Διαβάστε περισσότεραΚεφάλαιο 2. Ψηφιακή Σχεδίαση
Κεφάλαιο 2. Ψηφιακή Σχεδίαση Το Κεφάλαιο αυτό αποτελεί μια εισαγωγή στο αντικείμενο της ψηφιακής σχεδίασης. Τα θέματα στα οποία θα αναφερθούμε περιλαμβάνουν την άλγεβρα Boole, τις λογικές πύλες, τα ολοκληρωμένα
Διαβάστε περισσότεραΔρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης
Μάθημα 7 ο Δρ. Βασίλειος Γ. Καμπουρλάζος Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2016-2017 Μια Ενοποιητική Προσέγγιση στην ΥΝ Η Θεωρία Πλεγμάτων στην ΥΝ. Υπολογιστικές Μεθοδολογίες
Διαβάστε περισσότερα