ΠΡΟΧΩΡΗΜΕΝΗ Υ ΡΟΛΟΓΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΕΩΣΤΑΤΙΣΤΙΚΗ
|
|
- Ἁνανίας Αθανασίου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΠΡΟΧΩΡΗΜΕΝΗ Υ ΡΟΛΟΓΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΕΩΣΤΑΤΙΣΤΙΚΗ Νίκος Μαµάσης Εργαστήριο Υδροογίας και Αξιοποίησης Υδατικών Πόρων Αθήνα 7 ΙΑΡΘΡΩΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ: Εισαγωγή στη γεωστατιστική ΕΙΣΑΓΩΓΗ ΧΩΡΙΚΗ ΜΕΤΑΒΛΗΤΟΤΗΤΑ ΜΕΘΟ ΟΣ KRIGING ΕΦΑΡΜΟΓΗ
2 ΕΙΣΑΓΩΓΗ Ορισµοί Οι στατιστικές προσεγγίσεις θεωρούν ότι η µετρηµένη τιµή σε ένα συγκεκριµένο σηµείο του χώρου για µια συγκεκριµένη χρονική στιγµή είναι η πραγµατοποίηση µιας τυχαίας µεταβητής η οποία περιγράφεται από κάποια συνάρτηση κατανοµής. Έτσι το σύνοο των µετρηµένων τιµών της µεταβητής σε Ν σηµεία του χώρου είναι µια πραγµατοποίηση µιας πουδιάστατης τυχαίας µεταβητής µε δεδοµένη από κοινού συνάρτηση κατανοµής Ν διαστάσεων. Με τον όρο γεωστατιστική ορίζεται ένα σύνοο στατιστικών τεχνικών που σχετίζονται µε µεταβητές που µεταβάονται στο χώρο. Οι τεχνικές αυτές βασίζονται στην υπόθεση ότι η χωρική διακύµανση της µεταβητής είναι τυχαία, οπότε χρησιµοποιούν στατιστικές µεθοδοογίες για οποιαδήποτε εκτίµηση απορρέει από τις σηµειακές µετρήσεις της µεταβητής. Σηµαντικό πεονέκτηµα των γεωστατιστικών µεθόδων είναι το γεγονός ότι ποσοτικοποιούν και τεικά εαχιστοποιούν το σφάµα εκτίµησης. Ωστόσο, οι µέθοδοι είναι αρκετά πούποκες στην εφαρµογή τους, η οποία προϋποθέτει τη χρήση κατάηων υποογιστικών προγραµµάτων. Η γεωστατιστική ανάυση περιαµβάνει δύο κύριες φάσεις: (α) την χωρική ανάυση που περιαµβάνει την επιογή και προσαρµογή ενός µοντέου που περιγράφει την χωρική µεταβητότητα των σηµειακών µετρήσεων, και (β) την βέτιστη γραµµική αµερόηπτη εκτίµηση (best liear ubiased estimatio-blue) που σχετίζεται µε τον υποογισµό των εκτιµητριών των αγνώστων ως γραµµικών συναρτήσεων των µετρήσεων. Οι εκτιµήτριες είναι αµερόηπτες, έχουν την εάχιστη µεταβητότητα, ενώ για τον υποογισµό τουςχρησιµοποιείται η µοντεοποίηση της χωρικής µεταβητότητας ΕΙΣΑΓΩΓΗ Ορισµοί Εξετάζεται µια χωρικά µεταβαόµενη συνάρτηση z(x) όπου x είναι η θέση στο χώρο (διάνυσµα, ή 3 διαστάσεων). Ησυνάρτησηz(x) δενείναιγνωστήκαιπρέπεινα προσδιοριστεί από µετρήσεις και ίσως από συµπηρωµατικές πηροφορίες. Η συνάρτηση µέσης τιµής που δίνει την αναµενόµενη τιµή σε οποιοδήποτε σηµείο x δίδεται από τη σχέση: m(x)=e[z(x)] Η συνάρτηση της συνδιασποράς που είναι η συνδιασπορά για κάθε ζεύγος x και x δίδεται από τη σχέση: R(x,x )=E{[z(x)-m(x)] [z(x )-m(x )]} Όταν τα x και x αφορούν στην ίδια θέση τότε η συνδιασπορά είναι ίση µετηδιασπορά R(x,x) =σ (x) Ο συντεεστής συσχέτισης µεταξύ z(x) και z(x ) είναι ρ(x,x )= R(x,x ) / σ(x)σ(x ) Η χωρική συνδιασπορά είναι σηµαντική στη γραµµική εκτίµηση δεδοµένου ότι µειώνει το µέσο τετραγωνικό σφάµα. Έτσι χωρίς µετρήσεις η καύτερη εκτίµηση του z(x ) είναι η m(x ) και το µέσο τετραγωνικό σφάµα είναισ (x ). Αντίθετα όταν το z(x) έχει παρατηρηθεί τότε η εκτίµηση του z(x ) µπορεί να διορθωθεί δεδοµένου ότι υπάρχει παραπάνω πηροφορία. Χρησιµοποιώντας µια γραµµική διόρθωση στην παρατήρηση έχουµε z(x )=m(x )+ρ(x,x )[z(x)-m(x)]σ(x )/σ(x) ενώ το µέσο τετραγωνικό σφάµα µειώνεται σε [- ρ (x,x )] σ (x )
3 ΕΙΣΑΓΩΓΗ Χωρική µεταβητότητα Ηβασικήαρχήτωνδιαφόρων µεθόδων παρεµβοής είναι η παραδοχή ότι στις κοντινές αποστάσεις οι τιµές της µεταβητής µοιάζουν περισσότερο από ότι στις µακρινές. Για να προσδιοριστεί η ισχύς αυτής της υπόθεσης και το πώς αυτή η οµοιότητα µεταβάεται συναρτήσει της απόστασης, πραγµατοποιείται διερευνητική ανάυση των χωρικών δεδοµένων. Η χωρική συσχέτιση συνήθως εξετάζεται µε τη µέθοδο της ηµιδιασποράς που είναι ένα µέτρο του βαθµού της χωρικής συσχέτισης των σηµειακών µετρήσεων και δίνεται από τη σχέση: m = [ zx ( i ) zx ( i + h)] i= όπου m οαριθµός των ζευγών µε απόστασηh z(x i ) ητιµήτηςµεταβητής στη θέση i z(x i +h) ητιµήτηςµεταβητήςσεαπόστασηh από τη θέση i ΕΙΣΑΓΩΓΗ Βέτιστη γραµµική αµερόηπτη εκτίµηση (BLUE) Ηεκτίµηση της τιµής της συνάρτησης z(x) σε µία θέση που δεν υπάρχει µέτρηση x, µε βάση τις παρατηρήσεις z(x ), z(x ),, z(x ) γίνεται χρησιµοποιώντας µια γραµµική εκτιµήτρια: zx ^( o ) izx ( i ) = i= όπου i είναι τα βάρη Ο τύπος αυτός εκτιµήτριας χρησιµοποιείται συχνά στις προσδιοριστικές µεθόδους (Thiesse, IDW), ενώ ποές µεθοδοογίες εφαρµόζονται για τον προσδιορισµό των βαρών, το άθροισµα των οποίων τίθεται συνήθως ίσο µε. Με την χρήση των γεωστατιστικών µεθόδων ο προσδιορισµός των βαρών βασίζεται στην δοµή της χωρικής διακύµανσης της µεταβητής, η οποία προσδιορίζεται και µοντεοποιείται µεβάσητοηµιµεταβητόγραµµα. Τα βάρη επιέγονται έτσι ώστε:. Το σφάµαεκτίµησης (εκτιµηµένη τιµή µείον την αηθινή άγνωστη τιµή) πρέπει κατά µέσο όρο να είναι µηδέν (αµεροηψία). Πρέπει να εαχιστοποιείται το µέσο τετραγωνικό σφάµα Από το δεύτερο κριτήριο µε τονπεριορισµό του πρώτου προκύπτει ένα σύστηµα γραµµικών εξισώσεων (krigig system) από τη ύση του οποίου προκύπτουν τα βάρη 3
4 ΧΩΡΙΚΗ ΜΕΤΑΒΛΗΤΟΤΗΤΑ Κατάρτιση ηµιµεταβητογράµµατος Η ανάυση µε την κατάρτιση ηµιµεταβητογράµµατος εφαρµόζεται στην περίπτωση που διατίθενται σηµειακές µετρηµένες τιµές της µεταβητής z(x), όπου το x συµβοίζει ένα διανυσµατικό σύστηµα δύο διαστάσεων. Σε ένα πήθος σηµειακών µετρήσεων στο χώρο µπορούν να υποογιστούν *(-)/ ζεύγη από τη διαφορά [z(x i )-z(x j )] και την απόσταση x ι -x j. Η σχεδίαση της διαφοράς αυτής συναρτήσει της απόστασης, είναι το πρωτογενές (raw) ηµιµεταβητόγραµµα. Για κατάρτιση του πειραµατικού (experimetal) ηµιµεταβητογράµµατος απαιτείται η κατάτµηση του άξονα των αποστάσεων σε διαδοχικά διαστήµατα. Το κ διάστηµα είναι [h κ,h κ ] και περιέχει Ν κ ζεύγη τιµών z(x i ) και z(x j ) γιαταοποίαισχύειh κ < x ι -x j < h κ. Για κάθε διάστηµαυποογίζουµε τηνπαράσταση: N k γ ( hk ) = [ z( xi ) z( x N k i= όπου το i δείχνει τον αριθµό των ζευγών που ανήκουν στο διάστηµα. Το ηµιµεταβητόγραµµα σχεδιάζεται µε βάση τις τιµές της ενώ το κάθε διάστηµα [h κ,h κ ] αντιπροσωπεύεται από την τιµή (h κ -h κ )/. j )] ΧΩΡΙΚΗ ΜΕΤΑΒΛΗΤΟΤΗΤΑ Παράδειγµα ηµιµεταβητογράµµατος Πρωτογενές (raw) Πειραµατικό (experimetal) ΗΜΙ ΙΑΣΠΟΡΑ (mm ) 5 5 ΗΜΙ ΙΑΣΠΟΡΑ (mm ) ΑΠΟΣΤΑΣΗ (km) ΑΠΟΣΤΑΣΗ (km) 4
5 ΧΩΡΙΚΗ ΜΕΤΑΒΛΗΤΟΤΗΤΑ Χαρακτηριστικά ηµιµεταβητογράµµατος Κατώφι (sill) και εύρος (rage). Το κατώφι (sill), είναι µια σταθερή τιµή στην οποία φτάνει το ηµιµεταβητόγραµµα σε µια απόσταση η οποία ονοµάζεται εύρος (rage). Το κατώφι σχετίζεται µε τη διασπορά του δείγµατος, ενώ το εύρος δείχνει την απόσταση από την οποία και πέρα δεν συσχετίζονται οι τιµές. Το τεευταίο ενδιαφέρει στον σχεδιασµό δικτύωνµέτρησης. Όταν το διάστηµα είναιµηδενικό τότε δεν υπάρχει χωρική εξάρτηση στην µεταβητή. Nugget effect. H ηµιδιασπορά µπορεί να µην είναι µηδέν στην µηδενική απόσταση γεγονός που εξηγείται όταν οι µετρήσεις έχουν θόρυβο, παρουσιάζουν άθη ή δεν είναι ταυτόχρονες Επίδραση της διεύθυνσης. Η παρουσία ανισοτροπίας στα δεδοµένα µπορεί να ανιχνευθεί µε την κατάρτιση ηµιµεταβητογραµµάτων σε συγκεκριµένες διευθύνσεις όπου τα διαστήµατα σχεδιάζονται σε διάγραµµαρόδου Στρωµάτωση (stratificatio). Ο διαχωρισµός ενός συνόου δεδοµένων σε οµάδες ποές φορές εαττώνει την χωρική µεταβητότητα και κατά συνέπεια την ακρίβεια προσαρµογής Επίδραση του χρόνου. εδοµένου ότι ποές υδροογικές µεταβητές είναι µεταβητές στο χρόνο η χωρική µεταβητότητα µιας περιοχής και άρα και το ηµιµεταβητόγραµµα εξαρτώνται από τη χρονική στιγµήτηςδειγµατοηψίας ΧΩΡΙΚΗ ΜΕΤΑΒΛΗΤΟΤΗΤΑ Προσαρµογή συνάρτησης στο εµπειρικό ηµιµεταβητόγραµµα GAUSSIAN = σ [ e σ >, L > h L ] ΕΚΘΕΤΙΚΗ = σ [ e σ >, L > h L ] HOLE-EFFECT h h L = [ ( ) e ] L NUGGET EFFECT = C για h > = για h = ΣΦΑΙΡΙΚΗ 3 h h = [.5.5 ] σ για h a 3 a a = σ για h > a ΥΝΑΜΗΣ = ϑh θ >, < s < s ΓΡΑΜΜΙΚΗ = ϑh ΛΟΓΑΡΙΘΜΙΚΗ = Alog( h) A > 5
6 ΧΩΡΙΚΗ ΜΕΤΑΒΛΗΤΟΤΗΤΑ Παράδειγµα προσαρµογής συνάρτησης 5 ΗΜΙ ΙΑΣΠΟΡΑ (mm ) 5 5 ΕΜΠΕΙΡΙΚΟ ΕΚΘΕΤΙΚΗ POWER ΛΟΓΑΡΙΘΜΙΚΗ ΙΑΣΠΟΡΑ ΕΙΓΜΑΤΟΣ GAUSSIAN ΣΦΑΙΡΙΚΗ ΓΡΑΜΜΙΚΗ HOLE-EFFECT ΑΠΟΣΤΑΣΗ (km) ΜΕΘΟ ΟΣ ΒΕΛΤΙΣΤΗΣ ΠΑΡΕΜΒΟΛΗΣ (KRIGING) Γενικά Η µέθοδος βέτιστης παρεµβοής θεωρεί τη µεταβοή της µεταβητήςωςτυχαία, εκφράζει την άγνωστη τιµή στο τυχόν σηµείο ως γραµµική έκφραση των γνωστών τιµών στις θέσεις των σταθµών και χρησιµοποιεί τη στατιστική µεθοδοογία προκειµένου να εκτιµήσει τους συντεεστές της γραµµικής έκφρασης. Στη συνέχεια παρουσιάζονται συνοπτικά οι διάφορες παρααγές της µεθόδου: Ordiary-simple krigig. Η πέον διαδεδοµένη µορφή, έχει τις παρακάτω παραδοχές: (α) η µεταβητή ακοουθεί κανονική κατανοµή, (β) ηεκτίµηση είναι αµερόηπτη, (γ) µονιµότητα δευτέρου βαθµού, (δ) ο τοπικός µέσος είναι γνωστός (simple), ή (δ) οτοπικόςµέσος είναι άγνωστος (ordiary) Neighbourhood krigig. Αν και η τοπική µέση τιµή και διασπορά είναι σταθερές σε όη την περιοχή (υποθέσεις µονιµότητας και ισότροπου πεδίου), στις περισσότερες εφαρµογές τα δεδοµένα περιέχουν τοπικές διακυµάνσεις. Γιατοόγοαυτόστηνεκτίµηση της άγνωστης τιµής συµµετέχουν τα κοντινότερα σηµεία ή αυτά που περιαµβάνονται στη γύρω περιοχή Block krigig. Αντιµετωπίζει την οοκήρωση των εκτιµηµένων τιµών σε µεγαύτερες περιοχές Uiversal krigig. Εφαρµόζεται στην περίπτωση που τα δεδοµένα περιέχουν τάση (tred) Disjuctive krigig. Υποογίζει για κάθε εκτίµηση και την πιθανότητα η αηθινή τιµή να υπερβαίνει ένα συγκεκριµένο κατώφι Cokrigig. Ηεκτίµηση µε το κανονικό krigig βετιώνεται σηµαντικά όταν η µεταβητή που εξετάζεται συνδέεται µε κάποια άη µεταβητή για την οποία υπάρχουν µετρήσεις Space time krigig. Σχετίζεται µε την εισαγωγή της χρονικής διάστασης των δεδοµένων 6
7 Το σύστηµα γραµµικών εξισώσεων που πρέπει να επιυθεί δίδεται από τις σχέσεις: ενώ το ΜΤΣ δίνεται από τη σχέση: ΕΦΑΡΜΟΓΕΣ Οrdiary krigig γ j ( xi xj) + ν= γ( xi x) i =,,... j = j= ^ E{[ z( x ) z( x )] } = ν + γ ( x x ) Το ν ονοµάζεται ποαπασιαστής Lagrage και σχετίζεται µε τον περιορισµό αµεροηψίας i= ij i j= Εφαρµογή: Eκτίµηση του x από τρία σηµεία x, x, x 3 γ(d )+ γ(d )+ 3 γd 3 +ν =γ(d ) γ(d ) γ(d3) γ (d) γ(d )+ γ(d )+ 3 γd 3 +ν =γ(d ) γ(d ) γ(d 3) γ (d ) = γ(d 3 )+ γ(d 3 )+ 3 γd 33 +ν =γ(d 3 ) γ(d 3) γ(d 3) 3 γ (d 3) = ν Q*L=S Tα βάρη προσδιορίζονται από τη σχέση SQ - ενώ η εκτιµηµένη τιµή απότησχέση S*Q - *F (BLUE) όπου: Το διάνυσµα S περιέχει τις µετασχηµατισµένες (µε βάσητοεπιεγµένο ηµιµεταβητόγραµµα) µεταβητότητες των σηµείων µέτρησης από το σηµείο παρεµβοής. Ο πίνακας Q περιέχει τις µετασχηµατισµένες (µε βάση το επιεγµένο ηµιµεταβητόγραµµα) µεταβητότητες µεταξύ όων των σηµείων µέτρησης. Η διαγώνιος του είναι µηδενική (γ() = ), ενώ είναι συµµετρικό (υπόθεση ισότροπου πεδίου) Ο πίνακας F περιέχει τις σηµειακές µετρήσεις της µεταβητής στα σηµεία x, x και x 3 ΣΗΜΕΙΟ ΠΑΡΕΜΒΟΛΗΣ 35, ΕΦΑΡΜΟΓΕΣ ΣΤΑΘΜΟΣ Χ (m) Υ (m) ΕΤΟΣ ΒΕΡ ΙΚΟΥΣΑ ,3 ΓΙΑΝΝΩΤΑ ,9 ΕΣΚΑΤΗ ,6 ΕΛΑΣΣΟΝΑ ,8 ΚΑΡΠΕΡΟ ,3 ΚΟΝΙΣΚΟΣ ,8 ΚΡΥΟΒΡΥΣΗ ,6 ΛΑΡΙΣΑ ,5 ΛΙΒΑ Ι ,5 ΠΥΘΙΟ ,5 ΠΥΡΓΕΤΟΣ ,6 ΤΥΡΝΑΒΟΣ , ΦΑΡΚΑ ΩΝΑ ,5 3 8 ΜΗΤΡΩΟ ΑΠΟΣΤΑΣΕΩΝ ΑΠΌ ΖΗΤΟΥΜΕΝΟ ΣΗΜΕΙΟ
8 ΕΦΑΡΜΟΓΕΣ ΜΗΤΡΩΟ ΑΠΟΣΤΑΣΕΩΝ ΗΜΙ ΙΑΣΠΟΡΑ (mm ) 5 γ(d)=*d.87 5 ΕΜΠΕΙΡΙΚΟ ΕΚΘΕΤΙΚΗ POWER ΛΟΓΑΡΙΘΜΙΚΗ ΙΑΣΠΟΡΑ ΕΙΓΜΑΤΟΣ GAUSSIAN ΣΦΑΙΡΙΚΗ ΓΡΑΜΜΙΚΗ HOLE-EFFECT ΑΠΟΣΤΑΣΗ (km) ΜΗΤΡΩΟ ΗΜΙ ΙΑΣΠΟΡΑΣ γ(d) ΕΦΑΡΜΟΓΕΣ ΜΗΤΡΩΟ Q γ(d ) γ(d3) γ (d) γ(d ) γ(d 3) γ (d ) = Q*L=S γ(d 3) γ(d 3) 3 γ (d 3) ν ΜΗΤΡΩΟ S
9 ΕΦΑΡΜΟΓΕΣ ΜΗΤΡΩΟ Q - -,,8,3,4 -,,7 -,4 -,6 -,6 -,3 -,5,4,45,6,8 -,8,49,7, -, -, -,3,46,3 -,7 -, -,6,4,3,49 -,3,,78,57 -, -,, -,3 -, -, -,8,3,4,7, -,4 -,7 -,4,6 -,5 -,, -,3,5 -,,8 -,,,78 -,7 -,6,39 -,,6,,,8 -,5, -,9,7 -,,57 -,4,39 -,76 -,, -,4 -,, -,5,3 -,7 -,4 -, -,,6 -, -, -,4,,,98,5,7 -,4, -,6 -,3 -, -,5,6,, -,6, -,,4,75,37 -,9 -,6,46, -,, -,4,, -,8,8,3 -,5, -,7 -,3,3 -,3,, -,,98 -,,8 -,69,7 -,5 -, -, -,5 -,7 -, -,3,8,,5,4,3,7 -,89,, -,4,4 -, -,,5 -,5 -,5,7,75 -,5 -,5, -,94,3,8,45 -,6 -,8 -,,,3 -,4,37, -,,,3 -, -,6,6,4,3,8 -,9 -,7, -,9 -,7 -, -,4,8 -,6,84 ΜΗΤΡΩΟ S*Q - -,6,8 -,6,6 -,7 -,,33 -,4,,458 -,3 -, -,4,8 γ(d ) γ(d3) γ (d) γ(d ) γ(d 3) γ (d ) = Q*L=S γ(d 3) γ(d 3) 3 γ (d 3) ν ΜΗΤΡΩΟ ΤΙΜΩΝ ΒΡΟΧΗΣ F ,3 558,9 69,6 554,8 634,3 8,8 656,6 48,5 74,5 68,5 795,6 57, 553,5 Τεική τιµήβροχής: S*Q - *F = 6 mm ΒΙΒΛΙΟΓΡΑΦΙΑ Κουτσογιάννης,. και Θ. Ξανθόπουος, Τεχνική Υδροογία, Εθνικό Μετσόβιο Πουτεχνείο, Αθήνα, 997 Μαµάσης, Ν., Ανάυση βροχοπτώσεων κατά τύπο καιρού, ιδακτορική διατριβή, ΕΜΠ, 997 Μιµίκου, ΜκαιΕ. Μπατάς, Τεχνική Υδροογία, Εκδόσεις ΕΜΠ, Τζούης Β., ιερεύνηση της χωρικής κατανοµής των βροχοπτώσεων µε τη χρήση ΣΓΠ, ιπωµατική εργασία, ΕΜΠ, 996 ESRI, ARC-VIEW, Advaced Spatial Aalysis usig raster ad vector data, 996 Creuti, J.D., ad C. Obled, Objective aalysis ad mappig techiques for raifall fields: A objective compariso, Water Resources Research, 5, 78-79, 98 Digma, L., Physical Hydrology, Pretice-Hall, Ic., New Jersey, 994 Mamassis, N. ad D. Koutsoyiais, Ifluece of atmospheric circulatio types o space - time distributio of itese raifall, Joural of Geophysical Research,, D, , 996 Μeijerik A., Brouwer H., Maaerts C., ad C., Valezuela, Itroductio to the use of Geographic Iformatio Systems for practical hydrology, UNESCO, Publicatio Number 3, 995 9
Προχωρημένη Υδρολογία
Προχωρημένη Υδρολογία Κατακρημνίσματα και χωρική μεταβλητότητά τους Νίκος Μαμάσης και Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα 999 ΔΙΑΡΘΡΩΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ: Κατακρημνίσματα
Προχωρημένη Υδρολογία
Προχωρημένη Υδρολογία Κατακρημνίσματα και χωρική μεταβλητότητά τους Νίκος Μαμάσης και Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα 1999 ΔΙΑΡΘΡΩΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ: Κατακρημνίσματα
TO ΠΡΟΒΛΗΜΑ ΤΗΣ ΤΟΠΟΘΕΤΗΣΗΣ ΠΟΛΩΝ ΜE ΑΝΑΤΡΟΦΟΔΟΤΗΣΗ ΤΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΑΤΑΣΤΑΣΗΣ
TO ΠΡΟΒΛΗΜΑ ΤΗΣ ΤΟΠΟΘΕΤΗΣΗΣ ΠΟΛΩΝ ΜE ΑΝΑΤΡΟΦΟΔΟΤΗΣΗ ΤΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΑΤΑΣΤΑΣΗΣ. ΕΙΣΑΓΩΓΗ Ας θεωρήσουμε το σύστημα ανοικτού βρόχου που περιγράφεται από τις εξισώσεις κατάστασης (.) και (.2): x Ax+ Bu (.)
2. Η τιµή της εκτιµήσεως της µεταβλητής στα σηµεία όπου υπάρχουν µετρήσεις να είναι η ίδια µε τη
ΜΕΘΟ ΟΙ ΧΩΡΙΚΗΣ ΠΑΡΕΜΒΟΛΗΣ, ΒΕΛΤΙΣΤΗ ΠΑΡΕΜΒΟΛΗ ΠΡΟΧΩΡΗΜΕΝΕΣ ΓΕΩΣΤΑΤΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ Η παρεµβολή στο χώρο αποτελεί ένα σηµαντικό αντικείµενο µελέτης στη χαρτογραφία και σε όσους τοµείς της επιστήµης είναι
Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Οαλγόριθµος καθόδου κατά την µέγιστη κλίση (Steepest-descent)
ΒΕΣ Προσαρµοστικά Συστήµατα στις Τηεπικοινωνίες Προσαρµοστικοί Αγόριθµοι Υοποίησης Βέτιστων Ψηφιακών Φίτρων: Οαγόριθµος καθόδου κατά την (Steepest-escent) κατά τη Βιβιογραφία Ενότητας Benvent []: Κεφάαι
0. Σύντοµη επισκόπηση θεωρίας πιθανοτήτων
. Σύντοµη επισκόπηση θεωρίας πιθανοτήτων Α. Τυχαίες µεταβητές Τυχαία µεταβητή καείται µια µεταβητή η τιµή της οποίας καθορίζεται από το αποτέεσµα κάποιου στοχαστικού πειράµατος. Αν Ω ο δειγµατικός χώρος
6. ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ
6. ΑΡΘΜΗΤΚΗ ΟΛΟΚΛΗΡΩΣΗ. Αριθµητική Οοκήρωση Οπως αναφέραµε στην εισαγωγή, είναι συχνά δύσκοο να υποογιστεί ο αναυτικός τύπος, ή δεν υπάρχει αναυτικός τύπος, που δίνει το ορισµένο οοκήρωµα µιας συνεχούς
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδρολογικών γεγονότων
Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων ηµήτρης Κουτσογιάννης Τοµέας Υδατικών Πόρων Εθνικό Μετσόβιο Πουτεχνείο 1. Ακραία υδροογικά περιστατικά Καταιγίδες, πηµµύρες και ξηρασίες:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
14. ΜΕΘΟ ΟΙ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΜΗ-ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ
4. ΜΕΘΟ ΟΙ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΜΗ-ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ 4. Η µέθοδος Newn-Raphsn για µη γραµµική ανάυση Η γενική εξίσωση ισορροπίας ενός µη γραµµικού συστήµατος γράφεται: F ( ) = F q () όπου είναι οι εσωτερικές
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής Υποθέσεις του Απλού γραμμικού υποδείγματος της Παλινδρόμησης Η μεταβλητή ε t (διαταρακτικός όρος) είναι τυχαία μεταβλητή με μέσο όρο
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της
Κεφάλαιο 6 Τυπικές συναρτήσεις κατανομής στην τεχνική υδρολογία
Κεφάαιο 6 Τυπικές συναρτήσεις κατανομής στην τεχνική υδροογία Στο κεφάαιο αυτό περιγράφουμε τις τρεις βασικές οικογένειες συναρτήσεων κατανομής που χρησιμοποιούνται στην τεχνική υδροογία. Η πρώτη περιαμβάνει
Στατιστική Συμπερασματολογία
4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης
3. Χαρακτηριστικές Παράμετροι Κατανομών
. Χαρακτηριστικές Παράμετροι Κατανομών - Αναμενόμενη ή μέση τιμή μιας διακριτής τυχαίας μεταβητής. Θα ήταν αρκετά χρήσιμο να γνωρίζουμε γύρω από ποια τιμή «κυμαίνεται» η τ.μ. Χ. γύρω από την οποία «απώνεται»
Έλεγχος και αποκατάσταση συνέπειας χρονοσειρών βροχόπτωσης Παράδειγµα Η ετήσια βροχόπτωση του σταθµού Κάτω Ζαχλωρού Χ και η αντίστοιχη βροχόπτωση του γειτονικού του σταθµού Τσιβλός Υ δίνονται στον Πίνακα
Γραπτή Εξέταση στο Μάθημα "ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ" 6ο Εξάμηνο Ηλεκτρολόγων Μηχ. & Μηχ. Υπολογιστών Θέματα και Λύσεις. μ 1.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηεκτρονικής & Συστημάτων Πηροφορικής Εργαστήριο Διαχείρισης και Βέτιστου Σχεδιασμού Δικτύων - NETMODE
Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ B Δημήτρης Κουγιουμτζής e-mal: dkugu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://uer.auth.gr/~dkugu/teach/cvltraport/dex.html Εφαρμοσμένη Στατιστική:
Εφαρμοσμένα Μαθηματικά ΙΙ 10ο Σετ Ασκήσεων (Λύσεις) Ιδιοτιμές - Ιδιοδιανύσματα
Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Ιδιοτιμές - Ιδιοδιανύσματα Επιμέεια: Ι. Λυχναρόπουος. Έστω ο πίνακας 3. Δείξτε ότι το διάνυσμα v (,3) είναι ένα ιδιοδιάνυσμα που αντιστοιχεί στην ιδιοτιμή
7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων
7.. Η Μέθοδος των Ελαχίστων Τετραγώνων Όπως ήδη αναφέρθηκε, μία ευρύτατα διαδεδομένη μέθοδος για την εκτίμηση των σταθερών α και β είναι η μέθοδος των ελαχίστων τετραγώνων. Η μέθοδος αυτή επιλέγει εκτιμήτριες
ΚΕΦΑΛΑΙΟ 5 ΡΟΠΟΓΕΝΝΗΤΡΙΕΣ
ΚΕΦΑΛΑΙΟ 5 ΡΟΠΟΓΕΝΝΗΤΡΙΕΣ 5 Εισαγωγή Σ αυτό το κεφάαιο θα δούµε ότι οι ροπές µιας τυχαίας µεταβητής µπορούν να υποογιστούν µε τη βοήθεια κατάηων συναρτήσεων Αυτές οι συναρτήσεις καούνται ροπογεννήτριες
Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Ι. Λυχναρόπουλος
Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Ι. Λυχναρόπουος Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα 3. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές ποαπότητες
ΕΦΑΡΜΟΓΕΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ (ΜΜ618)
ΕΦΑΡΜΟΓΕΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ (ΜΜ6) Διδάσκων: Δρ. Χρήστος Τάντος, Εαρινό εξάμηνο 7- ΕΡΓΑΣΙΑ #: Θερμική ακτινοβοία Ημερομηνία ανάρτησης εργασίας στην ιστοσείδα του μαθήματος: -- Ημερομηνία παράδοσης εργασίας:
Y Y ... y nx1. nx1
6 ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΠΙΚΑΚΩΝ Η χρησιμοποίηση και ο συμβολισμός πινάκων απλοποιεί σημαντικά τα αποτελέσματα της γραμμικής παλινδρόμησης, ιδίως στην περίπτωση της πολλαπλής παλινδρόμησης Γενικά,
Σημειακή εκτίμηση και εκτίμηση με διάστημα. 11 η Διάλεξη
Σημειακή εκτίμηση και εκτίμηση με διάστημα 11 η Διάλεξη Εκτιμήτρια Κάθε στατιστική συνάρτηση που χρησιμοποιείται για την εκτίμηση μιας παραμέτρου ενός πληθυσμού (π.χ. ο δειγματικός μέσος) Σημειακή εκτίμηση
Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1)
Σημειώσεις Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου Αθήνα -3-7 Εκτίμηση των Παραμέτρων β & β Απλό γραμμικό υπόδειγμα: Y X () Η αναμενόμενη τιμή του Υ, δηλαδή, μέση τιμή του Υ, δίνεται παρακάτω: EY ( ) X EY
Support Vector Machines
KEΣ 3 Αναγνώριση Προτύπων και Ανάυση Εικόνας Support Vector Machnes ΤµήµαΕπιστήµης και Τεχνοογίας Τηεπικοινωνιών Πανεπιστήµιο Πεοποννήσου 7 colas sapatsouls Εισαγωγή Γραµµικά διαχωρίσιµες κάσεις Μη γραµµικά
Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R
Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη
Έστω η πραγµατική συνάρτηση f(t) της πραγµατικής µεταβλητής t (π.χ χρόνος). Ο µετασχηµατισµός Laplace της συνάρτησης f(t) δίνεται από τη σχέση:
ΜΑΘΗΜΑ : Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE. Εισαγωγή Ο µετασχηµατισµός pl και ο µετασχηµατισµός Z είναι δύο πού χρήσιµα µαθηµατικά εργαεία για την ανάυση και σχεδίαση συστηµάτων αυτοµάτου και ιδιαίτερα ΓΧΑ Γραµµικών
Υ ΑΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ. Πιθανοτική προσέγγιση υδρολογικών µεταβλητών
Υ ΑΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ Πιθανοτική προσέγγιση υδρολογικών µεταβλητών Νίκος Μαµάσης Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων Αθήνα ΣΥΛΛΟΓΙΣΜΟΣ-ΕΠΑΓΩΓΗ (DEDUCTION INDUCTION) Ο Αριστοτέλης
Διάστημα εμπιστοσύνης της μέσης τιμής
Διάστημα εμπιστοσύνης της μέσης τιμής Συντελεστής εμπιστοσύνης Όταν : x z c s < μ < x +z s c Ν>30 Στον πίνακα δίνονται κρίσιμες τιμές z c και η αντιστοίχισή τους σε διάφορους συντελεστές εμπιστοσύνης:
ΚΕΦΑΛΑΙΟ 4: ΙΔΙΟΤΙΜΕΣ ΚΑΙ ΙΔΙΟΔΙΑΝΥΣΜΑΤΑ
ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ :. ΟΡΙΣΜΟΙ Δίνεται ο πίνακας Παρατηρήστε τι γίνεται όταν ποαπασιάζουμε τον Α με το διάνυσμα u u u παίρνουμε δηαδή ένα διάνυσμα ποαπάσιο του u. Η αναζήτηση διανυσμάτων που έχουν παρόμοια
Σεµινάριο Αυτοµάτου Ελέγχου
Σεµινάριο Αυτοµάτου Εέγχου Μάθηµα 9 Ευστάθεια κατά Lyaunv Η έννοια της ευστάθειας κατά Lyaunv Γενικό κριτήριο ευστάθειας Παραδείγµατα Καιγερόπουος 9 Ευστάθεια κατά Lyaunv Εισαγωγή Η έννοια της ευστάθειας
Αριθµητικά χαρακτηριστικά µιάς τυχαίας µεταβλητής
Αριθµητικά χαρακτηριστικά µιάς τυχαίας µεταβητής (Α) Mέση τιµή Ορισµός Η µέση τιµή ή µαθηµατική επίδα µιας τ.µ. Χ µε πυκνότητα πιθανότητας f (x) είναι ο αριθµός: µ E() + xf (x) xf (x)dx διακριτή συνεχής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 08-09 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
Τεχνική Υδρολογία (Ασκήσεις)
Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών Τεχνική Υδρολογία (Ασκήσεις) Κεφάλαιο 2 ο : Κατακρημνίσματα
9. Παλινδρόμηση και Συσχέτιση
9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε
Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017
Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 2 Γιατί ανάλυση διακύμανσης; (1) Ας θεωρήσουμε k πληθυσμούς με μέσες τιμές μ 1, μ 2,, μ k, αντίστοιχα Πως μπορούμε να συγκρίνουμε τις μέσες τιμές k πληθυσμών
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΙΙ
ΠΑΝΕΠΙΣΗΜΙΟ ΑΙΓΑΙΟΥ ΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΙΙ Σηµειώσεις Μη Γραµµικού Προγραµµατισµού Β Κούτρας ΧΙΟΣ Β Κούτρας ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΙΣΜΟΣ ΕΙΣΑΓΩΓΗ Στο κοµµάτι αυτό
ΤΕΧΝΙΚΗ Υ ΡΟΛΟΓΙΑ. Κατακρηµνίσεις (2 η Άσκηση)
ΤΕΧΝΙΚΗ Υ ΡΟΛΟΓΙΑ Κατακρηµνίσεις ( η Άσκηση) Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων ιάρθρωση ου Μαθήµατος Ασκήσεων Έλεγχος οµοιογένειας
, όπου x = 0,1,...,300000. Έτσι, για την πιθανότητα σε ένα έτος να μην υπάρξουν θάνατοι ζώων από τον εμβολιασμό έχουμε, 2! 299998!
Η Κατανομή Poisso Ας δούμε ένα πρόβημα: Σε μια κτηνοτροφική περιοχή υπάρχουν 3 αιγοπρόβατα. Κάθε χρόνο όα τα αιγοπρόβατα εμβοιάζονται για προστασία από κάποια ασθένεια. Σύμφωνα με την άδεια χρήσης του
Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:
Άσκηση 1: Δύο τυχαίες μεταβλητές Χ και Υ έχουν στατιστικές μέσες τιμές 0 και διασπορές 25 και 36 αντίστοιχα. Ο συντελεστής συσχέτισης των 2 τυχαίων μεταβλητών είναι 0.4. Να υπολογισθούν η διασπορά του
Εξέταση Φεβρουαρίου (2011/12) στο Μάθηµα: Γεωργικός Πειραµατισµός. Ζήτηµα 1 ο (2 µονάδες) Για κάθε λανθασµένη απάντηση δεν λαµβάνεται υπόψη µία σωστή
Σειρά Β Εξέταση Φεβρουαρίου (0/) στο Μάθηµα: Γεωργικός Πειραµατισµός Θεσσαλονίκη: 4/0/0 Επώνυµο Όνοµα Αρ. Μητρώου Κατεύθυνση Ζήτηµα ο ( µονάδες) Για κάθε λανθασµένη απάντηση δεν λαµβάνεται υπόψη µία σωστή
Διπλωματική Εργασία. Εφαρμοσμένη Θεωρία Πινάκων
Πανεπιστήμιο Μακεδονίας Τ.Ε.Ι. Δυτικής Μακεδονίας Π.Μ.Σ Εφαρμοσμένης Πηροφορικής Διπωματική Εργασία Θέμα Εφαρμοσμένη Θεωρία Πινάκων Επιβέπον Καθηγητής Πετράκης Ανδρέας Μεταπτυχιακός Φοιτητής Τσαγκαρή Αθηνά
Οικονομετρία Ι. Ενότητα 2: Ανάλυση Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 2: Ανάλυση Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό
Παρεμβολή & πρόγνωση άγνωστης συνάρτησης μέσω σημειακής προσαρμογής
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2018-2019 Παρεμβολή & πρόγνωση άγνωστης συνάρτησης μέσω σημειακής προσαρμογής (Least squares collocation) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες
ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ
ΚΕΦΑΛΑΙΟ ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ Ως γνωστό δείγμα είναι ένα σύνολο παρατηρήσεων από ένα πληθυσμό. Αν ο πληθυσμός αυτός θεωρηθεί μονοδιάστατος τότε μπορεί να εκφρασθεί με τη συνάρτηση
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 015 Ανάλυση Διακύμανσης Η Ανάλυση Διακύμανσης είναι μία τεχνική που
Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)
Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ. Συσχέτιση (Correlation) - Copulas
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ Συσχέτιση (Correlation) - Copulas Σημασία της μέτρησης της συσχέτισης Έστω μία εταιρεία που είναι εκτεθειμένη σε δύο μεταβλητές της αγοράς. Πιθανή αύξηση των 2 μεταβλητών
ΣΤΟΙΧΕΙΑ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ
ΝΙΚΟΛΑΟΥ ΙΩ ΔΑΡΑ ΕΠΙΚΟΥΡΟΥ ΚΑΘΗΓΗΤΗ ΣΤΡΑΤΙΩΤΙΚΗΣ ΣΧΟΛΗΣ ΕΥΕΛΠΙΔΩΝ ΣΤΟΙΧΕΙΑ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ ος ΑΛΓΕΒΡΑ ΠΙΝΑΚΩΝ ΑΡΙΘΜΗΤΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ ΙΔΙΟΤΙΜΩΝ ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΑΛΓΕΒΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ
ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Αριάδνη Αργυράκη
ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Αριάδνη Αργυράκη ΣΤΑΔΙΑ ΕΚΤΕΛΕΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ ΓΕΩΧΗΜΙΚΩΝ ΕΡΕΥΝΩΝ 1.ΣΧΕΔΙΑΣΜΟΣ: - Καθορισμός στόχων έρευνας - Ιστορικό περιοχής 2 4.
Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2016-2017 Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής (Least squares collocation) Χριστόφορος
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ
ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ ΑΓΩΓΗ () Νυμφοδώρα Παπασιώπη Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας
ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ
Επώνυμο: Όνομα: ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ ΤΗΛ : 777 94 ΑΡΤΑΚΗΣ Κ. ΤΟΥΜΠΑ ΤΗΛ : 99 9494 www.syghrono.gr Τμήμα: Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ --7 ΕΝΔΕΙΚΤΙΚΕΣ
Στατιστική Συμπερασματολογία
Στατιστική Συμπερασματολογία Διαφάνειες 1 ου κεφαλαίου Βιβλίο: Κολυβά Μαχαίρα, Φ. & Χατζόπουλος Στ. Α. (2016). Μαθηματική Στατιστική, Έλεγχοι Υποθέσεων. [ηλεκτρ. βιβλ.] Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών
Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης
Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να
Στατιστική για Πολιτικούς Μηχανικούς Λυμένες ασκήσεις μέρους Β
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Στατιστική για Πολιτικούς Μηχανικούς Λυμένες ασκήσεις μέρους Β Κουγιουμτζής Δημήτρης Τμήμα Πολιτικών Μηχανικών Α.Π.Θ. Θεσσαλονίκη, Μάρτιος 4 Άδειες Χρήσης Το παρόν
ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός
ηµήτρης Τσίνογου ρ. Μηχανοόγος Μηχανικός ΤΕΙ Σερρών Τµήµα Μηχανοογίας Αγωγή Μόνιµη κατάσταση Κεφάαιο 3 ΤΕΙ Σερρών Τµήµα Μηχανοογίας Το επίπεδο τοίχωµα Τοιχοποιία σπιτιών (τοίχοι, παράθυρα, στέγες) Τοιχώµατα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
Γ. Πειραματισμός Βιομετρία
Γενικά Συσχέτιση και Συμμεταβολή Όταν σε ένα πείραμα παραλλάσουν ταυτόχρονα δύο μεταβλητές, τότε ενδιαφέρει να διερευνηθεί εάν και πως οι αλλαγές στη μία μεταβλητή σχετίζονται με τις αλλαγές στην άλλη.
Στατιστική περιγραφή τουπεδίουβαρύτητας
Στατιστική περιγραφή τουπεδίουβαρύτητας ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΤΟΥ ΠΕ ΙΟΥ ΒΑΡΥΤΗΤΑΣ Οι ανωµαλίες της βαρύτητας σε παγκόσµια κλίµακα θεωρούνται στατιστικά µεγέθη µε µέση τιµή µηδέν Τα στατιστικά χαρακτηριστικά
Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012
Ε_3.Μλ3Γ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Κυριακή 1 Απριλίου 01 ΕΚΦΩΝΗΣΕΙΣ Α1. Για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου
ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ
ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΟΝ ΕΝΤΟΠΙΣΜΟ ΓΕΩΧΗΜΙΚΗΣ ΑΝΩΜΑΛΙΑΣ Στατιστική ανάλυση του γεωχημικού δείγματος μας δίνει πληροφορίες για τον
ΥΔΡΟΛΟΓΙΑ. Ενότητα 9: Μέθοδοι εκτίμησης πλημμύρας σχεδιασμού- Ασκήσεις. Καθ. Αθανάσιος Λουκάς. Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων
Τμήμα Πολιτικών Μηχανικών Πανεπιστήμιο Θεσσαλίας ΥΔΡΟΛΟΓΙΑ Ενότητα 9: Μέθοδοι εκτίμησης πλημμύρας σχεδιασμού- Ασκήσεις Καθ. Αθανάσιος Λουκάς Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων Τμήμα
ΠΡΟΧΩΡΗΜΕΝΗ Υ ΡΟΛΟΓΙΑ. Κατακρηµνίσµατα και χωρική µεταβλητότητά τους
ΠΡΟΧΩΡΗΜΕΝΗ Υ ΡΟΛΟΓΙΑ Κατακρηµνίσµατα και χωρική µεταβλητότητά τους Νίκος Μαµάσης Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων Αθήνα 2006 ΙΑΡΘΡΩΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ: Κατακρηµνίσµατα και χωρική µεταβλητότητά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 5 Έστω για την σύγκριση δειγμάτων συλλέγουμε παρατηρήσεις Υ =,,, από
Είδη Μεταβλητών. κλίµακα µέτρησης
ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό
HMY 799 1: Αναγνώριση Συστημάτων
HMY 799 : Αναγνώριση Συστημάτων Διάλεξη Γραμμική παλινδρόμηση (Linear regression) Εμπειρική συνάρτηση μεταφοράς Ομαλοποίηση (smoothing) Y ( ) ( ) ω G ω = U ( ω) ω +Δ ω γ ω Δω = ω +Δω W ( ξ ω ) U ( ξ) G(
ΤΟ EWMA ΙΑΓΡΑΜΜΑ ΓΙΑ ΤΗΝ ΙΑΚΥΜΑΝΣΗ ΜΕ ΕΚΤΙΜΩΜΕΝΕΣ ΠΑΡΑΜΕΤΡΟΥΣ
Εηνικό Στατιστικό Ινστιτούτο Πρακτικά 7 ου Πανεηνίου Συνεδρίου Στατιστικής (4 σε. 9-98 ΤΟ EWA ΙΑΓΡΑΜΜΑ ΓΙΑ ΤΗΝ ΙΑΚΥΜΑΝΣΗ ΜΕ ΕΚΤΙΜΩΜΕΝΕΣ ΠΑΡΑΜΕΤΡΟΥΣ Π.Ε. Μαραβεάκης Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα
ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ για τη λήψη αποφάσεων
ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ για τη λήψη αποφάσεων ΠΡΑΓΜΑΤΙΚΟ ΚΟΣΤΟΣ ΣΥΛΛΟΓΗ ΠΛΗΡΟΦΟΡΙΩΝ ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ ΕΠΙΛΟΓΗ ΚΑΤΑΝΟΜΗΣ Υπολογισμός πιθανοτήτων και πρόβλεψη τιμών από τις τιμές των παραμέτρων και
Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ακαδημαϊκό έτος Λύσεις για την Προαιρετική Εργασία
Τεχνικές Εκτίμησης Υποογιστικών Συστημάτων Ακαδημαϊκό έτος 2016-17 Λύσεις για την Προαιρετική Εργασία Φεβρουάριος 2017 Πρόβημα 1 Δίνεται το παρακάτω μητρώο με τις πιθανότητες μετάβασης μιας Μαρκοβιανής
Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα
Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια
Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ
Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή,
ΚΕΦΑΛΑΙΟ 1. Μέσο μήκος ροής στα διαγράμματα ελέγχου τύπου Shewhart
ΚΕΦΑΛΑΙΟ Μέσο μήκος ροής στα διαγράμματα εέγχου τύπου Shwhar. Διάγραμμα εέγχου τύπου Shwhar Στις παραγωγικές διεργασίες μας ενδιαφέρει η παρακοούθηση της συμπεριφορά μιας κρίσιμης ποσότητας ενός μετρήσιμου
Χ. Εμμανουηλίδης, 1
Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,
ΥΔΡΟΛΟΓΙΑ. Ενότητα 4: Όμβριες Καμπύλες - Ασκήσεις. Καθ. Αθανάσιος Λουκάς. Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων
Τμήμα Πολιτικών Μηχανικών Πανεπιστήμιο Θεσσαλίας ΥΔΡΟΛΟΓΙΑ Ενότητα 4: Όμβριες Καμπύλες - Ασκήσεις Καθ. Αθανάσιος Λουκάς Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων Τμήμα Πολιτικών Μηχανικών
ΠΕΡΙΓΡΑΦΗ ΨΗΦΙΑΚΩΝ Ε ΟΜΕΝΩΝ ΚΑΙ ΜΕΘΟ ΟΛΟΓΙΑ ΕΠΙΛΥΣΗΣ ΤΗΣ ΑΣΚΗΣΗΣ 5
ΠΕΡΙΓΡΑΦΗ ΨΗΦΙΑΚΩΝ Ε ΟΜΕΝΩΝ ΚΑΙ ΜΕΘΟ ΟΛΟΓΙΑ ΕΠΙΛΥΣΗΣ ΤΗΣ ΑΣΚΗΣΗΣ 5 1. ΑΡΧΕΙΟ EXCEL 1.1 Ε ΟΜΕΝΑ Το αρχείο EXCEL ask5_data περιέχει φύλλα που περιλαµβάνουν τα δεδοµένα της άσκησης, υλοποίηση των ζητούµενων
Εφαρµογές γεωγραφικών επεξεργασιών
ΕΞΑΡΧΟΥ ΝΙΚΟΛΟΠΟΥΛΟΣ ΜΠΕΝΣΑΣΣΩΝ ΣΥΜΒΟΥΛΟΙ ΜΗΧΑΝΙΚΟΙ Ε.Π.Ε. ΛΑΖΑΡΙ ΗΣ & ΣΥΝΕΡΓΑΤΕΣ ΑΝΩΝΥΜΗ ΤΕΧΝΙΚΗ ΕΤΑΙΡΕΙΑ ΜΕΛΕΤΩΝ Α.Ε. ΓΕΩΘΕΣΙΑ ΣΥΜΒΟΥΛΟΙ ΑΝΑΠΤΥΞΗΣ Ε.Π.Ε. Εφαρµογές γεωγραφικών επεξεργασιών Α. Κουκουβίνος
προβλήµατος Το φίλτρο Kalman διαφέρει από τα συνηθισµένα προβλήµατα ΜΕΤ σε δύο χαρακτηριστικά: παραµέτρων αγνώστων
Φίλτρα Kalman Εξαγωγή των εξισώσεων τους µε βάση το κριτήριο ελαχιστοποίησης της Μεθόδου των Ελαχίστων Τετραγώνων. Αναλυτικές Μέθοδοι στη Γεωπληροφορική Μεταπτυχιακό Πρόγραµµα ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ ιατύπωση του
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Τυχαίες μεταβλητές: Βασικές έννοιες Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (σε αντίθεση με τις
1.4 Λύσεις αντιστρόφων προβλημάτων.
.4 Λύσεις αντιστρόφων προβλημάτων. Ο τρόπος παρουσίασης της λύσης ενός αντίστροφου προβλήµατος µπορεί να διαφέρει ανάλογα µε τη «φιλοσοφία» επίλυσης που ακολουθείται και τη δυνατότητα παροχής πρόσθετης
ΣΤΟΧΑΣΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΧΩΡΙΚΗΣ ΔΟΜΗΣ ΤΗΣ ΒΡΟΧΗΣ. Παρουσίαση διπλωματικής εργασίας Αθανάσιος Πασχάλης Επιβλέπων καθηγητής: Δημήτρης Κουτσογιάννης
ΣΤΟΧΑΣΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΧΩΡΙΚΗΣ ΔΟΜΗΣ ΤΗΣ ΒΡΟΧΗΣ Παρουσίαση διπλωματικής εργασίας Αθανάσιος Πασχάλης Επιβλέπων καθηγητής: Δημήτρης Κουτσογιάννης Διάρθρωση ρ της παρουσίασης Εισαγωγή Στατιστική επεξεργασία
ΤΕΧΝΙΚΗ ΥΔΡΟΛΟΓΙΑ Πιθανοτική προσέγγιση των υδρολογικών μεταβλητών
ΤΕΧΝΙΚΗ ΥΔΡΟΛΟΓΙΑ Πιθανοτική προσέγγιση των υδρολογικών μεταβλητών Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων ΣΥΛΛΟΓΙΣΜΟΣ-ΕΠΑΓΩΓΗ (DEDUCTION
ΥΔΡΟΛΟΓΙΑ. Ενότητα 3:Στατιστική και πιθανοτική ανάλυση υδρομετεωρολογικών μεταβλητών- Ασκήσεις. Καθ. Αθανάσιος Λουκάς
Τμήμα Πολιτικών Μηχανικών Πανεπιστήμιο Θεσσαλίας ΥΔΡΟΛΟΓΙΑ Ενότητα 3:Στατιστική και πιθανοτική ανάλυση υδρομετεωρολογικών μεταβλητών- Ασκήσεις Καθ. Αθανάσιος Λουκάς Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών
ΑΣΚΗΣΕΙΣ ΔΙΑΣΤΗΜΑΤΩΝ ΕΜΠΙΣΤΟΣΥΝΗΣ. Άσκηση 1. Βρείτε δ/μα εμπιστοσύνης για τη μέση τιμή μ κανονικού πληθυσμού όταν n=20,
ΜΕΜ64: Εφαρμοσμένη Στατιστική 1 ΑΣΚΗΣΕΙΣ ΔΙΑΣΤΗΜΑΤΩΝ ΕΜΠΙΣΤΟΣΥΝΗΣ Άσκηση 1. Βρείτε δ/μα εμπιστοσύνης για τη μέση τιμή μ κανονικού πληθυσμού όταν n=0, X = 7.5, σ = 16, α = 5%. Πως αλλάζει το διάστημα αν
Φίλτρα Kalman. Αναλυτικές μέθοδοι στη Γεωπληροφορική. ιατύπωση του βασικού προβλήματος. προβλήματος. μοντέλο. Πρωτεύων μοντέλο
Φίλτρα Kalman Εξαγωγή των εξισώσεων τους με βάση το κριτήριο ελαχιστοποίησης της Μεθόδου των Ελαχίστων Τετραγώνων. Αναλυτικές Μέθοδοι στη Γεωπληροφορική Μεταπτυχιακό Πρόγραμμα ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ ιατύπωση του
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.outras@e.aegea.gr Τηλ: 7035468 Μέθοδος Υπολογισμού
Απλή Παλινδρόμηση και Συσχέτιση
Απλή Παλινδρόμηση και Συσχέτιση Πωλήσεις, Δαπάνες Διαφήμισης και Αριθμός Πωλητών Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) 98 050 6 3 989
Βρέθηκε ότι το πηλίκο φ/λ = 68,5905 J K 1.
Έστω ποσότητα He σε αεροστεγές δοχείο σταθερού όγκου V. Σε μια σειρά έξι πειραμάτων προσδιορίζουμε την μεταβοή της εντροπίας S τεική S ική, η οποία προκαείται από την μεταβοή της θερμοκρασίας του δοχείου
X = = 81 9 = 9
Πιθανότητες και Αρχές Στατιστικής (11η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 35 Σύνοψη
Εκτιμήτριες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Εκτιμήτριες. μέθοδος ροπών και μέγιστης πιθανοφάνειας
Εκτιμήτριες Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Εκτιμήτριες Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α μέθοδος ροπών και μέγιστης πιθανοφάνειας κριτήρια αμεροληψίας και συνέπειας 9 άλυτες ασκήσεις 6 9 7.
Παρεµβολή και Προσέγγιση Συναρτήσεων
Κεφάλαιο 4 Παρεµβολή και Προσέγγιση Συναρτήσεων 41 Παρεµβολή µε πολυώνυµο Lagrage Εστω ότι γνωρίζουµε τις τιµές µιας συνάρτησης f (x), f 0, f 1,, f ν σε σηµεία x 0, x 1,, x ν, και Ϲητάµε να υπολογίσουµε
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
Π E Ρ IEXOMENA Πρόλογος... xiii ΜΕΡΟΣ ΠΡΩΤΟ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΣΤΑΤΙΣΤΙΚΩΝ Ε ΟΜΕΝΩΝ 1.1 Εισαγωγή... 3 1.2 Ορισµός και αντικείµενο της στατιστικής... 3
Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40]
Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική 8// (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [4] Τα τελευταία χρόνια παρατηρείται συνεχώς αυξανόμενο ενδιαφέρον για τη μελέτη της συγκέντρωσης