ΕΞΙΣΩΣΕΙΣ. Α. Πρωτοβάθμιεσ Εξιςώςεισ. Β. Διερεφνηςη Εξιςώςεων. 1x είναι αδφνατθ. x 1 x 1. Άλγεβρα Α Λυκείου
|
|
- Μνημοσύνη Ζωγράφου
- 5 χρόνια πριν
- Προβολές:
Transcript
1 ΕΞΙΣΩΣΕΙΣ Α. Πρωτοβάθμιεσ Εξιςώςεισ. 1. Να λυκεί θ εξίςωςθ (x - 4) (x +5) x -5 5(x +1) - - = - - x 4 6. Να λυκεί θ εξίςωςθ x (x+1)+x(x+1)+x+1=0. Να λυκεί θ εξίςωςθ x(x -4)-x +x =0 4. Να λυκεί θ εξίςωςθ (x+1) -(x-1) =0 5. Να λυκεί θ εξίςωςθ (x-) -(-x)(x -9)=0 6. Να λυκεί θ εξίςωςθ (x -1)(x-1)=( x+1)(x-1) 7. Να λυκεί θ εξίςωςθ x -x -4x+8=0 8. Να λυκεί θ εξίςωςθ x -x -(x-1)(x-)=0 9. Να λυκεί θ εξίςωςθ x(x-1) =x -x Να λυκεί θ εξίςωςθ 1 x x 1 x Να λυκεί θ εξίςωςθ x 1 x x x 1. Να λυκεί θ εξίςωςθ x x 1 x 5x 6 x 4x x 1. Να επιλφςετε τουσ παρακάτω τφπουσ ωσ προσ τθν μεταβλθτι που ηθτείται: i. v=v 0 +at ωσ προσ t ii. v R T, ωσ προσ R. iii. α ν=α 1 +(ν-1)ω, ωσ προσ ω iv. a v v0 t t, ωσ προσ v v. V=V 0 (1+ακ), ωσ προσ κ vi. Ε=πρ(λ+ρ), ωσ προσ λ 0 vii , ωσ προσ γ viii. Β. Διερεφνηςη Εξιςώςεων. ωσ προσ α 1 1 ix. S v0t gt, ωσ προσ g. 1. Να βρείτε τα λ, μ ώςτε θ εξίςωςθ: (λ -1)χ=λ+μ- να είναι αόριςτθ.. Αν θ εξίςωςθ (λ -λ)χ=λ -9 είναι αδφνατθ, να δείξετε ότι θ εξίςωςθ (λ+1)χ=λ+5 ζχει μοναδικι λφςθ.. Αν οι εξιςώςεισ (λ - ) x = λ + και λ x - λ = 4x + 5 είναι ςυγχρόνωσ αδφνατεσ, να βρεκεί θ τιμι του λ. 4. Να εξετάςετε για ποιεσ τιμζσ των α,β θ εξίςωςθ α(χ-4)=(χ+β) i. Ζχει μοναδικι λφςθ ii. Αλθκεφει για κάκε χ. iii. Είναι αδφνατθ. 5. Δίνεται ότι θ εξίςωςθ α (χ-1)-11χ-4=5(χ-α) είναι αδφνατθ. Να δείξετε ότι θ εξίςωςθ α(χ-7)-α =-4(χ+1) είναι αόριςτθ. 6. Να λυκεί θ εξίςωςθ: μ (χ-)+μ(χ-1)=(μ +)(χ-1) Να λυκεί θ εξίςωςθ: μχ-(μ-) =(χ-1)+μ. 8. Να λφςετε για τισ διάφορεσ τιμζσ των λ, μ τθν εξίςωςθ: (1-χ)λ=λ χ+μ-1 9. Να εξετάςετε για ποιεσ τιμζσ των α,β θ εξίςωςθ α(χ-1)=(χ-β) i. Ζχει μοναδικι λφςθ ii. Αλθκεφει για κάκε χ. iii. Είναι αδφνατθ. 10. Αν θ εξίςωςθ x 1 είναι αόριςτθ, να δείξετε ότι θ εξίςωςθ: x είναι αδφνατθ. Κωνςταντίνοσ Τςιμάσ - Μαθηματικόσ Σελίδα 1
2 11. Αν θ εξίςωςθ 9 x 7 είναι ταυτότθτα, να βρείτε το μ ώςτε θ εξίςωςθ: 4x να είναι αδφνατθ. 1. Αν οι εξιςώςεισ (λ - ) x = λ + και λ x - λ = 4x + 5 είναι ςυγχρόνωσ αδφνατεσ, τότε να βρεκεί θ τιμι του λ. Γ. Εξιςώςεισ με Απόλυτα. 1. Να λυκοφν οι εξιςώςεισ: α) x 1 = x β) x = x 1 γ) - x =0 δ) x +5=0. Να λυκοφν οι εξιςώςεισ: x x 5 4 α) x 5 7. Να λυκοφν οι εξιςώςεισ: β) x x 4 x x 6 x x x x 1 4 α) x 4 β) x 5 γ) x x 1 δ) x 1 x 1 ε) 4 x x ςτ) x 1 4. Να λυκοφν οι εξιςώςεισ: x x 10 x 1 1 6x α) x 1 β) 1 1 x Να λυκοφν οι εξιςώςεισ: α) x x β) x 1 5x (Προςοχι ςτον περιοριςμό για το β μζλοσ) 6. Να λυκοφν οι εξιςώςεισ: α) x x x 1 0 β) x 1 x 5 x 0 Δ. Η εξίςωςη x ν =α.. ΕΞΙΣΩΣΗ x ν =a 1. x ν =α Αν α>0 ν περιηηός 1 Λύζη x= π.χ x =8 x 8. x ν =α Αν α>0 ν άρηιος Λύζεις x= ή x= - π.χ x 4 =16 4 x 16 ή x= x ν =α Αν α<0 ν άρηιος Αδύναηη π.χ x 4 =-16 Αν α<0 4. x ν =α 1 Λύζη ν περιηηός x=- π.χ x =-8 1. Να λυκοφν οι εξιςώςεισ: i) x +81=0 ii) x 7 +54x 4 =0 iii) (x-1) 4 -=0 iv) 4x+x 7 =0 x 8 Κωνςταντίνοσ Τςιμάσ - Μαθηματικόσ Σελίδα
3 Ε. Εξιςώςεισ ου Βαθμοφ. Επωτήσειρ τος τύπος «σωστό-λάθορ» 1. Η εμίζωζε αx + γ = 0 έρεη δηαθξίλνπζα πάληα αξλεηηθή. Σ Λ. Αλ α, γ εηεξόζεκνη αξηζκνί, ε εμίζωζε αx + βx + γ = 0 έρεη δύν άληζεο ξίδεο Σ Λ. Η εμίζωζε αx + βx + γ = 0, α 0 έρεη κία ξίδα ίζε κε ην κεδέλ, όηαλ ε δηαθξίλνπζά ηεο είλαη ίζε κε ην κεδέλ. Σ Λ 4. Η εμίζωζε αx + βx - γ = 0 έρεη δύν ξίδεο άληζεο αλ α > 0 θαη γ > 0. Σ Λ 5. Αλ ε εμίζωζε x - ιx + 1 = 0, ι R* έρεη δύν ξίδεο άληζεο, απηέο είλαη αληίζηξνθεο. Σ Λ 6. Αλ ε εμίζωζε αx + βx + γ = 0, α 0 έρεη δύν ξίδεο αληίζεηεο, ηόηε είλαη β = 0. Σ Λ 7. Υπάξρνπλ πξαγκαηηθνί αξηζκνί α, β ηέηνηνη ώζηε α + β = 1 θαη α.β =. Σ Λ 8. Όηαλ ε εμίζωζε x + βx + γ = 0 έρεη δύν ξίδεο εηεξόζεκεο, ην γ είλαη αξλεηηθόο αξηζκόο. Σ Λ 9. Όηαλ ε εμίζωζε αx + βx + γ = 0, α < 0 έρεη δύν ξίδεο εηεξόζεκεο, ην γ είλαη αξλεηηθόο αξηζκόο. Σ Λ Επωτήσειρ πολλαπλήρ επιλογήρ 1. Αλ ε εμίζωζε x - 4x + α = 0 έρεη γηα δηπιή ξίδα ην, ηόηε ν α ηζνύηαη κε: Α. 1 Β. 1 Γ. 4 Γ. - 4 Δ. 0. Αλ ε εμίζωζε x - x - θ = 0 έρεη ξίδεο άληζεο, γηα ηνλ πξαγκαηηθό αξηζκό θ ηζρύεη: Α. θ < - 1 Β. θ - 1 Γ. θ < 0 Γ. θ > - 1 Δ. θ νπνηνζδήπνηε πξαγκαηηθόο αξηζκόο. Όηαλ νη α, γ είλαη εηεξόζεκνη ε εμίζωζε αx + βx + γ = 0, α 0 έρεη: Α. δύν ξίδεο άληζεο Β. δηπιή ξίδα ζεηηθή Γ. δηπιή ξίδα αξλεηηθή Γ. θακία ξίδα Δ. δελ κπνξνύκε λα απαληήζνπκε 4. Αλ νη ξίδεο ηεο εμίζωζεο 5x + ( - ι) x - 1 = 0 είλαη αληίζεηεο ηόηε ν πξαγκαηηθόο αξηζκόο ι είλαη: Α. αξλεηηθόο αξηζκόο Β. ι = 0 Γ. ι = Γ. ι = - Δ. ι = 9 5. Αλ νη ξίδεο ηεο εμίζωζεο x - αx + α = 0, α 0 είλαη αληίζηξνθεο ηόηε ν α είλαη: Α. νπνηνζδήπνηε πξαγκαηηθόο αξηζκόο 0 Β. νπνηνζδήπνηε αξλεηηθόο αξηζκόο Γ. α = 1 ή α = - 1 Γ. α = 9 ή α = - 9 Δ. α = 5 ή α = Αλ α + β = 5 θαη αβ = 6 ηόηε νη αξηζκνί α, β είλαη ξίδεο ηεο εμίζωζεο: Α. x + 5x + 6 = 0 Β. x - 5x + 6 = 0 Γ. x - 5x - 6 = 0 Γ. x + 6x - 5 = 0 Δ. x - 6x + 5 = 0 7. Σηελ εξώηεζε «ππάξρνπλ πξαγκαηηθνί αξηζκνί α, β ώζηε α + β = 1 θαη αβ = 6» δίλνληαη από ηνπο καζεηέο νη εμήο απαληήζεηο: Α. Ναη Β. Όρη Γ. Ναη θαη είλαη ξίδεο ηεο εμίζωζεο x - x + 6 = 0 Γ. Ναη θαη είλαη ξίδεο ηεο εμίζωζεο x + x - 6 = 0 Δ. Ναη θαη είλαη ξίδεο ηεο εμίζωζεο x - x - 6 = 0 Πνηα είλαη ε ζωζηή; Γηθαηνινγήζηε ηελ απάληεζή ζαο. 8. Αλ x 1, x είλαη νη ξίδεο ηεο εμίζωζεο x - 5x + = 0 ηόηε ε παξάζηαζε x x ηζνύηαη κε: Α. 5 Β. 9 Γ. 19 Γ. 15 Δ Αλ x 1, x είλαη ξίδεο ηεο εμίζωζεο x + 7x + = 0 ηόηε ε παξάζηαζε θx 1 + θx θ 0 ηζνύηαη κε: Α. 7 Β. 7 Γ. 7θ Γ. - 7θ Δ. 7θ ΣΤ.. δελ κπνξνύκε λα απαληήζνπκε Επωτήσειρ Ανάπτςξηρ 1. Να δεηρζεί όηη ε εμίζωζε x + (α + β + γ) x + (αβ + αγ + βγ) = 0 έρεη κηα δηπιή ξίδα, αλ θαη κόλνλ αλ α = β = γ.. Να δεηρζεί όηη: αλ ε εμίζωζε (α - β) x - 4αx + 4β = 0 έρεη δηπιή ξίδα, ηόηε ε εμίζωζε (α + β ) x - x + (α - β) = 0 έρεη δύν ξίδεο άληζεο. 1 Κωνςταντίνοσ Τςιμάσ - Μαθηματικόσ Σελίδα
4 . Γίλεηαη ε εμίζωζε x + x - κ + = 0. Να βξεζεί γηα πνηεο ηηκέο ηνπ κ: α) απηή έρεη δύν δηαθνξεηηθέο ξίδεο β) απηή έρεη κηα δηπιή ξίδα γ) δελ έρεη ξίδεο. 4. Αλ ξ 1, ξ (ξ 1 ξ ) είλαη ξίδεο ηεο εμίζωζεο αx + βx + γ = 0, α 0 λα βξεζνύλ νη παξαζηάζεηο: i) ρ, ii) ρ 1 ρ ρ 1 (Υπόδεημε: ) 5. Να βξείηε όιεο ηηο εμηζώζεηο β βαζκνύ πνπ ην άζξνηζκα ηωλ ξηδώλ ηνπο είλαη ίζν κε ην γηλόκελό ηνπο. 6. Γίλεηαη ε εμίζωζε (x - 1) - ι (x - ) = 0 πνπ έρεη ξίδεο p 1 θαη p. Να απνδεηρζεί όηη ε παξάζηαζε (x 1 - ) (x - ) είλαη αλεμάξηεηε ηνπ ι. 7. Η εμίζωζε (α - β ) x + β = 0 όπνπ α, β πξαγκαηηθέο παξάκεηξνη κε 0 < α < β έρεη ιύζε; Αλ όρη, γηαηί; Αλ λαη, πνηα; 8. Γίλεηαη ε εμίζωζε (ι - ι + ) x + (ι - ) x + = 0. Να βξεζεί ν πξαγκαηηθόο αξηζκόο ι ώζηε ε παξαπάλω εμίζωζε: α) λα έρεη κία κόλν ξίδα β) λα έρεη δηπιή ξίδα 9. Να βξεζνύλ νη ηηκέο ηνπ ι R γηα λα είλαη νη ξίδεο ηεο εμίζωζεο x - x + (ι - 7) = 0 i) ζεηηθέο, ii) εηεξόζεκεο, iii) ίζεο 10. Αλ νη ξίδεο ηεο εμίζωζεο x - (5ι - 6κ) x - 1 = 0 είλαη αληίζεηεο θαη νη ξίδεο ηεο εμίζωζεο ιx + 1x - ικ + ι = 0 κε ι 0 είλαη αληίζηξνθεο ηόηε: α) λα βξεζνύλ νη ηηκέο ηωλ πξαγκαηηθώλ παξακέηξωλ ι θαη κ β) λα ιπζνύλ νη εμηζώζεηο γηα ηηο ηηκέο ηωλ ι θαη κ πνπ βξήθαηε. 11..Να δείμεηε όηη νη εμηζώζεηο: ρ +5ρ+α=0 θαη ρ +αρ+α +4α-5=0 έρνπλ ην ίδην πιήζνο ιύζεωλ. 1. Να βξεζεί γηα ηηο δηάθνξεο ηηκέο ηνπ ι,ην πιήζνο ηωλ ξηδώλ ηεο εμίζωζεο:(1-ι)ρ +(+ι)ρ-ι=0 1. Αλ ε εμίζωζε ρ +ρ+ι+1=0 έρεη δηπιή ξίδα,λα βξείηε:η)τν ι, ηη)τελ δηπιή ξίδα. 14. Γηα πνηεο ηηκέο ηνπ α ε εμίζωζε (+α)ρ +6αρ+4α+1=0 έρεη δύν ξίδεο ίζεο; 15. Γηα πνηεο ηηκέο ηωλ α,β ε εμίζωζε ρ +(α+β)ρ+4=0 έρεη δηπιή ξίδα ε νπνία επαιεζεύεη θαη ηελ βρ -βρ+ι=0 16..Γηα πνηεο ηηκέο ηνπ ι ε εμίζωζε ρ +(ι+1)ρ+ι=0 έρεη δύν ξίδεο από ηηο νπνίεο ε κία είλαη ηξηπιάζηα ηεο άιιεο. 17. Αλ ε εμίζωζε x -(α-β)x- 1 =0 έρεη δηπιή ξίδα λα βξείηε ηνπο α θαη β. 18. Αλ ε εμίζωζε ι x +(5ι-)x+ι+=0 έρεη ξίδα ηνλ αξηζκό -1 λα βξείηε ην ι θαη κεηά λα δείμεηε όηη ην -1 είλαη δηπιή ξίδα ηεο εμίζωζεο. Κωνςταντίνοσ Τςιμάσ - Μαθηματικόσ Σελίδα 4
5 19. Γίλεηαη ε εμίζωζε (ι-1)x -x-1=0 (1) α. Να βξείηε ην ι ώζηε ε εμίζωζε (1) i. Να είλαη δεπηέξνπ βαζκνύ. ii. Να έρεη δύν ξίδεο πξαγκαηηθέο θαη άληζεο. β. Αλ x 1,x νη άληζεο ξίδεο ηεο (1) λα βξείηε ην ι ώζηε: i. x1x x1x = - 1 ii. x 1+x <1. 0. Γίλεηαη ε εμίζωζε x -x+ 1 =0 (1) i. Να βξείηε ηηο ηηκέο ηνπ ι ώζηε ε εμίζωζε (1) λα έρεη ξίδεο πξαγκαηηθέο. ii. Αλ x 1,x νη ξίδεο ηεο (1) θαη ηζρύεη : x 1=x λα βξείηε ηηο ξίδεο x 1 θαη x θαη ην ι. 1. Γίλεηαη ε εμίζωζε x -16x+κ-1=0 θαη γλωξίδνπκε όηη κεηαμύ ηωλ ξηδώλ ηεο ηζρύεη ε ζρέζε x 1-x =10. λα βξεζνύλ νη ξίδεο θαη ν κ. ΣΤ. Εξιςώςεισ που ανάγονται ςε εξιςώςεισ ου Βαθμοφ. ΑΣΚΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ. Αλ ε εμίζωζε (x - ) λ + = ι x έρεη ξίδα ηνλ αξηζκό, λα ππνινγηζηεί ν ι.. Να ιπζεί ε εμίζωζε: x 4 - (α + 1) x + α = 0 4. Να ιπζεί ε εμίζωζε (x-) + x -6=0 5. Γίλεηαη ε εμίζωζε α x β = 9 + β, όπνπ α, β πξαγκαηηθέο παξάκεηξνη θαη α 0. Υπνινγίζηε ην β όηαλ ε εμίζωζε έρεη ξίδα ηνλ αξηζκό Να ιπζεί ε εμίζωζε: x - x = Να ιπζεί ε εμίζωζε: x x 8. Να ιπζνύλ νη εμηζώζεηο : i. x 4 + x - 1= 0 ii. x 4 - x + 1= 0 9. Να ιπζνύλ νη εμηζώζεηο: α) x 4 - α x - 4α = 0 β) γ 4 x 4 + (α γ - β γ ) x - α β = 0 Κωνςταντίνοσ Τςιμάσ - Μαθηματικόσ Σελίδα 5
ΕΞΙΣΩΣΕΙΣ. (iv) (ii) (ii) (ii) 5. Γηα ηηο δηάθνξεο ηηκέο ηνπ ι λα ιπζνύλ νη εμηζώζεηο : x 6 3 9x
Να ιπζνύλ νη εμηζώζεηο : ( ) 4 ( ) 7 ( )( ) (ii) 5 7 9 4 (iv) 5 6 4 9 6 0 9 6 8 Να ιπζνύλ νη εμηζώζεηο : 7 5 8 (ii) 4 6 8 5 8 ( 6) 4 4 5 (iv) 7 5 4 7 0 7 ( ) 4 8 4 5 8 Να ιπζνύλ νη εμηζώζεηο : ( ) 0 5
Διαβάστε περισσότεραΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 1. Να ιπζνύλ ηα ζπζηήκαηα. 1 0,3x 0,1y x 3 3x 4y 2 4x 2y ( x 1) 6( y 1) (i) (ii)
. Να ιπζνύλ ηα ζπζηήκαηα.,, 6 4 4 4 5( ) 6( ). Να ιπζνύλ ηα ζπζηήκαηα.,,,6 7. Να ιπζνύλ ηα ζπζηήκαηα. 5 ( )( ) ( ) 4. Να ιπζνύλ ηα ζπζηήκαηα. 5 4 6 7 4. 5. Να ιπζνύλ ηα ζπζηήκαηα. 59 ( )( ) ()( 5) 7 6.
Διαβάστε περισσότεραΘΔΜΑ 1 ο Μονάδες 5,10,10
ΟΝΟΜΑΣΔΠΩΝΤΜΟ ΗΜΔΡΟΜΗΝΙΑ ΘΔΜΑ 1 ο Μονάδες 5,1,1 ΓΙΑΓΩΝΙΜΑ 1 ου ΜΔΡΟΤ ΣΗ ΑΝΑΛΤΗ Α Γώζηε ηνλ νξηζκό ηεο αληίζηξνθεο ζπλάξηεζεο Β Γείμηε όηη αλ κηα ζπλάξηεζε είλαη αληηζηξέςηκε ηόηε νη γξαθηθέο παξαζηάζεηο
Διαβάστε περισσότεραiii. iv. γηα ηελ νπνία ηζρύνπλ: f (1) 2 θαη
ΔΠΑΝΑΛΗΠΣΙΚΑ ΘΔΜΑΣΑ ΣΟ ΓΙΑΦΟΡΙΚΟ ΛΟΓΙΜΟ Μάρτιος 0 ΘΔΜΑ Να ππνινγίζεηε ηα όξηα: i ii lim 0 0 lim iii iv lim e 0 lim e 0 ΘΔΜΑ Γίλεηαη ε άξηηα ζπλάξηεζε '( ) ( ) γηα θάζε 0 * : R R γηα ηελ νπνία ηζρύνπλ:
Διαβάστε περισσότεραΤίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης
Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ Ενότητα: Εισαγωγή στη C++ Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Τμήμα: Οικονομικών Επιστημών Αριθμοί κινητής υποδιαστολής (float) στη C++ (1)
Διαβάστε περισσότεραΔΠΑΝΑΛΗΠΣΙΚΑ ΘΔΜΑΣΑ ΚΑΣΑΛΛΗΛΑ ΓΙΑ 3 Ο Η 4 Ο ΘΔΜΑ ΣΙ ΠΡΟΑΓΩΓΙΚΔ ΔΞΔΣΑΔΙ Α ΛΤΚΔΙΟΤ
ΔΠΑΝΑΛΗΠΣΙΚΑ ΘΔΜΑΣΑ ΚΑΣΑΛΛΗΛΑ ΓΙΑ 3 Ο Η 4 Ο ΘΔΜΑ ΣΙ ΠΡΟΑΓΩΓΙΚΔ ΔΞΔΣΑΔΙ Α ΛΤΚΔΙΟΤ ΘΔΜΑ 1 0. Έζησ Α, Β ελδερόκελα ελόο δεηγκαηηθνύ ρώξνπ Ω ώζηε λα ηζρύνπλ: (i) Ζ πηζαλόηεηα λα πξαγκαηνπνηεζεί έλα ηνπιάρηζηνλ
Διαβάστε περισσότεραΚΔΦ. 2.4 ΡΗΕΔ ΠΡΑΓΜΑΣΗΚΩΝ ΑΡΗΘΜΩΝ
ΚΔΦ.. ΡΗΕΔ ΠΡΑΓΜΑΣΗΚΩΝ ΑΡΗΘΜΩΝ Οξηζκόο ηεηξαγσληθήο ξίδαο: Αλ 0 ηόηε νλνκάδνπκε ηεηξαγσληθή ξίδα ηνπ ηελ κε αξλεηηθή ιύζε ηεο εμίζσζεο:. Γειαδή ηεηξαγσληθή ξίδα ηνπ 0 ιέγεηαη ν αξηζκόο 0 πνπ όηαλ πςσζεί
Διαβάστε περισσότεραΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 27 ΜΑΪΟΥ 2013
ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 7 ΜΑΪΟΥ 13 ΘΔΜΑ Α : (Α1) Σρνιηθό βηβιίν ζειίδα 33-335 (Α) Σρνιηθό βηβιίν ζειίδα 6 (Α3) Σρνιηθό βηβιίν ζειίδα (Α) α) Λάζνο β) Σωζηό γ) Σωζηό
Διαβάστε περισσότερα«Τεηπάδιο Επανάληψηρ» ΑΛΓΕΒΡΑ Ά ΛΥΚΕΙΟΥ
. Άλγεβπα Ά Λςκείος Θεωπία Αζκήζειρ «Τεηπάδιο Επανάληψηρ» ΑΛΓΕΒΡΑ Ά ΛΥΚΕΙΟΥ Σςνοπηική θεωπία Επωηήζειρ θεωπίαρ Θέμαηα Εξεηάζεων Σςνδςαζηικά θέμαηα Θέμαηα ηος ΟΕΦΕ 006 010.. (Α) ΜΕΡΟ: ΕΡΩΣΗΕΙ ΘΕΩΡΙΑ ΘΕΜΑΣΑ
Διαβάστε περισσότεραΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ. Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη Εήηημα 1 ο :
ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ Ον/μο:.. Γ Λσκείοσ Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη. 11-1-11 Εήηημα 1 ο : Α. Γηα ηελ ζπλάξηεζε f, λα βξείηε ην δηάζηεκα ζην νπνίν είλαη παξαγσγίζηκε θαζώο θαη
Διαβάστε περισσότεραΑΛΥΤΔΣ ΑΣΚΗΣΔΙΣ ΜΙΓΑΓΙΚΟΙ ΟΜΑΓΑ Α
ΑΛΥΤΔΣ ΑΣΚΗΣΔΙΣ ΜΙΓΑΓΙΚΟΙ ΟΜΑΓΑ Α Ππάξειρ μιγαδικών ). Γίλνληαη νη κηγαδηθνί αξηζκνί = x x 9 θαη w = y, x, y R. α). Να βξείηε ηνπο x, y ώζηε = w. β) Να βξείηε ηνλ. ). Γίλεηαη ν κηγαδηθόο = 6 (3 4 ) x 3
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη: Εσθύγραμμη Κίνηζη
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Είμαζηε ηυχεροί που είμαζηε δάζκαλοι Ον/μο:.. A Λσκείοσ Ύλη: Εσθύγραμμη Κίνηζη 8-11-2015 Θέμα 1 ο : 1. Η εμίζωζε θίλεζεο ελόο θηλεηνύ πνπ θηλείηαη επζύγξακκα είλαη ε x = 5t. Πνηα
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ(1) ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ
ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ() ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ ΘΔΜΑ : Αλ ηζρύεη 3 3, λα δείμεηε όηη ηα ζεκεία Μ, Ν ηαπηίδνληαη. ΘΔΜΑ : Α Β Μ Γ Σην παξαπάλσ ζρήκα είλαη 3. α) Γείμηε όηη
Διαβάστε περισσότεραΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα 11 Ηουνίου 2018 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις)
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα Ηουνίου 08 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α Α. Απόδεημε ζεωξήκαηνο ζει. 99 ζρνιηθνύ βηβιίνπ. Α. α.
Διαβάστε περισσότεραΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..
ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου έλαξμεο 09.30 ιήμεο 09.45 Σην παξαθάησ ζρήκα θαίλεηαη ηκήκα ελόο πνιενδνκηθνύ ζρεδίνπ κηαο πόιεο. Οη ζθηαζκέλεο
Διαβάστε περισσότεραΦςζική Πποζαναηολιζμού Γ Λςκείος. Αζκήζειρ Ταλανηώζειρ 1 ο Φςλλάδιο
Φςζική Πποζαναηολιζμού Γ Λςκείος Αζκήζειρ Ταλανηώζειρ 1 ο Φςλλάδιο Επιμέλεια: Αγκανάκηρ Α. Παναγιώηηρ Επωηήζειρ Σωζηό- Λάθορ Να χαπακηηπίζεηε ηιρ παπακάηω πποηάζειρ ωρ ζωζηέρ ή λάθορ: 1. Η ηαιάλησζε είλαη
Διαβάστε περισσότεραx-1 x (x-1) x 5x 2. Να απινπνηεζνύλ ηα θιάζκαηα, έηζη ώζηε λα κελ ππάξρνπλ ξηδηθά ζηνπο 22, 55, 15, 42, 93, 10 5, 12
ΑΚΖΔΗ ΤΜΝΑΗΟΤ - ΚΤΚΛΟ ΠΡΩΣΟ - - ηα πνηεο ηηκέο ηνπ ηα παξαθάησ θιάζκαηα δελ νξίδνληαη ; (Τπόδεημε : έλα θιάζκα νξίδεηαη αλ ν παξνλνκαζηήο είλαη δηάθνξνο ηνπ κεδελόο) - (-) - (-) - Να απινπνηεζνύλ ηα θιάζκαηα
Διαβάστε περισσότεραΓΙΑΙΡΔΣΟΣΗΣΑ. Οπιζμόρ 1: Έζηω d,n. Λέκε όηη ν d δηαηξεί ηνλ n (ζπκβνιηζκόο: dn) αλ. ππάξρεη c ηέηνην ώζηε n. Θεώπημα 2: Γηα d,n,m,α,b ηζρύνπλ:
ΓΙΑΙΡΔΣΟΣΗΣΑ Οπιζμόρ 1: Έζηω,. Λέκε όηη ν δηαηξεί ηνλ (ζπκβνιηζκόο: ) αλ ππάξρεη c ηέηνην ώζηε c. Θεώπημα : Γηα,,m,α,b ηζρύνπλ: i), (άξα ) ii) 1, 1 iii) 0 iv) 0 0 v) m m m vi) α bm vii) α (άξα ) viii)
Διαβάστε περισσότεραΓΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 133. Ύλη: Σσναρηήζεις-Σηαηιζηική Θέμα 1
ΓΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 1 Ον/μο:.. Γ Λσκείοσ Ύλη: Σσναρηήζεις-Σηαηιζηική Γεν. Παιδείας 9-1-1 Θέμα 1 Α. Αο ππνζέζνπκε όηη x 1,x,...,x k είλαη νη ηηκέο κηαο κεηαβιεηήο x πνπ αθνξά ηα άηνκα ελόο δείγκαηνο
Διαβάστε περισσότεραH ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ
H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ Φξεζηκόηεηα καζεκαηηθώλ Αξρή θαηακέηξεζεο Όζα έδσζαλ νη Έιιελεο... Τξίγσλνη αξηζκνί Τεηξάγσλνη αξηζκνί Δπηκήθεηο αξηζκνί Πξώηνη αξηζκνί Αξηζκνί κε μερσξηζηέο ηδηόηεηεο Γίδπκνη πξώηνη
Διαβάστε περισσότεραΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ Α ΛΤΚΔΙΟΤ Ζμεπομηνία: 18/12/10 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤ ΕΙ 1. Δίλεηαη ην πνιπώλπκν Αλ θαη., λα βξείηε ην ηειεπηαίν ςεθίν ηνπ αξηζκνύ έρνπκε:
Διαβάστε περισσότεραΓ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano) ΘΔΜΑ Α
Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano). Να δηαηππώζεηε ην Θ.Bolzano. 5 ΘΔΜΑ Α μονάδες A. Να απνδείμεηε όηη γηα θάζε πνιπωλπκηθή
Διαβάστε περισσότεραΚΕΦ. 2.3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ
ΚΕΦ..3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ Οπιζμόρ απόλςηηρ ηιμήρ: Σηνλ άμνλα ησλ πξαγκαηηθώλ αξηζκώλ ζεσξνύκε έλαλ αξηζκό α πνπ ζπκβνιίδεηαη κε ην ζεκείν Α. Η απόζηαζε ηνπ ζεκείνπ Α από ηελ αξρή Ο, δειαδή
Διαβάστε περισσότεραΑζκήζεις ζτ.βιβλίοσ ζελίδας 13 14
.1.10 ζκήζεις ζτ.βιβλίοσ ζελίδας 13 14 Ερωηήζεις Καηανόηζης 1. ύν δηαθνξεηηθέο επζείεο κπνξεί λα έρνπλ θαλέλα θνηλό ζεκείν Έλα θνηλό ζεκείν i ύν θνηλά ζεκεία iλ) Άπεηξα θνηλά ζεκεία ηηηνινγήζηε ηελ απάληεζε
Διαβάστε περισσότεραx x x x tan(2 x) x 2 2x x 1
ΘΕΡΙΝΟ ΣΜΗΜΑ ΜΑΘΗΜΑΣΙΚΑ Ι ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΚΗΕΙ ΜΕΡΟ Ι 1. Να γίλνπλ νη γξαθηθέο παξαζηάζεηο ησλ παξαθάησ ζπλαξηήζεσλ. t ( i) e ( ii) ln( ) ( iii). Να βξεζεί ην Π.Ο., ν ηύπνο ηεο αλίζηξνθεο θαη ην Π.Τ. ησλ
Διαβάστε περισσότεραΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..
ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου έλαξμεο 09.30 ιήμεο 09.45 Σην παξαθάησ ζρήκα θαίλεηαη ηκήκα ελόο πνιενδνκηθνύ ζρεδίνπ κηαο πόιεο. Οη ζθηαζκέλεο
Διαβάστε περισσότεραΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙΜΟ Α ΛΤΚΔΙΟΤ. Ημεπομηνία: 10/12/11 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΔΙΝΟΜΔΝΔ ΛΤΔΙ
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙΜΟ Α ΛΤΚΔΙΟΤ Ημεπομηνία: 10/12/11 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΔΙΝΟΜΔΝΔ ΛΤΔΙ Πρόβλημα 1: α) Να δείμεηε όηη αλ ζεηηθνί πξαγκαηηθνί αξηζκνί ηζρύεη: β) Αλ είλαη
Διαβάστε περισσότεραf '(x)g(x)h(x) g'(x)f (x)h(x) h'(x) f (x)g(x)
ΓΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 54 Υλη: Παράγωγοι Γ Λσκείοσ Ον/μο:.. 6--4 Θεη-Τετν. ΘΔΜΑ Α.. Αλ f, g, h ηξεηο παξαγωγίζηκεο ζπλαξηήζεηο ζην λα απνδείμεηε όηη : f () g() h() ' f '()g()h() g'()f ()h() h'() f ()g()
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ Γείμηε όηη : ΡΑ ΡΒ ΡΓ 2 ΒΑ.
ΚΕΦΑΛΑΙΟ 1 1. Θεσξνύκε ηα κε ζπλεπζεηαθά ζεκεία Α, Β, Γ, Γ. Γείμηε όηη αλ ππάξρεη ζεκείν Ρ ηέηνην ώζηε ΡΑ ΡΓ ΡΒ ΡΓ, ηόηε ην ΑΒΓΓ είλαη παξαιιειόγξακκν.. *Αλ ΑΒΓΓ είλαη παξαιιειόγξακκν θαη Ρ έλα ζεκείν
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ. z2. Να απνδεηρζεί όηη:
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ ΑΚΖΖ Γύν κηθξέο κύγεο Α θαη Β θηλνύληαη πάλω ζην κηγαδηθό επίπεδν θαη είλαη εηθόλεο ηωλ κηγαδηθώλ θαη αληίζηνηρα, ώζηε λα ηζρύεη ζπλερώο 4. Να απνδεηρζεί όηη: 5 α).
Διαβάστε περισσότεραx x 15 7 x 22. ΘΔΜΑ Α 3x 2 9x 4 3 3x 18x x 5 y 9x 4 Α1. i. . Η ιύζε είλαη y y x 3y y x 3 2x 6y y x x y 6 x 2y 1 y 6
ΑΠΑΝΣΗΔΙ ΜΑΘΗΜΑ ΑΛΓΔΒΡΑ Β ΛΤΚΔΙΟΤ ΗΜ/ΝΙΑ 4 ΟΚΣΩΒΡΙΟΤ 08 ΓΙΑΡΚΔΙΑ ΩΡΔ ΘΔΜΑ Α Α i 9 4 8 8 5 5 9 4 9 4 9 4 9 4 9 4 4 Η ύζε είλαη,, 6 6 6 5 7 0 5 Γηα 5 ε εμίζωζε 7 Η ύζε είλαη,, 5 γίλεηαη : 5 7 5 7 i 4 4 4
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΕΚΦΩΝΗΣΕΙΣ. Διάρκεια: 3 ώρες Ημερομηνία: 12/5/2019 Έκδοση: 1 η. Τα sites blogs που συμμετέχουν (σε αλφαβητική σειρά):
Τα sites blogs που συμμετέχουν (σε αλφαβητική σειρά): blogsschgr/iordaniskos/ Επιμελητής: Ιορδάνης Κόσογλου blogsschgr/pavtryfon/ Επιμελητής: Παύλος Τρύφων eisatoponblogspotgr/ Επιμελητής: Σωκράτης Ρωμανίδης
Διαβάστε περισσότεραΤΡΙΓΩΝΟΜΕΤΡΙΑ ΒΑΙΚΓ ΓΝΩΓΙ ΣΡΙΓΩΝΟΜΓΣΡΙΑ ΑΠΟ Α ΛΤΚΓΙΟΤ. 1. Σπιγωνομεηπικοί απιθμοί οξείαρ γωνίαρ ζε οπθοκανονικό ζύζηημα αξόνων.
ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΒΑΙΚΓ ΓΝΩΓΙ ΣΡΙΓΩΝΟΜΓΣΡΙΑ ΑΠΟ Α ΛΤΚΓΙΟΤ. Σπιγωνομεηπικοί απιθμοί οξείαρ γωνίαρ ζε οπθοκανονικό ζύζηημα αξόνων. y ημω= y π M(,y) ζςνω= π ξ σ εθω= y, 0 ζθω=, y 0 y.σπιγωνομεηπικοί απιθμοί γωνίαρ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. ηνπ επηπέδνπ. Να απνδείμεηε όηη νπνηνδήπνηε δηάλπζκα r
1. Γίλνληαη δύν κε ζπγγξακκηθά δηαλύζκαηα και β ηνπ επηπέδνπ. Να απνδείμεηε όηη νπνηνδήπνηε δηάλπζκα r ηνπ επηπέδνπ απηνύ κπνξεί λα εθθξαζηεί ζαλ γξακκηθόο ζπλδπαζκόο ησλ και β ά κνλαδηθό ηξόπν.. Γίλνληαη
Διαβάστε περισσότεραMaster Class 3. Ο Ν.Ζανταρίδης προτείνει θέματα Μαθηματικών Γ Λσκειοσ ΘΕΜΑ 1.
ΘΕΜΑ. Γηα ηελ ζπλάξηεζε f : IR IR ηζρύεη + f() f(- ) = γηα θάζε IR. Να δείμεηε όηη f() =, ΙR. Να βξείηε ηελ εθαπηόκελε (ε) ηεο C f πνπ δηέξρεηαη από ην ζεκείν (-,-) 3. Να βξείηε ην εκβαδόλ Δ(α) ηνπ ρωξίνπ
Διαβάστε περισσότεραΑ. Εηζαγσγή ηεο έλλνηαο ηεο ηξηγσλνκεηξηθήο εμίζσζεο κε αξρηθό παξάδεηγκα ηελ εκx = 2
ΣΡΙΓΩΝΟΜΔΣΡΙΚΔ EΞΙΩΔΙ Πνηα παξαδείγκαηα εμηζώζεσλ ή θαη πξνβιεκάησλ πηζηεύεηαη όηη είλαη θαηάιιεια γηα ηελ επίιπζε ηνπο θαηά ηελ δηάξθεηα ηεο δηδαθηηθήο δηαδηθαζίαο κέζα ζηελ ηάμε; 1 ε ΓΙΓΑΚΣΙΚΗ ΩΡΑ Α.
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΘΕΜΑ Α ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 7 ΜΑΪΟΥ 3 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ
Διαβάστε περισσότεραΕπωηήζειρ Σωζηού Λάθοςρ ηων πανελλαδικών εξεηάζεων Σςναπηήζειρ
Επωηήζειρ Σωζηού Λάθοςρ ηων πνελλδικών εξεηάζεων 2-27 Σςνπηήζειρ Η γξθηθή πξάζηζε ηεο ζπλάξηεζεο f είλη ζπκκεηξηθή, σο πξνο ηνλ άμνλ, ηεο γξθηθήο πξάζηζεο ηεο f 2 Αλ f, g είλη δύν ζπλξηήζεηο κε πεδί νξηζκνύ
Διαβάστε περισσότερα(Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α. Α1. Βιέπε απόδεημε Σει. 262, ζρνιηθνύ βηβιίνπ. Α2. Βιέπε νξηζκό Σει. 141, ζρνιηθνύ βηβιίνπ
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ (ΟΜΑΓΑ Β ) ΣΔΣΑΡΣΖ 18 ΜΑΪΟΤ 16 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (ΝΔΟ ΤΣΖΜΑ) ΚΑΣΔΤΘΤΝΖ (ΠΑΛΑΗΟ ΤΣΖΜΑ) (Ενδεικηικές Απανηήζεις) ΘΔΜΑ
Διαβάστε περισσότεραΔΝΓΔΙΚΣΙΚΔ ΛΤΔΙ ΣΑ ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ 2017
α: κολάδα β: κολάδες Σειίδα από 8 ΔΝΓΔΙΚΣΙΚΔ ΛΤΔΙ ΣΑ ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ 7 ΘΔΜΑ Α Α Έζηω, κε Θα δείμνπκε όηη f ( ) f ( ) Πξάγκαηη, ζην δηάζηεκα [, ] ε f ηθαλνπνηεί ηηο πξνϋπνζέζεηο ηνπ ΘΜΤ Επνκέλωο,
Διαβάστε περισσότεραΣήκαηα Β Α Γ Γ Δ Λ Η Σ Ο Ι Κ Ο Ν Ο Μ Ο Υ Γ Ι Α Λ Δ Ξ Η - ( 2 ) ΕΙΣΑΓΨΓΗ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΨΝΙΕΣ
Σήκαηα 1 Β Α Γ Γ Δ Λ Η Σ Ο Ι Κ Ο Ν Ο Μ Ο Υ Γ Ι Α Λ Δ Ξ Η - ( 2 ) Σήκαηα Οξηζκόο ζήκαηνο Ταμηλόκεζε ζεκάησλ Σεηξέο Fourier Μεηαζρεκαηηζκόο Fourier Σπλέιημε Σπζρέηηζε θαη Φαζκαηηθή Ππθλόηεηα 2 Οξηζκόο Σήκαηνο
Διαβάστε περισσότεραΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου ΠΡΟΒΛΗΜΑ Σε έλα ηνπξλνπά βόιετ δήισζαλ ζπκκεηνρή νκάδεο Γπκλαζίσλ ηεο Κύπξνπ.
Διαβάστε περισσότεραΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08/09/2014
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 204-205 ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08/09/204 A ΟΜΑΓΑ Οδηγία: Να γράυεηε ζηο ηεηράδιο ζας ηον αριθμό κάθε μιας από ηις παρακάηφ ερφηήζεις Α.-Α.8 και
Διαβάστε περισσότεραΘΔΚΑ ΡΖΠ ΑΛΑΓΛΩΟΗΠΖΠ
ΘΔΚΑ ΡΖΠ ΑΛΑΓΛΩΟΗΠΖΠ 1.Απηόο πνπ ζα αλαγλσξηζηεί απνπζηάδεη γηα πνιύ θαηξό. 2.Δπηζηξέθεη κε πιαζηή ηαπηόηεηα ή κεηακνξθσκέλνο. 3.Απνκνλώλνληαη ηα δύν πξόζσπα 4.Άξζε κεηακόξθσζεο 5.Απνθάιπςε 6.Ακθηβνιίεο-απνδεηθηηθά
Διαβάστε περισσότεραΔΠΙΣΡΟΠΗ ΓΙΑΓΩΝΙΜΩΝ 74 ος ΠΑΝΔΛΛΗΝΙΟ ΜΑΘΗΣΙΚΟ ΓΙΑΓΩΝΙΜΟ ΣΑ ΜΑΘΗΜΑΣΙΚΑ Ο ΘΑΛΗ 19 Οκηωβρίοσ Δνδεικηικές λύζεις
ΔΛΛΗΝΙΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ Παλεπηζηεκίνπ (Διεπζεξίνπ Βεληδέινπ) 34 06 79 ΑΘΖΝΑ Τει. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Δleftheriou
Διαβάστε περισσότεραΜηα ζπλάξηεζε κε πεδίν νξηζκνύ ην Α, ζα ιέκε όηη παξνπζηάδεη ηοπικό μέγιζηο ζην, αλ ππάξρεη δ>0, ηέηνην ώζηε:
1 ΟΡΙΜΟΙ MONOTONIA AKΡOTATA Μηα ζπλάξηεζε κε πεδίν νξηζκνύ ην Α, ζα ιέκε όηη παξνπζηάδεη ηοπικό μέγιζηο ζην, αλ ππάξρεη δ>0, ηέηνην ώζηε: Σν ιέγεηαη ζέζε ή ζεκείν ηνπ ηνπηθνύ κεγίζηνπ θαη ην ( ηνπηθό κέγηζην.
Διαβάστε περισσότεραΟ γεωκεηξηθόο ηόπνο ηωλ εηθόλωλ ηωλ κηγαδηθώλ αξηζκώλ z είλαη ν θύθινο κε θέληξν ηελ αξρή ηωλ αμόλωλ θαη αθηίλα ξ=2.
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΚΑΗ Γ ΣΑΞΖ ΔΠΔΡΗΝΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ (ΟΜΑΓΑ Β ) ΓΔΤΣΔΡΑ 5 ΜΑΪΟΤ 5 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ:ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΖ & ΣΔΥΝΟΛΟΓΗΚΖ ΚΑΣΔΤΘΤΝΖ ΑΠΑΝΣΖΔΗ ΘΔΜΑ Α Α. Σρνιηθό βηβιίν
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ 31. Ύλη:Εσθύγραμμη Κίνηζη
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ 31 Ον/μο:.. A Λσκείοσ Ύλη:Εσθύγραμμη Κίνηζη 9-11-2014 Θέμα 1 ο : 1. Έλα ζώκα θηλείηαη ζε επζεία γξακκή θαη κεηαηνπίδεηαη από ηε ζέζε ρ 1 = +2m ζηε ζέζε ρ 2 = -2m. Πνηα από ηηο επόκελεο
Διαβάστε περισσότερα=90º ) κε πιεπξέο α, β, γ. Να βξεζεί ην είδνο ηνπ ηξηγώλνπ πνπ έρεη πιεπξέο (i) θα, θβ, θγ θαη (ii) 4α, 4β, 3γ.
ΣΗΜΕΙΩΣΕΙΣ ΕΥΚΛΕΙΔΕΙΑΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ - 1 ΓΔΝΗΚΔ ΔΠΑΝΑΛΖΠΣΗΚΔ ΑΚΖΔΗ 1 Γίλεηαη νξζνγώλην ηξίγσλν ΑΒΓ ( =90º ) κε πιεπξέο α, β, γ Να βξεζεί ην είδνο ηνπ ηξηγώλνπ πνπ έρεη πιεπξέο (i) θα, θβ, θγ θαη
Διαβάστε περισσότεραΕξετάςεισ περιόδου Μαΐου Ιουνίου Εξεταςτζα Ύλη Άλγεβρασ Β Λυκείου ( όλα τα τμήματα )
Εξετάςεισ περιόδου Μαΐου Ιουνίου 016 Εξεταςτζα Ύλη Άλγεβρασ Β Λυκείου ( όλα τα τμήματα ) Από το βιβλίο «Άλγεβρα Βϋ Γενικοφ Λυκείου» Κεφ. 1ο: Γραμμικά Συςτήματα 1.1 Γραμμικά υςτιματα (χωρίσ τισ αποδείξεισ
Διαβάστε περισσότεραΟΠΤΙΚΗ Α. ΑΝΑΚΛΑΣΖ - ΓΗΑΘΛΑΣΖ
ΟΠΤΙΚΗ Α. ΑΝΑΚΛΑΣΖ - ΓΗΑΘΛΑΣΖ. Μία αθηίλα θωηόο πξνζπίπηεη κε κία γωλία ζ ζηε επάλω επηθάλεηα ελόο θύβνπ από πνιπεζηέξα ν νπνίνο έρεη δείθηε δηάζιαζεο ε =,49 (ζρήκα ). Βξείηε πνηα ζα είλαη ε κέγηζηε γωλία
Διαβάστε περισσότεραΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ: έζησ
ΜΙΓΑΔΙΚΙ ΑΡΙΘΜΙ: έζησ έλαο κηγαδηθόο αξηζκόο. αληίζηξνθνο ηνπ κηγαδηθνύ αξηζκνύ a b είλαη ν αξηζκόο Παπάδειγμα: έζησ.αληίζηξνθνο ηνπ αξηζκνύ : Μέηπο μιγαδικού απιθμού: αλ κέηξν δηαλύζκαηνο OM. b ή απόιπηε
Διαβάστε περισσότεραΔΦΑΡΜΟΜΔΝΑ ΜΑΘΗΜΑΣΙΚΑ ΣΗ ΧΗΜΔΙΑ Ι ΘΔΜΑΣΑ Α επηέκβξηνο 2009. 1. Να ππνινγηζηνύλ νη κεξηθέο παξάγσγνη πξώηεο ηάμεο ηεο ζπλάξηεζεο f(x,y) =
ΘΔΜΑΣΑ Α επηέκβξηνο 9. Να ππνινγηζηνύλ νη κεξηθέο παξάγσγνη πξώηεο ηάμεο ηεο ζπλάξηεζεο f(,y) = y.. Να ππνινγηζηνύλ ηα νινθιεξώκαηα: a) ln b) a) 3cos b) e sin 4. Να ππνινγηζηεί ην νινθιήξσκα: S ( y) 3
Διαβάστε περισσότεραα) ηε κεηαηόπηζε x όηαλ ην ζώκα έρεη κέγηζην ξπζκό κεηαβνιήο ζέζεο δ) ην κέγηζην ξπζκό κεηαβνιήο ηεο ηαρύηεηαο
Έξγν ελέξγεηα 3 (Λύζε) Σώκα κάδαο m = 4Kg εξεκεί ζηε βάζε θεθιηκέλνπ επηπέδνπ γσλίαο θιίζεο ζ κε εκζ = 0,6 θαη ζπλζ = 0,8. Τν ζώκα αξρίδεη λα δέρεηαη νξηδόληηα δύλακε θαη μεθηλά λα αλεβαίλεη ζην θεθιηκέλν
Διαβάστε περισσότεραΝα ζρεδηαζζεί ην θαηεπζπλόκελν γξάθεκα πνπ νξίδεηαη από ηνλ εμήο πίλαθα γεηηλίαζεο.
. Σρεδίαζε Καηεπζπλόκελωλ Γξαθεκάηωλ (.8.) Να ζρεδηαζζεί ην θαηεπζπλόκελν γξάθεκα πνπ νξίδεηαη από ηνλ εμήο πίλαθα γεηηλίαζεο. Κνξπθέο 0 0 0 0 0 0 0 0. Σρεδίαζε(.8.5) Να ζρεδηαζηεί ην παξαθάηω γξάθεκα
Διαβάστε περισσότεραΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ
ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ Εδώ ζα ππνινγίζνπκε ην κεηαζρεκαηηζκό Fourier κεξηθώλ αθόκα ζεκάησλ, πξνζπαζώληαο λα μεθηλήζνπκε από ην κεηαζρεκαηηζκό Fourier γλσζηώλ ζεκάησλ
Διαβάστε περισσότεραΔΕΟ 13. Ποσοτικές Μέθοδοι. θαη λα ππνινγίζεηε ην θόζηνο γηα 10000 παξαγόκελα πξντόληα. Να ζρεδηαζηεί γηα εύξνο πξντόλησλ έσο 30000.
ΔΕΟ 13 Ποσοτικές Μέθοδοι Σσνάρηηζη Κόζηοσς C(), μέζο κόζηος C()/. Παράδειγμα 1 Μηα εηαηξεία δαπαλά γηα θάζε πξντόλ Α πνπ παξάγεη 0.0 λ.κ. Τα πάγηα έμνδα ηεο εηαηξείαο είλαη 800 λ.κ. Ζεηείηαη 1) Να πεξηγξάςεηε
Διαβάστε περισσότεραΣΕΙ Δυτικήσ Μακεδονίασ, Παράρτημα Καςτοριάσ Τμήμα Πληροφορικήσ και Τεχνολογίασ Υπολογιςτών
τοιχεία του μαθήματοσ (ημζρα εβδομάδασ, ώρεσ, ζτοσ): ΣΕΙ Δυτικήσ Μακεδονίασ, Παράρτημα Καςτοριάσ Τμήμα Πληροφορικήσ και Τεχνολογίασ Υπολογιςτών Εργαςτηριακή ομάδα αςκήςεων 2 για το μάθημα «ΑΡΧΙΣΕΚΣΟΝΙΚΗ
Διαβάστε περισσότεραΓΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη:Γςνάμειρ μεταξύ ηλεκτπικών φοπτίων
ΓΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Ον/μο:.. Ύλη:Γςνάμειρ μεταξύ ηλεκτπικών φοπτίων Είμαζηε ηυχεροί που είμαζηε δάζκαλοι 58 Β Λςκείος Γεν. Παιδείαρ 9-11-2014 Θέμα 1 ο : 1. Γύν ζεηηθά θνξηία πνπ βξίζθνληαη ζε απόζηαζε
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΠΟΥΔΕΣ ΣΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙ - ΦΥΕ 0 7 Ινπλίνπ 009 Απαντήσειρ στιρ ασκήσειρ τηρ τελικήρ εξέτασηρ στιρ Σςνήθειρ Διαυοπικέρ Εξισώσειρ Αγαπηηέ θοιηηηή/ηπια,
Διαβάστε περισσότεραΦΥΛΛΟ ΕΡΓΑΣΙΑΣ. Οξηδόληηα θαη θαηαθόξπθε κεηαηόπηζε παξαβνιήο
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Οξηδόληηα θαη θαηαθόξπθε κεηαηόπηζε παξαβνιήο 1 ε Δξαζηεξηόηεηα Αλνίμηε ην αξρείν «Μεηαηόπηζε παξαβνιήο.ggb». Με ηε καύξε γξακκή παξηζηάλεηαη ε γξαθηθή παξάζηαζε ηεο f(x)=αx 2 πνπ ζα ηελ
Διαβάστε περισσότεραBAΙΚΑ ΘΔΩΡΗΜΑΣΑ ΤΝΔΥΔΙΑ
BAΙΚΑ ΘΔΩΡΗΜΑΣΑ ΤΝΔΥΔΙΑ Α. ΘΔΩΡΗΜΑ BOLZANO (Θ.Β) Έζηω κηα ζπλάξηεζε f,νξηζκέλε ζε έλα θιεηζηό δηάζηεκα [α,β].αλ: Ζ f είλαη ζπλερήο ζην [α,β] θαη, επηπιένλ, ηζρύεη f a f 0 Σόηε ππάξρεη ένα, τοσλάτιστον,
Διαβάστε περισσότεραΤΡΙΓΩΝΟΜΔΤΡΙΚΔΣ ΔΞΙΣΩΣΔΙΣ
1.1 Μονάδερ μέηπηζηρ ηόξων (γωνιών) ΤΡΙΓΩΝΟΜΔΤΡΙΚΔΣ ΔΞΙΣΩΣΔΙΣ Ωο κνλάδα κέηξεζεο ησλ ηόμσλ εθηόο από ηελ κνίξα (1 ν ) πνπ είλαη ην 1/360 ηνπ θύθινπ ρξεζηκνπνηνύκε θαη ην αθηίλην (1rad). Τν αθηίλην είλαη
Διαβάστε περισσότεραΓεωμεηπικοί Τόποι Σςμμεηπίερ Α Λυκείου - Γεωμετρία
Γεωμεηπικοί Τόποι Σςμμεηπίερ Α Λυκείου - Γεωμετρία Ερωτήσεις θεωρίας με κενά για απαντήσεις Εργασίες πάνω στην θεωρία Προπαρασκεσαστικά θέματα Κεφάλαια 3.7 3.8 3.9 ΕΑΚΥΝΘΟΣ 2010 11 Γεωμεηπία Α Λςκείος
Διαβάστε περισσότεραΑιγόξηζκνη Γνκή επηινγήο. Πνιιαπιή Δπηινγή Δκθωιεπκέλεο Δπηινγέο. Δηζαγωγή ζηηο Αξρέο ηεο Δπηζηήκεο ηωλ Η/Υ. introcsprinciples.wordpress.
Αιγόξηζκνη 2.2.7.3 Γνκή επηινγήο Πνιιαπιή Δπηινγή Δκθωιεπκέλεο Δπηινγέο Δηζαγωγή ζηηο Αξρέο ηεο Δπηζηήκεο ηωλ Η/Υ 1 Πνιιαπιή Δληνιή Δπηινγήο Αν ζπλζήθε_1 ηόηε εληνιέο_1 αλλιώς_αν ζπλζήθε_2 ηόηε εληνιέο_2...
Διαβάστε περισσότεραόπου R η ακηίνα ηου περιγεγραμμένου κύκλου ηου ηριγώνου.
ΕΩΜΕΤΡΙ ΛΥΚΕΙΟΥ - ΕΜΔ ΝΩΣΕΙΣ ΘΕΩΡΙΣ Ι ΤΗΝ ΛΥΣΗ ΣΚΗΣΕΩΝ ΕΜΔ Πρόηζε Ίζ πολυγωνικά χωρί έχουν ίζ εμβδά Το νηίζηροθο δεν ιζχύει ηλδή δύο ιζοεμβδικά χωρί δεν είνι κηά νάγκη ίζ Εκβδόλ ηεηργώλοσ πιεσράς Εκβδόλ
Διαβάστε περισσότεραΔξγαζηεξηαθή άζθεζε 03. Σηεξενγξαθηθή πξνβνιή ζην δίθηπν Wulf
Δξγαζηεξηαθή άζθεζε 03 Σηεξενγξαθηθή πξνβνιή ζην δίθηπν Wulf Ζιίαο Χαηδεζενδσξίδεο Οθηώβξηνο / Ννέκβξηνο 2004 Τη είλαη ην δίθηπν Wulf Δπίπεδν ζην νπνίν κπνξνύκε λα αλαπαξαζηήζνπκε ηξηζδηάζηαηα ζρήκαηα,
Διαβάστε περισσότεραΓΕΩΜΕΣΡΙΑ Α ΛΤΚΕΙΟΤ ΠΑΡΑΛΛΗΛΕ ΕΤΘΕΙΕ
ΓΕΩΜΕΣΡΙΑ Α ΛΤΚΕΙΟΤ ΠΑΡΑΛΛΗΛΕ ΕΤΘΕΙΕ ΦΕΒΡΟΥΑΡΙΟΣ 9 Επιμέλεια: Χατζόπουλος Μάκης Μαθηματικός Ρόδος ΕΠΑ.Λ Παραδεισίου ΑΝΑΚΕΦΑΛΑΙΩΣΗ ΚΕΦΑΛΑΙΟΥ 4 Παπάλληλερ εςθείερ Αίηημα παπαλληλίαρ Γύν επζείεο (ε 1 ),(ε
Διαβάστε περισσότεραΘέμα 3 ο v. Θέμα 5 ο Να βξεζεί ν γεσκεηξηθόο ηόπνο ησλ εηθόλσλ ησλ κηγαδηθώλ z γηα ηνπο νπνίνπο
ΜΑΘΗΜΑΣΙΚΑ Γ ΛΤΚΕΙΟΤ ΘΔΤΙΚΗ & ΤΔΦΝΟΛΟΓΙΚΗ ΚΑΤΔΥΘΥΝΣΗ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Δπαλαιεπηηθέο αζθήζεηο θαη ζύλζεηα ζέκαηα Δπηκέιεηα: Άιθεο Τδειέπεο Αζήλα 0 Θέμα ο Έζησ νη α, β R. Να δείμεηε όηη ν κηγαδηθόο αξηζκόο
Διαβάστε περισσότεραΧξόλνη xi vi fi% Ni Fi% [5,. ) α+4 [.,. ) 3α-6 [.,. ) 2α+8 [., 45) α-2 ύλνιν
ΑΡΧΗ Η ΔΛΙΓΑ Γ ΗΜΔΡΗΙΩΝ ΣΔΛΟ Η ΑΠΟ 5 ΔΛΙΓΔ ΠΑΝΔΛΛΖΝΗΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ (ΟΜΑΓΑ Β ΣΔΣΑΡΣΖ ΜΑΪΟΤ 0 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΚΑΗ ΣΟΗΥΔΗΑ ΣΑΣΗΣΗΚΖ ΓΔΝΗΚΖ ΠΑΗΓΔΗΑ ΤΝΟΛΟ
Διαβάστε περισσότεραB-Δέλδξα. Τα B-δέλδξα ρξεζηκνπνηνύληαη γηα ηε αλαπαξάζηαζε πνιύ κεγάισλ ιεμηθώλ πνπ είλαη απνζεθεπκέλα ζην δίζθν.
B-Δέλδξα Τα B-δέλδξα ρξεζηκνπνηνύληαη γηα ηε αλαπαξάζηαζε πνιύ κεγάισλ ιεμηθώλ πνπ είλαη απνζεθεπκέλα ζην δίζθν. Δέλδξα AVL n = 2 30 = 10 9 (πεξίπνπ). 30
Διαβάστε περισσότεραΛΙΜΝΗ ΤΣΑΝΤ. Σρήκα 1. Σρήκα 2
ΛΙΜΝΗ ΤΣΑΝΤ Τν Σρήκα 1 δείρλεη ηελ αιιαγή ηεο ζηάζκεο ηεο Λίκλεο Τζαλη, ζηε Σαράξα ηεο Βόξεηαο Αθξηθήο. Η Λίκλε Τζαλη εμαθαλίζηεθε ηειείσο γύξσ ζην 20.000 π.χ., θαηά ηε δηάξθεηα ηεο ηειεπηαίαο επνρήο ησλ
Διαβάστε περισσότεραΚευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση
Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση Πώς πρέπει να τιμολογεί ένα μονοπώλιο; Μέρξη ζηηγκήο ην κνλνπώιην έρεη ζεσξεζεί ζαλ κηα επηρείξεζε ε νπνία πσιεί ην πξντόλ ηεο ζε θάζε πειάηε ζηελ
Διαβάστε περισσότεραΥΛΙΚΑ ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ ΣΜΗΜΑ ΕΠΙΣΗΜΗ ΚΑΙ ΣΕΧΝΟΛΟΓΙΑ ΤΛΙΚΩΝ
ΥΛΙΚΑ ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ Ι ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ ΣΜΗΜΑ ΕΠΙΣΗΜΗ ΚΑΙ ΣΕΧΝΟΛΟΓΙΑ ΤΛΙΚΩΝ Άδειεσ Χρήςησ -Το παρόν εκπαιδευτικό υλικό υπόκειται ςτην άδεια χρήςησ Creative Commons και ειδικότερα Αναφορά - Μη εμπορική
Διαβάστε περισσότεραΒάσεις Δεδομέμωμ. Εξγαζηήξην V. Τκήκα Πιεξνθνξηθήο ΑΠΘ 2015-2016
Βάσεις Δεδομέμωμ Εξγαζηήξην V Τκήκα Πιεξνθνξηθήο ΑΠΘ 2015-2016 2 Σκοπός του 5 ου εργαστηρίου Σθνπόο απηνύ ηνπ εξγαζηεξίνπ είλαη: ε κειέηε ζύλζεησλ εξσηεκάησλ ζύλδεζεο ζε δύν ή πεξηζζόηεξεο ζρέζεηο ε κειέηε
Διαβάστε περισσότεραΗ/Υ A ΤΑΞΕΩΣ ΑΕ 2010-2011. Συστήματα Αρίθμησης. Υποπλοίαρχος Ν. Πετράκος ΠΝ
Συστήματα Αρίθμησης Υποπλοίαρχος Ν. Πετράκος ΠΝ 1 Ειζαγωγή Τν bit είλαη ε πην βαζηθή κνλάδα κέηξεζεο. Είλαη κία θαηάζηαζε on ή off ζε έλα ςεθηαθό θύθισκα. Άιιεο θνξέο είλαη κία θαηάζηαζε high ή low voltage
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΦΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Μάθημα: Πιθανόηηηες και Σηαηιζηική Διδάζκων: Σ. Γ.
ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Τρίπολη 06/07/2007 Τα θέμαηα 1-5 είναι σποτρεωηικά και έτοσν ηοσς ίδιοσς (ίζοσς) ζσνηελεζηές βαρύηηηας Το θέμα 6 δίνει επιπλέον βαθμούς με βαρύηηηα 10% για βεληίωζη ηης βαθμολογίας ΘΕΜΑΤΑ
Διαβάστε περισσότεραΟνομαηεπώνυμο: Μάθημα: Υλη: Δπιμέλεια διαγωνίζμαηος: Αξιολόγηζη :
Ονομαηεπώνυμο: Μάθημα: Υλη: Δπιμέλεια διαγωνίζμαηος: Αξιολόγηζη : Θέμα Α. Σηιρ επωηήζειρ πολλαπλήρ επιλογήρ πος ακολοςθούν ζημειώζηε ζηο γπαπηό ζαρ ηον απιθμό ηηρ επώηηζηρ και δίπλα ηην ένδειξη ηηρ ζωζηήρ
Διαβάστε περισσότερα(γ) Να βξεζεί ε ρξνλνεμαξηώκελε πηζαλόηεηα κέηξεζεο ηεο ζεηηθήο ηδηνηηκήο ηνπ ηειεζηή W.
ΚΒΑΝΤΙΚΗ ΦΥΣΙΚΗ Ι Τειηθή Εμέηαζε: 5 Σεπηέκβξε 6 (Δηδάζθσλ: ΑΦ Τεξδήο) ΘΕΜΑ Θεσξνύκε θβαληηθό ζύζηεκα πνπ πεξηγξάθεηαη από Φακηιηνληαλή Η, ε νπνία ζε κνξθή πίλαθα ρξεζηκνπνηώληαο ηηο ηδηνζπλαξηήζεηο, θαη
Διαβάστε περισσότεραΆζκηζη ζτέζης κόζηοσς-τρόνοσ (Cost Time trade off) Καηαζκεσαζηική ΑΔ
Άζκηζη ζτέζης κόζηοσς-τρόνοσ (Cost Time trade off) Καηαζκεσαζηική Δίζηε μησανικόρ διοίκηζηρ μεγάληρ καηαζκεςαζηικήρ εηαιπείαρ και καλείζηε να ςλοποιήζεηε ηο έπγο πος πεπιγπάθεηαι από ηον Πίνακα 1. Κωδ.
Διαβάστε περισσότεραΔΡΓΑΙΑ 1. Γιαδικησακά πληροθοριακά σζηήμαηα. Ομάδα Δργαζίας: Μεηαπηστιακοί Φοιηηηές. ηέθανος Κονηοβάς ΑΔΜ :283. Πάζτος Βαζίλειος ΑΔΜ :288
ΔΡΓΑΙΑ 1 Γιαδικησακά πληροθοριακά σζηήμαηα Ομάδα Δργαζίας: Μεηαπηστιακοί Φοιηηηές ηέθανος Κονηοβάς ΑΔΜ :283 Πάζτος Βαζίλειος ΑΔΜ :288 1.Γιάγραμμα Ονηολογίας. Σην παξαπάλω δηάγξακκα θαίλεηαη ε δηάξζξωζε
Διαβάστε περισσότεραΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γεσηέρα 10 Ηοσνίοσ 2019 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις)
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γεσηέρα Ηοσνίοσ 9 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α Α.α) Οξηζκόο ζρνιηθνύ βηβιίνπ ζει 5. Έζησ Α έλα ππνζύλνιν ηνπ.
Διαβάστε περισσότερα3ο Δπαναληπηικό διαγώνιζμα ζηα Μαθημαηικά καηεύθσνζης ηης Γ Λσκείοσ Θέμα A Α1. Έζησ f κηα ζπλερήο ζπλάξηεζε ζ έλα δηάζηεκα
wwwaskisopolisgr 3ο Δπνληπηικό διγώνιζμ ζη Μθημηικά κηεύθσνζης ηης Γ Λσκείοσ 17-18 Θέμ A Α1 Έζησ κη ζπλερήο ζπλάξηεζε ζ έλ δηάζηεκ β λ πνδείμεηε όηη: t dt G β G Α Πόηε κη ζπλάξηεζε ιέγεηη 1-1; Α3 Πόηε
Διαβάστε περισσότεραΘΔΜΑΤΑ ΤΔΛΙΚΩΝ ΔΞΔΤΑΣΔΩΝ ΣΤΗ ΦΥΣΙΚΟΦΗΜΔΙΑ - ΘΔΩΡΙΑ ΦΡΟΝΙΚΗ ΓΙΑΡΚΔΙΑ: 1 ώρα (14:00-15:00) Α. Φημική Θερμοδσναμική
ΘΔΜΑΤΑ ΤΔΛΙΚΩΝ ΔΞΔΤΑΣΔΩΝ ΣΤΗ ΦΥΣΙΚΟΦΗΜΔΙΑ - ΘΔΩΡΙΑ 2011-12 ΦΡΟΝΙΚΗ ΓΙΑΡΚΔΙΑ: 1 ώρα (14:00-15:00) Α. Φημική Θερμοδσναμική Βξείηε κηα εθθξαζε γηα ηνλ παξάγνληα ζπκπηεζηόηεηαο ελόο αεξίνπ πνπ αθνινπζεί ηελ
Διαβάστε περισσότεραΑζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training. Dipl.Biol.cand.med. Stylianos Kalaitzis
Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training Dipl.Biol.cand.med. Stylianos Kalaitzis Stylianos Kalaitzis Μνλνϋβξηδηζκνο 1 Γπν γνλείο, εηεξόδπγνη γηα ηνλ αιθηζκό θάλνπλ παηδηά. Πνία ε πηζαλόηεηα
Διαβάστε περισσότεραΓΗΑΓΩΛΗΠΚΑ ΠΡΝ ΚΑΘΖΚΑ ΔΞΗΙΝΓΖΠ ΑΟΣΔΠ ΝΗΘΝΛΝΚΗΘΖΠ ΘΔΩΟΗΑΠ
ΓΗΑΓΩΛΗΠΚΑ ΠΡΝ ΚΑΘΖΚΑ ΔΞΗΙΝΓΖΠ ΑΟΣΔΠ ΝΗΘΝΛΝΚΗΘΖΠ ΘΔΩΟΗΑΠ ΝΚΑΓΑ Α ΔΡΩΣΖΔΗ ΩΣΟΤ- ΙΑΘΟΤ 1. Γηα έλα αγαζό όηαλ ε ζηαζεξά γ είλαη ίζε κε ην κεδέλ ηόηε ε θακπύιε πξνζθνξάο δηέξρεηαη από ηελ αξρή ηωλ αμόλωλ.
Διαβάστε περισσότερα1. Να ζεκεηώζεηε πνηα από ηηο επόκελεο ηαρύηεηεο είλαη κεγαιύηεξε. Α. π 1 = 30m/s Β. π 2 = 0.02km/s Γ. π 3 = 36000m/h Γ. π 4 = 144km/h.
ΦΤΙΚΗ A ΛΤΚΔΙΟΤ ΓΙΑΡΚΔΙΑ: 10min ΣΜΗΜΑ:. ONOMA:. ΔΠΩΝΤΜΟ: ΗΜΔΡΟΜΗΝΙΑ: ΜΟΝΑΓΔ ΘΔΜΑ 1 ο ΘΔΜΑ ο ΘΔΜΑ 3 ο ΘΔΜΑ 4 ο ΤΝΟΛΟ ΘΔΜΑ A: 1. Να ζεκεηώζεηε πνηα από ηηο επόκελεο ηαρύηεηεο είλαη κεγαιύηεξε. Α. π 1 = 30m/s
Διαβάστε περισσότεραf x 2xln x x x 2ln x 1 x f x 0 x 2ln x 1 0 2ln x 1 0 ln x ln e x e
8 9 6. Θ Ε Μ Α B 4 Β. Τν πεδίν νξηζκνύ ηεο ζπλάξηεζεο είλαη Α,. Ζ πξώηε παξάγωγνο ηεο ζπλάξηεζεο είλαη : ln ln ln ln e ln ln ln ln e e To πξόζεκν ηεο ', ε κνλνηνλία θαη ηα αθξόηαηα ηεο θαίλνληαη ζηνλ παξαθάηω
Διαβάστε περισσότεραβ) (βαζκνί: 2) Έζησ όηη ε ρξνλνινγηθή ζεηξά έρεη κέζε ηηκή 0 θαη είλαη αληηζηξέςηκε. Δίλεηαη ην αθόινπζν απνηέιεζκα από ην EViews γηα ηε :
1 ΝΑ ΑΠΑΝΤΗΘΟΥΝ 2 ΑΠΟ ΤΑ 3 ΘΕΜΑΤΑ ΘΕΜΑ 1 α) (βαζκνί: 3) Έζησ όηη ε ρξνλνινγηθή ζεηξά είλαη ζηάζηκε, αληηζηξέςηκε θαη αθνινπζεί ην ΑR(1) ππόδεηγκα. Να βξεζνύλ ε κέζε ηηκή, ε δηαζπνξά θαη ε απηνζπζρέηηζε
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ στα ΚΕΦΑΛΑΙΑ 1.2 και 1.3 ΟΝΟΜΑΤΕΠΩΝΥΜΟ : ΗΜΕΡΟΜΗΝΙΑ : ΘΕΜΑ 1 A. Να δηαηππώζεηε ην δεύηεξν λόκν ηνπ Νεύησλα κε ιόγηα θαη λα γξάςεηε ηελ αληίζηνηρε καζεκαηηθή ζρέζε (ηύπν) πνπ
Διαβάστε περισσότεραΓΙΑΙΡΔΣΔ ΦΤΙΚΟΤ ΑΡΙΘΜΟΤ Μ.Κ.Γ. ΦΤΙΚΏΝ ΑΡΙΘΜΏΝ
ΓΙΑΙΡΔΣΔ ΦΤΙΚΟΤ ΑΡΙΘΜΟΤ Γηαηξέηεο ελόο θπζηθνύ αξηζκνύ α είλαη νη θπζηθνί αξηζκνί πνπ όηαλ δηαηξεζνύλ κε ην α δίλνπλ αθέξαην πειίθν θαη ππόινηπν 0. Οη παξάγνληεο ελόο αξηζκνύ είλαη θαη δηαηξέηεο ηνπ. Ππώηοι
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟ I ΜΕΡΟ IΙ
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟ I MΗΓΑΓΗΚΟΗ ΑΡΗΘΜΟΗ... ΜΔΣΡΟ ΜΗΓΑΓΗΚΟΤ... 5 ΠΑΝΔΛΛΖΝΗΔ... 6 ΠΑΡΑΓΧΓΟ... ΚΑΝΟΝΔ ΠΑΡΑΓΧΓΗΔΗ... 9 ΔΦΑΠΣΟΜΔΝΔ... 47 ΑΟΡΗΣΟ ΟΛΟΚΛΖΡΧΜΑ... 5 ΟΡΗΜΔΝΟ ΟΛΟΚΛΖΡΧΜΑ... 56 ΔΜΒΑΓΑ... 66 ΠΑΝΔΛΛΖΝΗΔ...
Διαβάστε περισσότεραΠΑΝΕΛΛΑΔΙΚΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ & ΠΑΝΕΛΛΗΝΙΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΕΠΑΛ (ΟΜΑΔΑ Β )
ΠΑΝΕΛΛΑΔΙΚΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ & ΠΑΝΕΛΛΗΝΙΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΗΜΕΡΟΜΗΝΙΑ: /0/03 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΔΜΑ Α ΠΡΟΣΕΙΝΟΜΕΝΕ ΑΠΑΝΣΗΕΙ ΘΕΜΑΣΩΝ Α.
Διαβάστε περισσότεραΓΡΑΠΣΔ ΠΡΟΑΓΩΓΗΚΔ ΔΞΔΣΑΔΗ ΜΑΪΟΤ Θέμα Α ( Α1 =10, Α2 = 15 ) 1) Υαξαθηεξίζηε ηηο παξαθάησ πξνηάζεηο κε - Λ
ΓΡΑΠΣΔ ΠΡΟΑΓΩΓΗΚΔ ΔΞΔΣΑΔΗ ΜΑΪΟΤ 06 ΣΑΞΖ : Β ΖΜ/ ΝΗΑ : 9 05 06 ΜΑΘΖΜΑ : Μαζεκαηηθά Καηεύζπλζεο Θέμα Α ( Α =0, Α = 5 ) ) Υαξαθηεξίζηε ηηο παξαθάησ πξνηάζεηο κε - Λ i. Αλ ηόηε ii. iii. Οη επζείεο x x, y y
Διαβάστε περισσότεραΗΜΔΡΟΜΗΝΙΑ. ΟΝΟΜΑΣΔΠΩΝΤΜΟ.. ΒΑΘΜΟΛΟΓΙΑ..
ΗΜΔΡΟΜΗΝΙΑ. ΟΝΟΜΑΣΔΠΩΝΤΜΟ.. ΒΑΘΜΟΛΟΓΙΑ.. ΘΔΜΑ Α Σηηο εκηηειείο πξνηάζεηο Α.1 Α.4 λα γξάςεηε ζην ηεηξάδην ζαο ηνλ αξηζκό ηεο πξόηαζεο θαη, δίπια, ην γξάκκα πνπ αληηζηνηρεί ζηε θξάζε ε νπνία ηε ζπκπιεξώλεη
Διαβάστε περισσότεραΜΗΛΙΔΣ. Σπκπιεξώζηε ηα ζηνηρεία πνπ ιείπνπλ ζηνλ παξαθάησ πίλαθα:
ΜΗΛΙΔΣ Έλαο αγξόηεο ζέιεη λα θπηέςεη κειηέο ζε ζεηξέο θαη ζε ηεηξάγσλν ζρήκα. Σθέθηεηαη λα πξνζηαηέςεη ηηο κειηέο από ηνλ αέξα, πεξηθξάδνληάο ηηο κε θππαξίζζηα. Σηα παξαθάησ δηαγξάκκαηα βιέπνπκε ηε δηάηαμε
Διαβάστε περισσότεραΕνδεικτικά Θέματα Στατιστικής ΙΙ
Ενδεικτικά Θέματα Στατιστικής ΙΙ Θέματα. Έζησ όηη ζε δείγκα 35 θαηνηθηώλ πνπ ελνηθηάδνληαη ζε θνηηεηέο ζηελ Κνδάλε βξέζεθε ην κέζν κεληαίν κίζζσκα ζηα 5 επξώ, ελώ ζην Ζξάθιεην ην κέζν κεληαίν κίζζσκα ζε
Διαβάστε περισσότεραΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. καινούργιο σχολ. σελ 35 / παλιό σχολ. 53 Α. Ψευδής, σελ.99 / παλιό σχολ. σελ. 7 αντιπαράδειγμά, f ( ) Α3. σελ 73, παλιό σχολ. σελ. 9 Α. α) Λάθος β)
Διαβάστε περισσότεραΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟ ΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 2011 ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΤΑΞΗ: Β ΛΥΚΕΙΟΥ
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟ ΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 011 ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΤΑΞΗ: Β ΛΥΚΕΙΟΥ Θέμα 1o Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το άθροισμα των τετραγώνων των καθέτων πλευρών του είναι
Διαβάστε περισσότεραHellas online Προεπιλεγμένες ρσθμίσεις για FritzBox Fon WLAN 7140 (Annex B) 30.04.67 FritzBox Fon WLAN 7140 - Annex B (30.04.67)
Hellas online Προεπιλεγμένες ρσθμίσεις για FritzBox Fon WLAN 7140 (Annex B) 30.04.67 FritzBox Fon WLAN 7140 - Annex B (30.04.67) Γηα λα επαλαθέξεηε ην FritzBox Fon WLAN 7140 ζηηο πξνεπηιεγκέλεο ηνπ ξπζκίζεηο
Διαβάστε περισσότερα