Extended Emerald ΟΜΑΔΑ 1. Emerald. A Knowledge-based Framework for Semantic Web Agents. Ζωγραφιςτοφ Δήμητρα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Extended Emerald ΟΜΑΔΑ 1. Emerald. A Knowledge-based Framework for Semantic Web Agents. Ζωγραφιςτοφ Δήμητρα"

Transcript

1 Extended Emerald A Knowledge-based Framework for Semantic Web Agents Emerald ΟΜΑΔΑ 1 Ζαμπετάκησ Σταμάτησ zabetak@csd.uoc.gr Ζωγραφιςτοφ Δήμητρα dzograf@csd.uoc.gr Κλειςαρχάκη Σοφία kleisar@csd.uoc.gr Κονςολάκη Κωςταντίνα konsolak@csd.uoc.gr Κουτράκη Μαρία kutraki@csd.uoc.gr Μαθιουδάκησ Γιώργοσ gmathiou@csd.uoc.gr Μαυρίδου Ευανθία mavridou@csd.uoc.gr Μπουλουκάκησ Γιώργοσ boulouk@csd.uoc.gr Παπατριανταφφλλ ου Άγγελοσ angelpap@csd.uoc.gr Συμεονίδου Δανάη simeon@csd.uoc.gr Τρουλλινοφ Γεωργία troulin@csd.uoc.gr Φαφαλιόσ Παφλοσ fafalios@csd.uoc.gr 1

2 Περιεχόμενα 1. Ειςαγωγι Ειςαγωγι ςτο Emerald Επεκτάςεισ & Υλοποίθςθ Πρότυπο RuleML Μετατροπι ruleml ςε DR-Prolog: RuleMLParser Μετατροπι RDF ςε DR-Prolop: RdfParser Μετατροπι αποτελεςμάτων ςε RDF: ResultParser Metaprogram Σφγκριςθ αρικμϊν και υπολογιςμόσ αρικμθτικϊν παραςτάςεων Κανόνασ naf Μθχανι Παραδοτζα

3 1. Ειςαγωγή Η ανάπτυξθ του Παγκόςμιου Ιςτοφ (World Wide Web) κατζςτθςε το διαδίκτυο προςβάςιμο ςε εκατομμφρια χριςτεσ, επιτρζποντασ τθν απρόςκοπτθ δθμοςιοποίθςθ και πρόςβαςθ ςε ζγγραφα ςτο διαδίκτυο. Η εκρθκτικι ανάπτυξθ του Παγκόςμιου Ιςτοφ δθμιοφργθςε προβλιματα «πλθροφοριακισ υπερφόρτιςθσ». Η παγκόςμια ερευνθτικι κοινότθτα ζχει ςτραφεί εδϊ και λίγα χρόνια ςε μία νζα κατεφκυνςθ εξζλιξθσ του ιςτοφ, θ οποία ονομάηεται «Σθμαςιολογικόσ Ιςτόσ» (Semantic Web) και περιλαμβάνει τθ ςαφι αναπαράςταςθ του νοιματοσ των πλθροφοριϊν και των εγγράφων, επιτρζποντασ τθν αυτόματθ επεξεργαςία και ενοποίθςθ διαδικτυακϊν πόρων από «ζξυπνα» προγράμματα-πράκτορεσ. Ο Σθμαςιολογικόσ Ιςτόσ κα επιτρζψει τον γριγορο και ακριβι εντοπιςμό πλθροφοριϊν ςτον παγκόςμιο ιςτό κακϊσ και τθν ανάπτυξθ ευφυϊν διαδικτυακϊν πρακτόρων οι οποίοι κα διευκολφνουν τθν επικοινωνία μεταξφ πλθκϊρασ ετερογενϊν θλεκτρονικϊν ςυςκευϊν με πρόςβαςθ ςτο διαδίκτυο. 1.1 Ειςαγωγή ςτο Emerald Στθν περιοχι του semantic web και πιο ςυγκεκριμζνα ςτα πλαίςια τθσ επικοινωνίασ ετερογενϊν πρακτόρων, οι οποίοι εφαρμόηουν διαφορετικά πρότυπα και λογικι, δίνεται θ δυνατότθτα ςτουσ πράκτορεσ να ανταλλάςουν πλθροφορίεσ ϊςτε να περιγράψουν και να αιτιολογιςουν τθν κζςθ τουσ ςε ςυγκεκριμζνα ερωτιματα. Μια πλατφόρμα που υλοποιεί αυτι τθν ιδζα είναι το emerald. Πιο ςυγκεκριμζνα, τα δομικά ςυςτατικά αυτισ τθσ εφαρμογισ είναι ο πράκτορασ (agent) και ο DR-Reasoner. Κάκε πράκτορασ διακζτει ζνα πλικοσ χαρακτθριςτικϊν. Αρχικά, εμπεριζχει μια βάςθ γνϊςθσ θ οποία περιγράφει όλθ τθ διακζςιμθ γνϊςθ. Επίςθσ, θ περιγραφι τθσ γνϊςθσ για το περιβάλλον, το πρότυπο ςυμπεριφοράσ όπωσ επίςθσ και τθν ςτρατθγικι/πολιτικι επιτυγχάνεται μζςω τθσ βάςθσ κανόνων (rule bases). Το δεφτερο δομικό ςυςτατικό, ο reasoner, είναι μια ανεξάρτθτθ τρίτθ υπθρεςία που ζχει τθν ιδιότθτα, λαμβάνοντασ τθ βάςθ γνϊςθσ και τθ defeasible logic βάςθ κανόνων από τον πράκτορα, να τθν επεξεργάηεται και να εξάγει αποτελζςματα ςτθ μορφι RDF αρχείων. Πιο αναλυτικά, ρόλοσ του reasoner είναι να ακοφει διαρκϊσ για καινοφρια μθνφματα (ACL μθνφματα) και να φροντίηει ϊςτε να επικοινωνιςει με τθν κατάλλθλθ μθχανι και να ενθμερϊςει για τα τελικά αποτελζςματα. Ουςιαςτικά, αποτελεί το προφίλ τθσ reasoning μθχανισ ςτθν οποία κα εκτελεςτεί θ επερϊτθςθ του χριςτθ. Συνεπϊσ, για τθν επικοινωνία του πράκτορα με τον reasoner ανταλλάςςονται δυο κατθγορίεσ ACL μθνυμάτων, τα REQUEST και INFORM αντίςτοιχα. 3

4 4 Μζχρι τϊρα το Emerald υποςτθρίηει τζςςερα reasoning engines, τα οποία χρθςιμοποιοφν ζνα πλικοσ από λογικζσ. Συγκεκριμζνα: DR-DEVICE: (defeasible reasoning) R-DEVICE: (deductive, Datalog-like rules) SPINdle:(defeasible logic engine) Prova: (prolog-like rule engine)

5 2. Επεκτάςεισ & Υλοποίηςη Σκοπόσ τθσ παροφςασ δουλειάσ είναι να επεκτείνει το device reasoning, με κατάλλθλεσ τροποποιιςεισ, ϊςτε πλζον να υποςτθρίηει DR-Prolog επεκτείνοντασ ταυτόχρονα τθ λογικι και τισ δυνατότθτεσ των πρακτόρων. Οι αρμοδιότθτεσ τθσ δικισ μασ ομάδασ είναι οι εξισ: Καταςκευι προτφπου για τα ruleml αρχεία. Δθμιουργία βάςθ του παραπάνω προτφπου των αρχείων όπου εκφράηονται οι προτιμιςεισ και οι απαιτιςεισ του «πελάτθ», ςτο παράδειγμα broker customer. Καταςκευι αναλυτι (parser) με ςκοπό τθν μετατροπι των ruleml αρχείων ςε DR-Prolog ςφνταξθ. Καταςκευι αναλυτι (parser) με ςκοπό τθ μετατροπι τθσ βάςθσ γνϊςθσ από RDF ςε Prolog facts. Καταςκευι αναλυτι (parser) με ςκοπό τθ μετατροπι τθσ λίςτασ των τελικϊν αποτελεςμάτων που προκφπτουν από τθν επερϊτθςθ ςε RDF μορφι. Επζκταςθ του metaprogram ϊςτε να υποςτθρίηει αρικμθτικζσ παραςτάςεισ, ςυγκρίςεισ και τον κανόνα naf. Δθμιουργία μθχανισ για τθν εκτζλεςθ ερωτθμάτων και τθν επιςτροφι αποτελεςμάτων με βάςθ τισ προτιμιςεισ του «πελάτθ». Παρακάτω, περιγράφονται λεπτομζρειεσ τόςο τθσ λειτουργικότθτασ όςο και τθσ υλοποίθςθσ αυτϊν των κεμάτων. 2.1 Πρότυπο RuleML Οι κανόνεσ που εκφράηουν τισ απαιτιςεισ (carlo_1.ruleml) και προτιμιςεισ (carlo_2.ruleml) του πελάτθ εκφράςτθκαν με ζνα νζο πρότυπο που δθμιουργιςαμε το οποίο είναι επζκταςθ τθσ RuleML ςφνταξθσ. Για τθ δθμιουργία του προτφπου βαςιςτικαμε ςτο υπάρχον πρότυπο RuleML που χρθςιμοποιεί θ DR-Prolog και εν μζρθ ςτα RuleML αρχεία από το Αριςτοτζλειο Πανεπιςτιμιο Θεςςαλονίκθσ. Η ςφνταξθ που επιλζξαμε για το πρότυπο είναι τζτοια ϊςτε να είναι εφαρμόςιμθ ςτθν DR-Prolog, εφκολα αναγνϊςιμθ και επεκτάςιμθ. Το ςχιμα του προτφπου (DTD) επιςυνάπτεται ςτο φάκελο τθσ εργαςίασ (dr-prolog.dtd). 2.2 Μετατροπή ruleml ςε DR-Prolog: RuleMLParser Για τθν εξαγωγι των κανόνων DR-Prolog, δθμιουργικθκε ο μετατροπζασ RuleMLparser. Σκοπόσ του είναι από τα RuleML αρχεία να εξάγει τουσ DR-Prolog κανόνεσ. Ο μετατροπζασ ζχει γραφτεί εξ ολοκλιρου ςτθ γλϊςςα Java και αποτελείται από δφο κλάςεισ, τθν κεντρικι κλάςθ RuleMLparser.java και τθν βοθκθτικι κλάςθ Tagger.java. Δζχεται ςαν είςοδο ζνα αρχείο RuleML και δθμιουργεί ζνα νζο αρχείο.p με τουσ κανόνεσ εκφραςμζνουσ ςε DR-Prolog ςφνταξθ. Η κλάςθ RuleMLparser.java περιζχει τζςςερισ ςτατικζσ μεκόδουσ. Η πρϊτθ μζκοδοσ είναι θ void createrules(file ruleml). Αυτι θ μζκοδοσ διαβάςει το RuleML αρχείο και δθμιουργεί τουσ κανόνεσ. Πιο αναλυτικά, χωρίηει το αρχείο ςε διακριτά μζρθ ζτςι ϊςτε να ξεχωρίςει τουσ κανόνεσ. Στθ ςυνζχεια, χωρίηει κάκε κανόνα ςε επιμζρουσ τμιματα και καλεί τισ κατάλλθλεσ ςυναρτιςεισ για να τα επεξεργαςτοφν. Κάκε επιμζρουσ ςυνάρτθςθ δζχεται ζνα από τα παραπάνω τμιματα και παράγει το αντίςτοιχο μζροσ του κάκε κανόνα. Στο τζλοσ, όλα τα τμιματα ενϊνονται, 5

6 ςχθματίηοντασ ζτςι τουσ τελικοφσ κανόνεσ. Για παράδειγμα, από το παρακάτω κομμάτι RuleML ςφνταξθσ (εικόνα 1), παράγεται ο κανόνασ τθσ εικόνασ 2. <Implies ruletype="defeasiblerule"> <oid>r1</oid> <head> <Atom neg="no"> <Rel>acceptable</Rel> <Slot type="var">x</slot> <Slot type="var">υ</slot> <Slot type="var">ζ</slot> <Slot type="var">w</slot> </Atom> </head> <body> <part type="atom"> <Rel>name</Rel> <Slot type="var">x</slot> <Slot type="var">x</slot> </part> <part type="atom"> <Rel>price</Rel> <Slot type="var">x</slot> <Slot type="var">y</slot> </part> <part type="atom"> <Rel>size</Rel> <Slot type="var">x</slot> <Slot type="var">z</slot> </part> <part type="atom"> <Rel>gardenSize</Rel> <Slot type="var">x</slot> <Slot type="var">w</slot> </part> </body> </Implies> Εικόνα 1. Τμήμα ruleml αρχείου defeasible(r1,acceptable(x,y,z,w),[name(x,x),price(x,y),size(x,z),gardensize(x,w)]). Εικόνα 2. Κανόνασ ςε DR-Prolog ςφνταξη Η δεφτερθ μζκοδοσ είναι θ String getquery(file ruleml). Αυτι θ μζκοδοσ βρίςκει το ερϊτθμα (Query) ςτο RuleML, το μετατρζπει ςε DR-Prolog ςφνταξθ και επιςτρζφει ζνα αλφαρικμθτικό που το αναπαριςτά (εικόνα 3). defeasibly(acceptable(x,y,z,w)) %(apartment, price, size, gardensize) Εικόνα 3. Ερώτημα ςε DR-Prolog ςφνταξη 6

7 Η τρίτθ μζκοδοσ είναι θ String getquerymode(file ruleml). Αυτι θ μζκοδοσ επιςτρζφει τον τφπο του ερωτιματοσ. Ο τφποσ μπορεί να είναι είτε answer είτε proof. Η τελευταία μζκοδοσ είναι θ String getqueryvars(file ruleml). Η μζκοδοσ αυτι επιςτρζφει τισ μεταβλθτζσ του ερωτιματοσ. Σκοπόσ τθσ είναι θ εφρεςθ των μεταβλθτϊν του ερωτιματοσ για τθν καταςκευι τθσ δομισ τθσ επιςτρεφόμενθσ λίςτασ. Η κλάςθ Tagger.java είναι μία βοθκθτικι κλάςθ για τθν ανάγνωςθ XML κϊδικα. Περιζχει ζνα ςφνολο από ςυναρτιςεισ που βρίςκουν ετικζτεσ και εξάγουν το περιεχόμενο τουσ. Για παράδειγμα, θ ςυνάρτθςθ String getfirsttagdata(string thetag), δζχεται ζνα όνομα ετικζτασ, πχ Head και επιςτρζφει ζνα αλφαρικμθτικό με το περιεχόμενο αυτισ τθσ ετικζτασ. 2.3 Μετατροπή RDF ςε DR-Prolop: RdfParser Στα πλαίςια τθσ ενςωμάτωςθσ τθσ DR-Prolog ςτθ μθχανι του Emerald, κρίκθκε απαραίτθτθ θ μετατροπι τθσ βάςθσ γνϊςθσ που χρθςιμοποιεί, από τθ μορφι RDF ςτθν οποία βρίςκεται, ςε Prolog facts. Για το ςκοπό αυτό υλοποιικθκε θ κλάςθ RdfParser. Η κλάςθ αυτι είναι γραμμζνθ εξ ολοκλιρου ςε java και πραγματοποιεί αυτι τθ μετατροπι. Συγκεκριμζνα, θ μζκοδοσ toprolog δζχεται ωσ είςοδο το rdf αρχείο τθσ βάςθσ γνϊςθσ και το όνομα του παραγόμενου prolog αρχείου. Κάνοντασ χριςθ του μοντζλου Semantic Web Knowledge Μiddleware ανακτάται θ πλθροφορία υπό τθ μορφι τριπλετϊν και ςτθ ςυνζχεια, μζςω τθσ μεκόδου tostring γράφεται ςε Prolog facts. Ζνα παράδειγμα που περιγράφει τθν μετατροπι αυτι φαίνεται παρακάτω. Στθν πρϊτθ εικόνα παρουςιάηεται θ αρχικι μορφι τθσ βάςθσ γνϊςθσ ενϊ ςτθ δεφτερθ θ παραγόμενθ Prolog μορφι: <tour:hotel rdf:id="cretamareroyal"> <tour:resortid>1</tour:resortid> <tour:hotelname>creta Mare Royal</tour:hotelName> <tour:hotelstars>6</tour:hotelstars> <tour:hotelcategory>business</tour:hotelca tegory> <tour:parking>true</tour:parking> Εικόνα 4. RDF μορφή fact(type(cretamareroyal,hotel)). fact(resortid(cretamareroyal,1)). fact(hotelname(cretamareroyal,creta Mare Royal)). fact(hotelstars(cretamareroyal,6)). fact(hotelcategory(cretamareroyal,business )). fact(parking(cretamareroyal,true)). fact(swimmingpool(cretamareroyal,true)). fact(breakfast(cretamareroyal,true)). Εικόνα 5. DR-Prolog facts public static void toprolog (String fromfile, String tofile) Εικόνα 6. Υπογραφή Μεθόδου 7

8 2.4 Μετατροπή αποτελεςμάτων ςε RDF: ResultParser Ζνασ από τουσ ςτόχουσ τθσ εργαςίασ ιταν, παρά τθν ενςωμάτωςθ τθσ DR-Prolog ςτο Emerald, να μθν επθρεαςτεί θ αλλθλεπίδραςθ με το χριςτθ όςον αφορά τθ μορφι των μθνυμάτων που ανταλλάςςονται μεταξφ τουσ. Για το ςκοπό αυτό κρίκθκε αναγκαία θ δθμιουργία ενόσ μθχανιςμοφ ο οποίοσ κα μετατρζπει το αποτζλεςμα του query, το οποίο επιςτρζφεται υπό μορφι λίςτασ Prolog, ςε μορφι rdf. Δθμιουργιςαμε ζτςι τθν κλάςθ ResultParser, θ οποία είναι υπεφκυνθ γι αυτι τθ μετατροπι. Συγκεκριμζνα, θ μζκοδοσ tordf δζχεται ωσ ορίςματα το query, το όνομα του και τθ λίςτα των αποτελεςμάτων και επιςτρζφει ζνα αρχείο rdf με τα αποτελζςματα του query. Το τελικό rdf δεν περιζχει πλζον όλθ τθν πλθροφορία που διατθρείται ςτθ βάςθ για τα επιςτρεφόμενα αποτελζςματα, παρά μόνο αυτιν που ηθτείται μζςω του query. Για το λόγο αυτό χρειάηονται οι μεταβλθτζσ του query, οφτωσ ϊςτε να μπορεί να γίνει θ αντιςτοίχθςθ των τιμϊν των αποτελεςμάτων με αυτζσ. Στο παράδειγμα που ακολουκεί περιγράφεται θ παραπάνω λειτουργικότθτα: nondeterministicgoal(x, defeasibly(acceptable(x,y,z,w)), ListModel) Εικόνα 7. Query Results = [a3,350,65,0,a5,350,55,15] Εικόνα 8. Λίςτα αποτελεςμάτων ςε Prolog public void tordf(string query, String queryname, String result, String filename) Εικόνα 9 Υπογραφή Μεθόδου 8

9 <?xml version="1.0" encoding="utf-8"?> <!DOCTYPE rdf:rdf [<!ENTITY rdf ' <!ENTITY rdfs ' <!ENTITY xsd ' <!ENTITY dr-device 'file:/c:/jade/emerald/conclusions/projectvo58.rdf#'> ]> <rdf:rdf xmlns:drdevice="file:/c:/jade/emerald/conclusions/projectvo58.rdf#" xmlns:rdf=" xmlns:rdfs=" <rdfs:class rdf:about="acceptable"> <rdfs:label>acceptable</rdfs:label> </rdfs:class> <rdf:property rdf:about="#x"> <rdfs:domain rdf:resource="#acceptable"/> </rdf:property> <rdf:property rdf:about="#y"> <rdfs:domain rdf:resource="#acceptable"/> </rdf:property> <rdf:property rdf:about="#z"> <rdfs:domain rdf:resource="#acceptable"/> </rdf:property> <rdf:property rdf:about="#w"> <rdfs:domain rdf:resource="#acceptable"/> </rdf:property> <dr-device:acceptable rdf:about="#acceptable0"> <dr-device:x>a3</dr-device:x> <dr-device:y>350</dr-device:y> <dr-device:z>65</dr-device:z> <dr-device:w>0</dr-device:w> </dr-device:acceptable> <dr-device:acceptable rdf:about="#acceptable1"> <dr-device:x>a5</dr-device:x> <dr-device:y>350</dr-device:y> <dr-device:z>55</dr-device:z> <dr-device:w>15</dr-device:w> </dr-device:acceptable> </rdf:rdf> Εικόνα 10. Τελικό αποτζλεςμα ςε RDF 9

10 2.5 Metaprogram Η υπάρχουςα ζκδοςθ του metaprogram δεν υποςτιριηε κάποιεσ λειτουργίεσ που ιταν απαραίτθτεσ για τθν εκτζλεςθ των ερωτθμάτων. Γι αυτό το λόγο χρειάςτθκε να αναβακμιςτεί ϊςτε να υποςτθρίηει τισ παρακάτω λειτουργίεσ: Σφγκριςθ αρικμϊν και υπολογιςμόσ αρικμθτικϊν παραςτάςεων Υποςτιριξθ του κανόνα naf Σύγκριςη αριθμών και υπολογιςμόσ αριθμητικών παραςτάςεων Για τθν ςφγκριςθ αρικμϊν ειςάγαμε τουσ παρακάτω 5 κανόνεσ: definitely(x<y):- compute([x,+,0],k), compute([y,+,0],m), M. definitely(x>y):- compute([x,+,0],k), compute([y,+,0],m), M. definitely(x>=y):- compute([x,+,0],k), compute([y,+,0],m), M. definitely(x=<y):- compute([x,+,0],k), compute([y,+,0],m), M. definitely(x\==y):- X \== Y. Ο πρϊτοσ κανόνασ ελζγχει αν το Χ είναι μικρότερο του Y. Ο δεφτεροσ αν ο Χ είναι μεγαλφτεροσ του Υ. Ο τρίτοσ αν ο Χ είναι μεγαλφτεροσ ι ίςοσ του Υ. Ο τζταρτοσ αν ο Χ είναι μικρότεροσ ι ίςοσ του Υ και ο τελευταίοσ αν ο Χ είναι διαφορετικόσ από το Υ. Κακϊσ μπαίνουμε ςτο κάκε κανόνα καλείται ο κανόνασ compute. H παρουςία του κανόνα compute είναι απαραίτθτθ και ο λόγοσ είναι ότι κζλουμε ταυτόχρονα να ςυγκρίνουμε και αρικμοφσ αλλά και αρικμθτικζσ παραςτάςεισ. Ο λόγοσ για τον οποίο καλοφμε τθ compute με λίςτα είναι ότι οι αρικμθτικζσ παραςτάςεισ πρζπει να ζχουν ςυγκεκριμζνθ μορφι. Για παράδειγμα μια απλι αρικμθτικι παράςταςθ είναι θ *100,+,200+ θ οποία εκφράηει τθν πρόςκεςθ δυο αρικμϊν, του 100 με το 200. Γενικϊσ, οι αρικμθτικζσ παραςτάςεισ κα πρζπει να εκφράηονται ςε μορφι λίςτασ και θ κάκε λίςτα εμφωλευμζνθ ι μθ κα πρζπει να ζχει τρία μζλθ: αριςτερό μζλοσ(αρικμόσ ι λίςτα), δεξί μζλοσ(αρικμόσ ι λίςτα) και μεςαίο μζλοσ(τελεςτισ πράξθσ). Για παράδειγμα αν κζλαμε να κάνουμε τθ πράξθ του πολλαπλαςιαςμοφ δυο αρικμϊν όπου ο δεφτεροσ αρικμόσ προκφπτει από τθ πρόςκεςθ άλλων δυο (κζλουμε να κρατιςουμε τθ προτεραιότθτα των πράξεων), τότε προκφπτει θ εξισ ζκφραςθ: **10,+,20+, *, 5+. Στθ περίπτωςθ που ζχουμε μόνο αρικμοφσ να ςυγκρίνουμε τότε καλείται πάλι θ compute. Επειδι όμωσ κα αντιμετωπίηαμε πρόβλθμα από τθ ςτιγμι που θ compute δζχεται μόνο λίςτεσ, ζτςι αναγκαςτικαμε να μετατρζψουμε τον αρικμό ςε λίςτα με ζναν πολφ απλό τρόπο: *Χ,+,0+, το οποίο κα επιςτρζφει πάντα Χ. Με αυτό το τρόπο παρακάμπτουμε τθν compute. Η υλοποίθςθ τθσ compute είναι απλι και βαςίηεται ςτθ λογικι τθσ επίςκεψθσ κάκε κόμβου ενόσ δζντρου. Από τθ ςτιγμι που μια αρικμθτικι παράςταςθ μπορεί να αποτελείται από πολλά επίπεδα εμφωλευμζνων πράξεων λιςτϊν είναι ςαν να δουλεφουμε πάνω ςε κάποιο δζντρο. Ο υπολογιςμόσ των πράξεων ξεκινάει από χαμθλά, από τα φφλλα του δζντρου και καταλιγει ςτθ ρίηα όπου και επιςτρζφεται το τελικό αποτζλεςμα. Παρακάτω παρατίκεται θ υλοποίθςθ τθσ: 10

11 compute([h1, H2, H3 _], K2) :- compute(h1, K), compute([k, H2, H3], K2). compute([x, Y, Z _], K) :- number(x), number(z), Y == *, K is X * Z. compute([x, Y, Z _], K) :- number(x), number(z), Y == /, K is X / Z. compute([x, Y, Z _], K) :- number(x), number(z), Y == +, K is X + Z. compute([x, Y, Z _], K) :- number(x), number(z), Y == -, K is X - Z. compute([h1, H2, H3 _], K2) :- compute(h3, K), compute([h1, H2, K], K2) Κανόνασ naf Η τελευταία αναβάκμιςθ που ζγινε ιταν θ ειςαγωγι του κανόνα naf: definitely(naf(x,z,m)):- not(naf(x,z,m)). Ο παραπάνω κανόνασ χρειάςτθκε ςτο παράδειγμά μασ για τισ προτιμιςεισ του πελάτθ. 2.6 Μηχανή Για τον ζλεγχο των λειτουργιϊν που υλοποιιςαμε καταςκευάςαμε μία μθχανι θ οποία αρχικά φορτϊνει τισ απαιτιςεισ και προτιμιςεισ του πελάτθ (ruleml αρχεία), τθ βάςθ γνϊςθσ (facts.p) και τζλοσ το metaprogram. Στθ ςυνζχεια καλείται ο αναλυτισ ο οποίοσ παράγει τουσ κανόνεσ, τουσ αποκθκεφει ςε ξεχωριςτό αρχείο και ταυτόχρονα τουσ φορτϊνει ςτθ μθχανι. Με ςυναρτιςεισ του αναλυτι, εξάγουμε το ερϊτθμα, τον τφπο και τισ μεταβλθτζσ του κακϊσ και το τι αντιπροςωπεφει θ κάκε μεταβλθτι. Για παράδειγμα, θ μεταβλθτι X του ςχιματοσ 3 αντιπροςωπεφει το όνομα του διαμερίςματοσ. Τζλοσ, ςαν αποτζλεςμα επιςτρζφεται μία λίςτα θ οποία ζχει μορφι ανάλογθ των μεταβλθτϊν του ερωτιματοσ. Για παράδειγμα, για το ερϊτθμα του ςχιματοσ 3, θ απάντθςθ είναι: result=[a3,350,65,0,a5,350,55,15,a7,375,65,12] Το παραπάνω αποτζλεςμα αποκθκεφεται ςε ζνα αρχείο με όνομα result.txt. 11

12 3. Παραδοτέα 1. carlo_1.ruleml 2. carlo_2.ruleml 3. dr-prolog.dtd 4. amb_metaprogram_add.p 5. RdfParser.java 6. ResultArray.java 7. ResultParser.java 8. ResultType.java 9. Engine.java 10. RuleMLparser.java 11. Tagger.java 12

Semantic Web. from DR-Device to DR-Prolog. Mathioudakis Georgios Bouloukakis Georgios

Semantic Web. from DR-Device to DR-Prolog. Mathioudakis Georgios Bouloukakis Georgios Semantic Web from DR-Device to DR-Prolog Konsolaki Konstantina konsolak@csd.uoc.gr Fafalios Pavlos fafalios@csd.uoc.gr Mathioudakis Georgios gmathiou@csd.uoc.gr Bouloukakis Georgios boulouk@csd.uoc.gr

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ. Κεφάλαιο 8 Η γλϊςςα Pascal

ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ. Κεφάλαιο 8 Η γλϊςςα Pascal ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ Κεφάλαιο 8 Η γλϊςςα Pascal Παράγραφοσ 8.2 Βαςικοί τφποι δεδομζνων Σα δεδομζνα ενόσ προγράμματοσ μπορεί να: είναι αποκθκευμζνα εςωτερικά ςτθν μνιμθ είναι αποκθκευμζνα εξωτερικά

Διαβάστε περισσότερα

ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 7 θ Διάλεξθ Διαχείριςθ Μνιμθσ Μζροσ Γ

ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 7 θ Διάλεξθ Διαχείριςθ Μνιμθσ Μζροσ Γ ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ 7 θ Διάλεξθ Διαχείριςθ Μνιμθσ Μζροσ Γ ελιδοποίθςθ (1/10) Σόςο θ κατάτμθςθ διαμεριςμάτων ςτακεροφ μεγζκουσ όςο και θ κατάτμθςθ διαμεριςμάτων μεταβλθτοφ και άνιςου μεγζκουσ δεν κάνουν

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2: ΤΟ ΛΟΓΙΣΜΙΚΟ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ. ΚΕΦΑΛΑΙΟ 5: Γνωριμία με το λογιςμικό του υπολογιςτι

ΕΝΟΤΗΤΑ 2: ΤΟ ΛΟΓΙΣΜΙΚΟ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ. ΚΕΦΑΛΑΙΟ 5: Γνωριμία με το λογιςμικό του υπολογιςτι ΕΝΟΤΗΤΑ 2: ΤΟ ΛΟΓΙΣΜΙΚΟ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ ΚΕΦΑΛΑΙΟ 5: Γνωριμία με το λογιςμικό του υπολογιςτι Λογιςμικό (Software), Πρόγραμμα (Programme ι Program), Προγραμματιςτισ (Programmer), Λειτουργικό Σφςτθμα (Operating

Διαβάστε περισσότερα

Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2

Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Δρ. Χρήζηος Ηλιούδης Μθ Προςθμαςμζνοι Ακζραιοι Εφαρμογζσ (ςε οποιαδιποτε περίπτωςθ δεν χρειάηονται αρνθτικοί αρικμοί) Καταμζτρθςθ. Διευκυνςιοδότθςθ.

Διαβάστε περισσότερα

Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο του Άβακα

Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο του Άβακα Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο του Άβακα Αυτζσ οι οδθγίεσ ζχουν ςτόχο λοιπόν να βοθκιςουν τουσ εκπαιδευτικοφσ να καταςκευάςουν τισ δικζσ τουσ δραςτθριότθτεσ με το μοντζλο του Άβακα. Παρουςίαςη

Διαβάστε περισσότερα

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό.

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό. Κωδικοποιητές Ο κωδικοποιθτισ (nor) είναι ζνα κφκλωμα το οποίο διακζτει n γραμμζσ εξόδου και το πολφ μζχρι m = 2 n γραμμζσ ειςόδου και (m 2 n ). Οι ζξοδοι παράγουν τθν κατάλλθλθ λζξθ ενόσ δυαδικοφ κϊδικα

Διαβάστε περισσότερα

Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο τησ Αριθμογραμμήσ

Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο τησ Αριθμογραμμήσ Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο τησ Αριθμογραμμήσ Αυτζσ οι οδθγίεσ ζχουν ςτόχο να βοθκιςουν τουσ εκπαιδευτικοφσ να καταςκευάςουν τισ δικζσ τουσ δραςτθριότθτεσ με το μοντζλο τθσ Αρικμογραμμισ.

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ. Φιλιοποφλου Ειρινθ

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ. Φιλιοποφλου Ειρινθ ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ Φιλιοποφλου Ειρινθ Προςθήκη νζων πεδίων Ασ υποκζςουμε ότι μετά τθ δθμιουργία του πίνακα αντιλαμβανόμαςτε ότι ζχουμε ξεχάςει κάποια πεδία. Είναι ζνα πρόβλθμα το οποίο

Διαβάστε περισσότερα

Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν:

Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν: Μζθοδος Simplex Η πλζον γνωςτι και περιςςότερο χρθςιμοποιουμζνθ μζκοδοσ για τθν επίλυςθ ενόσ γενικοφ προβλιματοσ γραμμικοφ προγραμματιςμοφ, είναι θ μζκοδοσ Simplex θ οποία αναπτφχκθκε από τον George Dantzig.

Διαβάστε περισσότερα

Εισαγωγικές έννοιες. Αντώνησ Κ Μαώργιώτησ

Εισαγωγικές έννοιες. Αντώνησ Κ Μαώργιώτησ Εισαγωγικές έννοιες Αντώνησ Κ Μαώργιώτησ Έννοιεσ που πρϋπει να επιβεβαιώςουμε ότι τισ ξϋρουμε (1) - αναζότηςη Ιςτοςελίδα Αρχείο που περιζχει πλθροφορίεσ προοριςμζνεσ για δθμοςίευςθ ςτο Παγκόςμιο Ιςτό (www).

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση Συγγραφή:

Διαβάστε περισσότερα

Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8

Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Διαχείριςθ Μνιμθσ Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Κάκε μεταβλθτι ςχετίηεται με μία κζςθ ςτθν κφρια μνιμθ του υπολογιςτι. Κάκε κζςθ ςτθ μνιμθ ζχει τθ δικι τθσ ξεχωριςτι διεφκυνςθ. Με άμεςθ

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΖσ ΒΆΕΩΝ ΔΕΔΟΜΖΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΥΟΤ. Ειρινθ Φιλιοποφλου

ΕΦΑΡΜΟΓΖσ ΒΆΕΩΝ ΔΕΔΟΜΖΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΥΟΤ. Ειρινθ Φιλιοποφλου ΕΦΑΡΜΟΓΖσ ΒΆΕΩΝ ΔΕΔΟΜΖΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΥΟΤ Ειρινθ Φιλιοποφλου Ειςαγωγι Ο Παγκόςμιοσ Ιςτόσ (World Wide Web - WWW) ι πιο απλά Ιςτόσ (Web) είναι μία αρχιτεκτονικι για τθν προςπζλαςθ διαςυνδεδεμζνων εγγράφων

Διαβάστε περισσότερα

Θεςιακά ςυςτιματα αρίκμθςθσ

Θεςιακά ςυςτιματα αρίκμθςθσ Θεςιακά ςυςτιματα αρίκμθςθσ Δρ. Χρήστος Ηλιούδης αρικμθτικό ςφςτθμα αρίκμθςθσ (Number System) Αξία (value) παράςταςθ Οι αξίεσ (π.χ. το βάροσ μιασ ποςότθτασ μιλων) μποροφν να παραςτακοφν με πολλοφσ τρόπουσ

Διαβάστε περισσότερα

ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι

ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι Παράςταςη κινητήσ υποδιαςτολήσ ςφμφωνα με το πρότυπο ΙΕΕΕ Δρ. Χρήστος Ηλιούδης το πρότυπο ΙΕΕΕ 754 ζχει χρθςιμοποιθκεί ευρζωσ ςε πραγματικοφσ υπολογιςτζσ. Το πρότυπο αυτό κακορίηει δφο βαςικζσ μορφζσ κινθτισ

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2: ΕΠΙΚΟΙΝΩΝΩ ΜΕ ΤΟΝ ΥΠΟΛΟΓΙΣΤΗ. ΚΕΦΑΛΑΙΟ 5: Αρχεία - Φάκελοι

ΕΝΟΤΗΤΑ 2: ΕΠΙΚΟΙΝΩΝΩ ΜΕ ΤΟΝ ΥΠΟΛΟΓΙΣΤΗ. ΚΕΦΑΛΑΙΟ 5: Αρχεία - Φάκελοι ΕΝΟΤΗΤΑ 2: ΕΠΙΚΟΙΝΩΝΩ ΜΕ ΤΟΝ ΥΠΟΛΟΓΙΣΤΗ Αρχείο (File) Φάκελοσ (Folder) Διαχειριςτισ Αρχείων (File Manager) Τφποι Αρχείων Σε τι εξυπθρετεί θ οργάνωςθ των εργαςιϊν μασ ςτουσ υπολογιςτζσ; Πϊσ κα οργανϊςουμε

Διαβάστε περισσότερα

TIM Εικονικό Περιβάλλον Συνεργασίας Οδθγίεσ Χριςθσ

TIM Εικονικό Περιβάλλον Συνεργασίας Οδθγίεσ Χριςθσ www.timproject.eu www.tim.project-platform.eu TIM Εικονικό Περιβάλλον Συνεργασίας Οδθγίεσ Χριςθσ This project has been founded with support form the European Commission. This presentation reflects the

Διαβάστε περισσότερα

Α) Ενδεικτικϋσ απαντόςεισ των θεμϊτων

Α) Ενδεικτικϋσ απαντόςεισ των θεμϊτων Πανελλόνιεσ εξετϊςεισ Γ Τϊξησ 2011 Ανϊπτυξη Εφαρμογών ςε Προγραμματιςτικό Περιβϊλλον ΘΕΜΑ Α Α) Ενδεικτικϋσ απαντόςεισ των θεμϊτων Α1. Σ/Λ 1. Σωςτι 2. Σωςτι 3. Λάκοσ 4. Λάκοσ 5. Λάκοσ Α2. Σ/Λ 1. Σωςτι 2.

Διαβάστε περισσότερα

Διαχείριςθ του φακζλου "public_html" ςτο ΠΣΔ

Διαχείριςθ του φακζλου public_html ςτο ΠΣΔ Διαχείριςθ του φακζλου "public_html" ςτο ΠΣΔ Οι παρακάτω οδθγίεσ αφοροφν το χριςτθ webdipe. Για διαφορετικό λογαριαςμό χρθςιμοποιιςτε κάκε φορά το αντίςτοιχο όνομα χριςτθ. = πατάμε αριςτερό κλικ ςτο Επιςκεφκείτε

Διαβάστε περισσότερα

Ιδιότθτεσ πεδίων Γενικζσ.

Ιδιότθτεσ πεδίων Γενικζσ. Οι ιδιότθτεσ των πεδίων διαφζρουν ανάλογα με τον τφπο δεδομζνων που επιλζγουμε. Ορίηονται ςτο κάτω μζροσ του παρακφρου ςχεδίαςθσ του πίνακα, ςτθν καρτζλα Γενικζσ. Ιδιότθτα: Μζγεκοσ πεδίου (Field size)

Διαβάστε περισσότερα

Η γλώςςα προγραμματιςμού C

Η γλώςςα προγραμματιςμού C Η γλώςςα προγραμματιςμού C Οι εντολζσ επανάλθψθσ (while, do-while, for) Γενικά για τισ εντολζσ επανάλθψθσ Συχνά ςτο προγραμματιςμό είναι επικυμθτι θ πολλαπλι εκτζλεςθ μιασ ενότθτασ εντολϊν, είτε για ζνα

Διαβάστε περισσότερα

Λαμβάνοντασ υπόψη ότι κατά την πρόςθεςη δφο δυαδικϊν ψηφίων ιςχφει: Κρατοφμενο

Λαμβάνοντασ υπόψη ότι κατά την πρόςθεςη δφο δυαδικϊν ψηφίων ιςχφει: Κρατοφμενο Αριθμητικά κυκλώματα Ημιαθροιστής (Half Adder) Ο ημιαθροιςτήσ είναι ζνα κφκλωμα το οποίο προςθζτει δφο δυαδικά ψηφία (bits) και δίνει ωσ αποτζλεςμα το άθροιςμά τουσ και το κρατοφμενο. Με βάςη αυτή την

Διαβάστε περισσότερα

Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα

Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα Περιεχόμενα Ζννοια δομισ Οριςμόσ δομισ Διλωςθ μεταβλθτϊν Απόδοςθ Αρχικϊν τιμϊν Αναφορά ςτα μζλθ μιασ δομισ Ζνκεςθ Δομισ Πίνακεσ Δομϊν Η ζννοια τθσ δομισ Χρθςιμοποιιςαμε

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο)

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Ιοφνιοσ 2013 Περιεχόμενα: Ειςαγωγή... 3 1.Εθνικό Τυπογραφείο... 3 1.1. Είςοδοσ... 3 1.2. Αρχική Οθόνη... 4 1.3. Διεκπεραίωςη αίτηςησ...

Διαβάστε περισσότερα

Βάςεισ Δεδομζνων Ι. Ενότητα 12: Κανονικοποίηςη. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ

Βάςεισ Δεδομζνων Ι. Ενότητα 12: Κανονικοποίηςη. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ Βάςεισ Δεδομζνων Ι Ενότητα 12: Κανονικοποίηςη Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Σφντομεσ Οδθγίεσ Χριςθσ

Σφντομεσ Οδθγίεσ Χριςθσ Σφντομεσ Οδθγίεσ Χριςθσ Περιεχόμενα 1. Επαφζσ... 3 2. Ημερολόγιο Επιςκζψεων... 4 3. Εκκρεμότθτεσ... 5 4. Οικονομικά... 6 5. Το 4doctors ςτο κινθτό ςου... 8 6. Υποςτιριξθ... 8 2 1. Επαφζσ Στισ «Επαφζσ»

Διαβάστε περισσότερα

Ηλεκτρονικι Επιχειρθςιακι Δράςθ Εργαςτιριο 1

Ηλεκτρονικι Επιχειρθςιακι Δράςθ Εργαςτιριο 1 1. Εγκατάςταςη Xampp Προκειμζνου να γίνει θ εγκατάςταςθ κα πρζπει πρϊτα να κατεβάςετε και εγκαταςτιςετε το XAMPP ωσ ακολοφκωσ. 1.1. Πάμε ςτθν ακόλουκθ διεφκυνςθ https://www.apachefriends.org/download.html

Διαβάστε περισσότερα

Διαδικαςία Προγράμματοσ Ωρομζτρθςθσ. (v.1.0.7)

Διαδικαςία Προγράμματοσ Ωρομζτρθςθσ. (v.1.0.7) (v.1.0.7) 1 Περίλθψθ Σο ςυγκεκριμζνο εγχειρίδιο δθμιουργικθκε για να βοθκιςει τθν κατανόθςθ τθσ Διαδικαςίασ Προγράμματοσ Ωρομζτρθςθσ. Παρακάτω προτείνεται μια αλλθλουχία ενεργειϊν τθν οποία ο χριςτθσ πρζπει

Διαβάστε περισσότερα

Ειςαγωγι ςτο Δομθμζνο Προγραμματιςμό. Βαγγζλθσ Οικονόμου

Ειςαγωγι ςτο Δομθμζνο Προγραμματιςμό. Βαγγζλθσ Οικονόμου Ειςαγωγι ςτο Δομθμζνο Προγραμματιςμό Βαγγζλθσ Οικονόμου Περιεχόμενα Πλθροφορίεσ Μακιματοσ Δομθμζνοσ Προγραμματιςμόσ (Οριςμοί, Γενικζσ Ζννοιεσ) Αλγόρικμοι και Ψευδοκϊδικασ Γλϊςςα προγραμματιςμοφ C Πλθροφορίεσ

Διαβάστε περισσότερα

ΛΕΙΤΟΥΓΙΚΆ ΣΥΣΤΉΜΑΤΑ. 5 ο Εργαςτιριο Ειςαγωγι ςτθ Γραμμι Εντολϊν

ΛΕΙΤΟΥΓΙΚΆ ΣΥΣΤΉΜΑΤΑ. 5 ο Εργαςτιριο Ειςαγωγι ςτθ Γραμμι Εντολϊν ΛΕΙΤΟΥΓΙΚΆ ΣΥΣΤΉΜΑΤΑ 5 ο Εργαςτιριο Ειςαγωγι ςτθ Γραμμι Εντολϊν Τι είναι θ Γραμμι Εντολϊν (1/6) Στουσ πρϊτουσ υπολογιςτζσ, και κυρίωσ από τθ δεκαετία του 60 και μετά, θ αλλθλεπίδραςθ του χριςτθ με τουσ

Διαβάστε περισσότερα

Πωσ δθμιουργώ φακζλουσ;

Πωσ δθμιουργώ φακζλουσ; Πωσ δθμιουργώ φακζλουσ; Για να μπορζςετε να δθμιουργιςετε φακζλουσ ςτο χαρτοφυλάκιό ςασ ςτο Mahara κα πρζπει να μπείτε ςτο ςφςτθμα αφοφ πατιςετε πάνω ςτο ςφνδεςμο Mahara profiles από οποιοδιποτε ςελίδα

Διαβάστε περισσότερα

Περιεχόμενα. χολι Χοροφ Αντιγόνθ Βοφτου - Πολιτικι Διαχείριςθσ Cookie 1

Περιεχόμενα. χολι Χοροφ Αντιγόνθ Βοφτου - Πολιτικι Διαχείριςθσ Cookie 1 Περιεχόμενα Περιεχόμενα... 1 1. Ειςαγωγή... 2 1.1 Σχετικά... 2 2. Γενικέσ Πληροφορίεσ για τα Cookies... 2 2.1 Οριςμόσ... 2 2.2 Χρήςη... 3 2.3 Τφποι... 3 2.4 Έλεγχοσ... 3 3. Cookies Σχολήσ... 4 3.1 Ειςαγωγή...

Διαβάστε περισσότερα

Αςφάλεια και Προςταςία Δεδομζνων

Αςφάλεια και Προςταςία Δεδομζνων Αςφάλεια και Προςταςία Δεδομζνων Μοντζλα Αςφάλειασ Σςιρόπουλοσ Γεϊργιοσ ΣΙΡΟΠΟΤΛΟ ΓΕΩΡΓΙΟ 1 Μοντζλα Αςφάλειασ Οι μθχανιςμοί που είναι απαραίτθτοι για τθν επιβολι μιασ πολιτικισ αςφάλειασ ςυμμορφϊνονται

Διαβάστε περισσότερα

8 τριγωνομετρία. βαςικζσ ζννοιεσ. γ ςφω. εφω και γ. κεφάλαιο

8 τριγωνομετρία. βαςικζσ ζννοιεσ. γ ςφω. εφω και γ. κεφάλαιο κεφάλαιο 8 τριγωνομετρία Α βαςικζσ ζννοιεσ τθν τριγωνομετρία χρθςιμοποιοφμε τουσ τριγωνομετρικοφσ αρικμοφσ, οι οποίοι ορίηονται ωσ εξισ: θμω = απζναντι κάκετθ πλευρά υποτείνουςα Γ ςυνω = εφω = προςκείμενθ

Διαβάστε περισσότερα

ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ 4.1

ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ 4.1 ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ 4. Να γίνει πρόγραμμα το οποίο να επιλφει το Διαγώνιο Σφςτθμα: A ι το ςφςτθμα : ι ςε μορφι εξιςώςεων το ςφςτθμα : Αλγόρικμοσ m(). Διαβάηουμε τθν τιμι του ( θ διάςταςθ του Πίνακα Α )..

Διαβάστε περισσότερα

ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO

ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO Το Micro Worlds Pro είναι ζνα ολοκλθρωμζνο περιβάλλον προγραμματιςμοφ. Χρθςιμοποιεί τθ γλϊςςα προγραμματιςμοφ Logo (εξελλθνιςμζνθ) Το Micro Worlds Pro περιλαμβάνει

Διαβάστε περισσότερα

Σφςτημα Κεντρικήσ Υποςτήριξησ τησ Πρακτικήσ Άςκηςησ Φοιτητών ΑΕΙ

Σφςτημα Κεντρικήσ Υποςτήριξησ τησ Πρακτικήσ Άςκηςησ Φοιτητών ΑΕΙ Σφςτημα Κεντρικήσ Υποςτήριξησ τησ Πρακτικήσ Άςκηςησ Φοιτητών ΑΕΙ Οδηγόσ Χρήςησ Εφαρμογήσ Φορζων Υποδοχήσ Πρακτικήσ Άςκηςησ Αφοφ πιςτοποιθκεί ο λογαριαςμόσ που δθμιουργιςατε ςτο πρόγραμμα «Άτλασ» ωσ Φορζασ

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο)

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Πάτρα, 2013 Περιεχόμενα: Ειςαγωγή... 4 1. Επιμελητήριο... Error! Bookmark not defined. 1.1 Διαχειριςτήσ Αιτήςεων Επιμελητηρίου...

Διαβάστε περισσότερα

Κατά τθν ενεργοποίθςθ τθσ ιδιότθτασ αυτισ ενδζχεται να εμφανιςτεί ζνα μινυμα ςαν αυτό τθσ παρακάτω εικόνασ. Απλά επιβεβαιϊςτε πατϊντασ ΟΚ.

Κατά τθν ενεργοποίθςθ τθσ ιδιότθτασ αυτισ ενδζχεται να εμφανιςτεί ζνα μινυμα ςαν αυτό τθσ παρακάτω εικόνασ. Απλά επιβεβαιϊςτε πατϊντασ ΟΚ. Δημιουργία Πινάκων Για τθ δθμιουργία πινάκων ςτο περιβάλλον phpmyadmin μποροφμε είτε να χρθςιμοποιιςουμε τθ φόρμα δθμιουργίασ πίνακα, είτε να εκτελζςουμε ζνα ερϊτθμα SQL Στθ παρακάτω εικόνα φαίνεται μια

Διαβάστε περισσότερα

ΗΛΕΚΣΡΟΝΙΚΗ ΤΠΗΡΕΙΑ ΑΠΟΚΣΗΗ ΑΚΑΔΗΜΑΪΚΗ ΣΑΤΣΟΣΗΣΑ

ΗΛΕΚΣΡΟΝΙΚΗ ΤΠΗΡΕΙΑ ΑΠΟΚΣΗΗ ΑΚΑΔΗΜΑΪΚΗ ΣΑΤΣΟΣΗΣΑ ΗΛΕΚΣΡΟΝΙΚΗ ΤΠΗΡΕΙΑ ΑΠΟΚΣΗΗ ΑΚΑΔΗΜΑΪΚΗ ΣΑΤΣΟΣΗΣΑ Οδηγός Χρήσης Εφαρμογής Ελέγχου Προσφορών Αφοφ πιςτοποιθκεί ο λογαριαςμόσ που δθμιουργιςατε ςτο πρόγραμμα ωσ Πάροχοσ Προςφορϊν, κα λάβετε ζνα e-mail με

Διαβάστε περισσότερα

Ειδικά Θζματα Βάςεων Δεδομζνων

Ειδικά Θζματα Βάςεων Δεδομζνων Ειδικά Θζματα Βάςεων Δεδομζνων Ενότητα 11: Αντικειμενοςτραφήσ και αντικείμενοςχεςιακζσ βάςεισ Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Πλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Εργαςτιριο Βάςεων Δεδομζνων

Εργαςτιριο Βάςεων Δεδομζνων Εργαςτιριο Βάςεων Δεδομζνων 2010-2011 Μάθημα 1 ο 1 Ε. Σςαμούρα Σμήμα Πληροφορικήσ ΑΠΘ Σκοπόσ του 1 ου εργαςτθριακοφ μακιματοσ Σκοπόσ του πρϊτου εργαςτθριακοφ μακιματοσ είναι να μελετιςουμε ερωτιματα επιλογισ

Διαβάστε περισσότερα

ΑΝΣΙΣΡΟΦΗ ΤΝΑΡΣΗΗ. f y x y f A αντιςτοιχίηεται ςτο μοναδικό x A για το οποίο. Παρατθριςεισ Ιδιότθτεσ τθσ αντίςτροφθσ ςυνάρτθςθσ 1. Η. f A τθσ f.

ΑΝΣΙΣΡΟΦΗ ΤΝΑΡΣΗΗ. f y x y f A αντιςτοιχίηεται ςτο μοναδικό x A για το οποίο. Παρατθριςεισ Ιδιότθτεσ τθσ αντίςτροφθσ ςυνάρτθςθσ 1. Η. f A τθσ f. .. Αντίςτροφθ ςυνάρτθςθ Ζςτω θ ςυνάρτθςθ : A θ οποία είναι " ". Τότε ορίηεται μια νζα ςυνάρτθςθ, θ μζςω τθσ οποίασ το κάκε ιςχφει y. : A με Η νζα αυτι ςυνάρτθςθ λζγεται αντίςτροφθ τθσ. y y A αντιςτοιχίηεται

Διαβάστε περισσότερα

Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό. μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ

Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό. μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ Για τθν ανάδειξθ του κζματοσ κα λφνουμε κάποια προβλιματα

Διαβάστε περισσότερα

Δϋ Δθμοτικοφ 12 θ Κυπριακι Μακθματικι Ολυμπιάδα Απρίλιοσ 2011

Δϋ Δθμοτικοφ 12 θ Κυπριακι Μακθματικι Ολυμπιάδα Απρίλιοσ 2011 1. Αν τϊρα είναι Απρίλθσ, ποιοσ μινασ κα είναι μετά από 100 μινεσ; Α. Απρίλθσ Β. Αφγουςτοσ. Σεπτζμβρθσ Δ. Μάρτθσ Ε. Ιοφλθσ 2. Ποιο είναι το αποτζλεςμα των πιο κάτω πράξεων; ; Α. 135 Β. 27. 63 Δ. 21 Ε.

Διαβάστε περισσότερα

Διαδικαςία Διαχείριςθσ Στθλϊν Βιβλίου Εςόδων - Εξόδων. (v.1.0.7)

Διαδικαςία Διαχείριςθσ Στθλϊν Βιβλίου Εςόδων - Εξόδων. (v.1.0.7) Διαδικαςία Διαχείριςθσ Στθλϊν Βιβλίου Εςόδων - Εξόδων (v.1.0.7) 1 Περίληψη Το ςυγκεκριμζνο εγχειρίδιο δθμιουργικθκε για να βοθκιςει τθν κατανόθςθ τθσ διαδικαςίασ διαχείριςθσ ςτθλών βιβλίου Εςόδων - Εξόδων.

Διαβάστε περισσότερα

Αυτόνομοι Πράκτορες. Αναφορά Εργασίας Εξαμήνου. Το αστέρι του Aibo και τα κόκαλα του

Αυτόνομοι Πράκτορες. Αναφορά Εργασίας Εξαμήνου. Το αστέρι του Aibo και τα κόκαλα του Αυτόνομοι Πράκτορες Αναφορά Εργασίας Εξαμήνου Το αστέρι του Aibo και τα κόκαλα του Jaohar Osman Η πρόταςθ εργαςίασ που ζκανα είναι το παρακάτω κείμενο : - ξ Aibo αγαπάει πάρα πξλύ ρα κόκαλα και πάμρα ρα

Διαβάστε περισσότερα

ΥΡΟΝΣΙΣΗΡΙΟ Μ. Ε. ΚΑΙ ΚΕΝΣΡΟ ΙΔΙΑΙΣΕΡΩΝ ΜΑΘΗΜΑΣΩΝ «ΚΤΡΙΣΗ» ΔΙΑΓΩΝΙΜΑ ΘΕΜΑΣΑ Β ΛΤΚΕΙΟΤ ΥΕΒΡΟΤΑΡΙΟ 2018 ΑΕΠΠ

ΥΡΟΝΣΙΣΗΡΙΟ Μ. Ε. ΚΑΙ ΚΕΝΣΡΟ ΙΔΙΑΙΣΕΡΩΝ ΜΑΘΗΜΑΣΩΝ «ΚΤΡΙΣΗ» ΔΙΑΓΩΝΙΜΑ ΘΕΜΑΣΑ Β ΛΤΚΕΙΟΤ ΥΕΒΡΟΤΑΡΙΟ 2018 ΑΕΠΠ ΥΡΟΝΣΙΣΗΡΙΟ Μ. Ε. ΚΑΙ ΚΕΝΣΡΟ ΙΔΙΑΙΣΕΡΩΝ ΜΑΘΗΜΑΣΩΝ «ΚΤΡΙΣΗ» ΔΙΑΓΩΝΙΜΑ ΘΕΜΑΣΑ Β ΛΤΚΕΙΟΤ ΥΕΒΡΟΤΑΡΙΟ 2018 ΘΕΜΑ Α ΑΕΠΠ Α1. Για κακεμία από τισ παρακάτω προτάςεισ να χαρακτθρίςετε με ΣΩΣΤΟ ι ΛΑΘΟΣ 1. Η ζκφραςθ

Διαβάστε περισσότερα

Θέματα διπλωματικών εργαςιών ςτην ανάλυςη εικόνασ

Θέματα διπλωματικών εργαςιών ςτην ανάλυςη εικόνασ Εθνικό Μετςόβιο Πολυτεχνείο Εργαςτήριο Ευφυών Συςτημάτων, Περιεχομένου και Αλληλεπίδραςησ Θέματα διπλωματικών εργαςιών ςτην ανάλυςη εικόνασ 2010 2011 ΑΚΜΕ, ΣΟΠΚΚΑ ΧΑΡΑΚΣΗΡΚΣΚΚΑ, Θ ΚΑΣΑΣΜΗΗ; ΜΚΑ ΕΝΟΠΟΚΗΜΕΝΗ

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων

Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων Δρ. Θεοδώρου Παύλοσ theodorou@uoc.gr Περιεχόμενα Τι είναι οι Βάςεισ Δεδομζνων (DataBases) Τι είναι Σφςτθμα Διαχείριςθσ Βάςεων Δεδομζνων (DBMS) Οι Στόχοι

Διαβάστε περισσότερα

ελ. 11/235, Περιεχόμενα Φακζλου "Σεχνικι Προςφορά"

ελ. 11/235, Περιεχόμενα Φακζλου Σεχνικι Προςφορά υντάκτθσ : Ευάγγελοσ Κρζτςιμοσ χόλιο: ΠΑΡΑΣΗΡΗΗ 1 ελ. 11/235, Περιεχόμενα Φακζλου "Σεχνικι Προςφορά" Για τθν αποφυγι μεγάλου όγκου προςφοράσ και για τθ διευκόλυνςθ του ζργου τθσ επιτροπισ προτείνεται τα

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium V Στατιςτική Συμπεραςματολογία Ι Σημειακζσ Εκτιμήςεισ Διαςτήματα Εμπιςτοςφνησ Στατιςτική Συμπεραςματολογία (Statistical Inference) Το πεδίο τθσ Στατιςτικισ Συμπεραςματολογία,

Διαβάστε περισσότερα

Μονάδες 6. Μονάδες ΓΑΨΕ Δεν υπάρχει ρίηα 2. ΑΝ Α>0 ΤΟΤΕ 3. ΤΕΛΟΣ_ΑΝ 4. ΑΛΛΙΩΣ 5. ίηα Τ_(Α)

Μονάδες 6. Μονάδες ΓΑΨΕ Δεν υπάρχει ρίηα 2. ΑΝ Α>0 ΤΟΤΕ 3. ΤΕΛΟΣ_ΑΝ 4. ΑΛΛΙΩΣ 5. ίηα Τ_(Α) 50 Χρόνια ΦΡΟΝΣΙΣΗΡΙΑ ΜΕΗ ΕΚΠΑΙΔΕΤΗ ΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΣΙ : Φιλολάου & Εκφαντίδου 26 : Σηλ.: 2107601470 ΔΙΑΓΩΝΙΣΜΑ : ΑΝΑΡΤΥΞΗ ΕΦΑΜΟΓΩΝ ΣΕ ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ Γϋ ΛΥΚΕΙΟΥ 2011 ΘΕΜΑ Α I. Η ςειριακι

Διαβάστε περισσότερα

Ιςοηυγιςμζνα δζντρα και Β- δζντρα. Δομζσ Δεδομζνων

Ιςοηυγιςμζνα δζντρα και Β- δζντρα. Δομζσ Δεδομζνων Ιςοηυγιςμζνα δζντρα και Β- δζντρα Δομζσ Δεδομζνων Περιεχόμενα Ιςοηυγιςμζνα δζντρα Μζκοδοι ιςοηφγιςθσ δζντρων Μονι Περιςτροφι Διπλι Περιςτροφι Β - δζντρα Ιςοηυγιςμζνα δζντρα Η μορφι ενόσ δυαδικοφ δζντρου

Διαβάστε περισσότερα

Μάρκετινγκ V Κοινωνικό Μάρκετινγκ. Πόπη Σουρμαΐδου. Σεμινάριο: Αναπτφςςοντασ μια κοινωνική επιχείρηςη

Μάρκετινγκ V Κοινωνικό Μάρκετινγκ. Πόπη Σουρμαΐδου. Σεμινάριο: Αναπτφςςοντασ μια κοινωνική επιχείρηςη Μάρκετινγκ V Κοινωνικό Μάρκετινγκ Πόπη Σουρμαΐδου Σεμινάριο: Αναπτφςςοντασ μια κοινωνική επιχείρηςη Σφνοψη Τι είναι το Marketing (βαςικι ειςαγωγι, swot ανάλυςθ, τα παλιά 4P) Τι είναι το Marketing Plan

Διαβάστε περισσότερα

groupsms Interface: Εργαλείο μαζικών αποζηολών SMS

groupsms Interface: Εργαλείο μαζικών αποζηολών SMS groupsms Interface: Εργαλείο μαζικών αποζηολών SMS Έκδοζη: 27 Μαρηίου 2012 Τποδομι groupsms: Γενικά Πλεονεκτιματα Βελτιςτοποιθμζνθ διαδικαςία SMS αποςτολϊν Μαηικζσ αποςτολζσ μζςω πολλαπλϊν γραμμϊν που

Διαβάστε περισσότερα

ςυςτιματα γραμμικϊν εξιςϊςεων

ςυςτιματα γραμμικϊν εξιςϊςεων κεφάλαιο 7 Α ςυςτιματα γραμμικϊν εξιςϊςεων αςικζσ ζννοιεσ Γραμμικά, λζγονται τα ςυςτιματα εξιςϊςεων ςτα οποία οι άγνωςτοι εμφανίηονται ςτθν πρϊτθ δφναμθ. Σα γραμμικά ςυςτιματα με δφο εξιςϊςεισ και δφο

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον

Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον Γραπτι Εξζταςθ ςτο μάκθμα Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον Όνομα: Επϊνυμο: Τμιμα: Ημερομθνία: 20/02/11 Θζμα 1 ο Α. Να χαρακτθρίςετε κακεμιά από τισ παρακάτω προτάςεισ ωσ Σωςτι (Σ) ι Λάκοσ

Διαβάστε περισσότερα

Οδηγίεσ για την πρόςβαςη των δικαιοφχων ςτο ΟΠΣΑΑ

Οδηγίεσ για την πρόςβαςη των δικαιοφχων ςτο ΟΠΣΑΑ Οδηγίεσ για την πρόςβαςη των δικαιοφχων ςτο ΟΠΣΑΑ 1. Ειςαγωγή Για κάκε Δικαιοφχο που κα πρζπει να ζχει πρόςβαςθ ςτο ΟΠΣΑΑ τθσ περιόδου 2014-2020, απαιτείται η εγγραφή του Φορζα ςτο Σφςτημα Διαχείριςησ

Διαβάστε περισσότερα

ΑΝΑΠΣΤΞΘ ΕΦΑΡΜΟΓΩΝ Ε ΠΡΟΓΡΑΜΜΑΣΙΣΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 3 ο ΓΕΝΙΚΟ ΛΤΚΕΙΟ Ν. ΜΤΡΝΘ- ΕΠΙΜΕΛΕΙΑ: ΠΤΡΙΔΑΚΘ Λ.

ΑΝΑΠΣΤΞΘ ΕΦΑΡΜΟΓΩΝ Ε ΠΡΟΓΡΑΜΜΑΣΙΣΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 3 ο ΓΕΝΙΚΟ ΛΤΚΕΙΟ Ν. ΜΤΡΝΘ- ΕΠΙΜΕΛΕΙΑ: ΠΤΡΙΔΑΚΘ Λ. Ερωτήςεισ Προβλήματα Α. Σημειώςτε δεξιά από κάθε πρόταςη το γράμμα Σ αν η πρόταςη είναι ςωςτή και το γράμμα Λ αν είναι λάθοσ. 1. Θ περατότθτα ενόσ αλγορίκμου αναφζρεται ςτο γεγονόσ ότι καταλιγει ςτθ λφςθ

Διαβάστε περισσότερα

Περιοριςμοί μιασ Β.Δ. ςτθν Access(1/3)

Περιοριςμοί μιασ Β.Δ. ςτθν Access(1/3) Περιοριςμοί μιασ Β.Δ. ςτθν Access(1/3) Το όνομα ενόσ πίνακα, όπωσ και κάκε άλλου αντικειμζνου, μπορεί να ζχει μζγεκοσ ζωσ 64 χαρακτιρεσ. Το όνομα ενόσ πεδίου μπορεί να ζχει μζγεκοσ ζωσ 64 χαρακτιρεσ. Κάκε

Διαβάστε περισσότερα

Διαδικαζία Διατείριζης Εκηύπωζης Ιζοζσγίοσ Γενικού - Αναλσηικών Καθολικών. (v )

Διαδικαζία Διατείριζης Εκηύπωζης Ιζοζσγίοσ Γενικού - Αναλσηικών Καθολικών. (v ) Διαδικαζία Διατείριζης Εκηύπωζης Ιζοζσγίοσ Γενικού - Αναλσηικών Καθολικών (v.1. 0.7) 1 Περίλθψθ Το ςυγκεκριμζνο εγχειρίδιο δθμιουργικθκε για να βοθκιςει τθν κατανόθςθ τθσ διαδικαςίασ διαχείριςθσ Εκτφπωςθσ

Διαβάστε περισσότερα

ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 3 ο Εργαςτιριο υγχρονιςμόσ Διεργαςιϊν

ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 3 ο Εργαςτιριο υγχρονιςμόσ Διεργαςιϊν ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ 3 ο Εργαςτιριο υγχρονιςμόσ Διεργαςιϊν Παράλλθλεσ Διεργαςίεσ (1/5) Δφο διεργαςίεσ λζγονται «παράλλθλεσ» (concurrent) όταν υπάρχει ταυτοχρονιςμόσ, δθλαδι οι εκτελζςεισ τουσ επικαλφπτονται

Διαβάστε περισσότερα

Μθχανολογικό Σχζδιο, από τθ κεωρία ςτο πρακτζο Χριςτοσ Καμποφρθσ, Κων/νοσ Βαταβάλθσ

Μθχανολογικό Σχζδιο, από τθ κεωρία ςτο πρακτζο Χριςτοσ Καμποφρθσ, Κων/νοσ Βαταβάλθσ Λεπτζσ Αξονικζσ γραμμζσ χρθςιμοποιοφνται για να δθλϊςουν τθν φπαρξθ ςυμμετρίασ του αντικειμζνου. Υπενκυμίηουμε ότι οι άξονεσ ςυμμετρίασ χρθςιμοποιοφνται μόνον όταν το ίδιο το εξάρτθμα είναι πραγματικά

Διαβάστε περισσότερα

Διδάςκων: Κωνςταντίνοσ τεφανίδθσ

Διδάςκων: Κωνςταντίνοσ τεφανίδθσ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ ΧΟΛΗ ΘΕΣΙΚΩΝ ΕΠΙΣΗΜΩΝ ΣΜΗΜΑ ΕΠΙΣΗΜΗ ΤΠΟΛΟΓΙΣΩΝ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗ ΗΤ-564 ΠΡΟΧΩΡΗΜΕΝΑ ΘΕΜΑΣΑ ΕΠΙΚΟΙΝΩΝΙΑ ΑΝΘΡΩΠΟΤ - ΜΗΧΑΝΗ Διδάςκων: Κωνςταντίνοσ τεφανίδθσ τόχοσ τθσ ςυγκεκριμζνθσ εργαςίασ

Διαβάστε περισσότερα

Οντοκεντρικόσ Προγραμματιςμόσ

Οντοκεντρικόσ Προγραμματιςμόσ Οντοκεντρικόσ Προγραμματιςμόσ Ενότθτα 2: Η ΓΛΩΣΣΑ JAVA Βιβλιοκικεσ Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχανικών Η/Υ & Πλθροφορικισ ΒΙΒΛΙΟΘΗΚΗ JAVA ΒΑΙΚΗ ΒΙΒΛΙΟΘΗΚΗ JAVA Ζνα ςφνολο κλάςεων

Διαβάστε περισσότερα

5 ΜΕΘΟΔΟΙ - ΠΑΡΑΜΕΤΡΟΙ

5 ΜΕΘΟΔΟΙ - ΠΑΡΑΜΕΤΡΟΙ 5 ΜΕΘΟΔΟΙ - ΠΑΡΑΜΕΤΡΟΙ Να γραφεί πρόγραμμα, το οποίο κα δίνει τισ τιμζσ 5 και 6 ςε δφο μεταβλθτζσ a και b και κα υπολογίηει και κα εμφανίηει το άκροιςμά τουσ sum. ΛΟΓΙΚΟ ΔΙΑΓΡΑΜΜΑ a 5 b 6 sum a+b sum ΑΛΓΟΡΙΘΜΟ

Διαβάστε περισσότερα

ΕΡΓΑΣΗΡΙΟ ΕΦΑΡΜΟΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΡΓΑΣΗΡΙΟ ΕΦΑΡΜΟΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ Στο εργαςτιριο αυτό κα δοφμε πωσ μποροφμε να προςομοιϊςουμε μια κίνθςθ χωρίσ τθ χριςθ εξειδικευμζνων εργαλείων, παρά μόνο μζςω ενόσ προγράμματοσ λογιςτικϊν φφλλων, όπωσ είναι το Calc και το Excel. Τα δφο

Διαβάστε περισσότερα

Ειςαγωγι ςτθν Επιςτιμθ Υπολογιςτϊν. Ειςαγωγι ςτθν Python

Ειςαγωγι ςτθν Επιςτιμθ Υπολογιςτϊν. Ειςαγωγι ςτθν Python Ειςαγωγι ςτθν Επιςτιμθ Υπολογιςτϊν Ειςαγωγι ςτθν Python Γ Μζροσ Modules, Αντικειμενοςτραφισ Προγραμματιςμόσ ςτθν Python, Classes, Objects, Αλλθλεπίδραςθ με αρχεία Ειςαγωγι αρκρωμάτων (modules): import

Διαβάστε περισσότερα

HY437 Αλγόριθμοι CAD

HY437 Αλγόριθμοι CAD HY437 Αλγόριθμοι CAD Διδάςκων: Χ. Σωτηρίου http://inf-server.inf.uth.gr/courses/ce437/ 1 ΗΥ437 - Πολυεπίπεδθ Λογικι Απλοποίθςθ με Περιεχόμενα Είδθ Αδιάφορων Τιμϊν ςε Πολφ-επίπεδα Δυαδικά Δίκτυα Αδιάφορεσ

Διαβάστε περισσότερα

Οδηγίες Πρόζβαζης ζηο EndNote Web. Πρόζβαζη ζηο EndNote Web

Οδηγίες Πρόζβαζης ζηο EndNote Web. Πρόζβαζη ζηο EndNote Web Οδηγίες Πρόζβαζης ζηο EndNote Web Το EndNote Web είναι εργαλείο διαχείριςθσ βιβλιογραφικϊν αναφορϊν, ενςωματωμζνο ςτθ βάςθ Web of Science. Απαιτείται εγγραφι και δθμιουργία password (Sign in / Register)

Διαβάστε περισσότερα

Διαγωνιςμόσ "Μακθτζσ ςτθν Ζρευνα (ΜΕΡΑ) 2011-2012"

Διαγωνιςμόσ Μακθτζσ ςτθν Ζρευνα (ΜΕΡΑ) 2011-2012 Διαγωνιςμόσ "Μακθτζσ ςτθν Ζρευνα (ΜΕΡΑ) 2011-2012" Ο Διαγωνιςμόσ «ΜΕΡΑ» προκθρφςςεται από το 2001 ςε ετιςια βάςθ, ωσ αποτζλεςμα τθσ διαπίςτωςθσ ότι θ καλλιζργεια πνεφματοσ δθμιουργικότθτασ και πρωτοβουλίασ

Διαβάστε περισσότερα

Άςκθςθ 1θ: Να γραφεί αλγόρικμοσ που κα δθμιουργεί με τθ βοικεια διπλοφ επαναλθπτικοφ βρόχου, τον ακόλουκο διςδιάςτατο πίνακα:

Άςκθςθ 1θ: Να γραφεί αλγόρικμοσ που κα δθμιουργεί με τθ βοικεια διπλοφ επαναλθπτικοφ βρόχου, τον ακόλουκο διςδιάςτατο πίνακα: 2 ο Σετ Ασκήσεων Δομές Δεδομένων - Πίνακες Άςκθςθ 1θ: Να γραφεί αλγόρικμοσ που κα δθμιουργεί με τθ βοικεια διπλοφ επαναλθπτικοφ βρόχου, τον ακόλουκο διςδιάςτατο πίνακα: 2 3 4 5 3 4 5 6 4 5 6 7 5 6 7 8

Διαβάστε περισσότερα

Εγκατάσταση «Μισθός 2005»

Εγκατάσταση «Μισθός 2005» Εγκατάσταση «Μισθός 2005» Έκδοση 8.5 ΟΔΗΓΙΕΣ ΕΓΚΑΤΑΣΤΑΣΗΣ Βιμα 1 ο. Κάνουμε φφλαξθ των αρχείων από τθν προθγοφμενθ ζκδοςθ του προγράμματοσ. Εργαλεία Φφλαξθ c:\msteuro\20111001 *Εντάξει+ Όποσ: 20111001

Διαβάστε περισσότερα

ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ. ΚΕΦΑΛΑΙΟ 2: Σο Τλικό του Τπολογιςτι

ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ. ΚΕΦΑΛΑΙΟ 2: Σο Τλικό του Τπολογιςτι ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ ΚΕΦΑΛΑΙΟ 2: Σο Τλικό του Τπολογιςτι Τλικό υπολογιςτι (Hardware), Προςωπικόσ Τπολογιςτισ (ΡC), υςκευι ειςόδου, υςκευι εξόδου, Οκόνθ (Screen), Εκτυπωτισ (Printer), αρωτισ

Διαβάστε περισσότερα

Ειδικά Θζματα Βάςεων Δεδομζνων

Ειδικά Θζματα Βάςεων Δεδομζνων Ειδικά Θζματα Βάςεων Δεδομζνων Ενότητα 15: Εξόρυξη Δεδομζνων (Data Mining) Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Πλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΗ. του ΙΑΣΡΟΦΑΡΜΑΚΕΤΣΙΚΟΤ ΦΑΚΕΛΟΤ ΑΘΕΝΩΝ Για τον ΟΙΚΟ ΝΑΤΣΟΤ ΕΡΓΑΣΗΡΙΑΚΟΙ ΓΙΑΣΡΟΙ. iknowhow Πληροφορική A.E

ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΗ. του ΙΑΣΡΟΦΑΡΜΑΚΕΤΣΙΚΟΤ ΦΑΚΕΛΟΤ ΑΘΕΝΩΝ Για τον ΟΙΚΟ ΝΑΤΣΟΤ ΕΡΓΑΣΗΡΙΑΚΟΙ ΓΙΑΣΡΟΙ. iknowhow Πληροφορική A.E ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΗ του ΙΑΣΡΟΦΑΡΜΑΚΕΤΣΙΚΟΤ ΦΑΚΕΛΟΤ ΑΘΕΝΩΝ Για τον ΟΙΚΟ ΝΑΤΣΟΤ ΕΡΓΑΣΗΡΙΑΚΟΙ ΓΙΑΣΡΟΙ iknowhow Πληροφορική A.E ΕΡΓΑΣΗΡΙΑΚΟΙ ΓΙΑΣΡΟΙ... 3 Η ΕΦΑΡΜΟΓΗ... 3 ΧΡΗΣΕ... 3 ΠΡΟΒΑΗ ΣΗΝ ΕΦΑΡΜΟΓΗ... 3 ΑΡΧΙΚΗ

Διαβάστε περισσότερα

Πολυπλέκτες. 0 x 0 F = S x 0 + Sx 1 1 x 1

Πολυπλέκτες. 0 x 0 F = S x 0 + Sx 1 1 x 1 Πολυπλέκτες Ο πολυπλζκτθσ (multipleer - ) είναι ζνα ςυνδυαςτικό κφκλωμα που επιλζγει δυαδικι πλθροφορία μιασ από πολλζσ γραμμζσ ειςόδου και τθν κατευκφνει ςε μια και μοναδικι γραμμι εξόδου. Η επιλογι μιασ

Διαβάστε περισσότερα

Internet a jeho role v našem životě Το Διαδίκτυο και ο ρόλοσ του ςτθ ηωι μασ

Internet a jeho role v našem životě Το Διαδίκτυο και ο ρόλοσ του ςτθ ηωι μασ Internet a jeho role v našem životě Το Διαδίκτυο και ο ρόλοσ του ςτθ ηωι μασ Διαδίκτυο: μια πόρτα ςτον κόςμο Πϊσ μπορεί κανείσ ςε λίγα λεπτά να μάκει ποιεσ ταινίεσ παίηονται ςτουσ κινθματογράφουσ, να ςτείλει

Διαβάστε περισσότερα

Παράςταςη ςυμπλήρωμα ωσ προσ 1

Παράςταςη ςυμπλήρωμα ωσ προσ 1 Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ ΣΤ1 Προςθεςη αφαίρεςη ςτο ΣΤ1 2 ή ΣΤ1 Ονομάηουμε ςυμπλιρωμα ωσ προσ μειωμζνθ βάςθ R ενόσ μθ προςθμαςμζνου αρικμοφ Χ = ( Χ θ-1 Χ θ-2... Χ 0 ) R ζναν άλλον αρικμό Χ'

Διαβάστε περισσότερα

Πειραματικι Ψυχολογία (ΨΧ66)

Πειραματικι Ψυχολογία (ΨΧ66) Πειραματικι Ψυχολογία (ΨΧ66) Διάλεξη 7 Σεχνικζσ για τθν επίτευξθ ςτακερότθτασ Πζτροσ Ροφςςοσ Μζθοδοι για την επίτευξη του ελζγχου Μζςω του κατάλλθλου ςχεδιαςμοφ του πειράματοσ (ςτόχοσ είναι θ εξάλειψθ

Διαβάστε περισσότερα

Web οδθγόσ "φνοψθ τθσ νομοκεςίασ τθσ ΕΕ" Ενότθτα 2

Web οδθγόσ φνοψθ τθσ νομοκεςίασ τθσ ΕΕ Ενότθτα 2 Κάντε κλικ ςε ζνα από τα κεφάλαια παρακάτω για να πάρετε περιςςότερεσ πλθροφορίεσ ι κάντε κλικ ςτο κουμπί Επόμενο για να ξεκινιςει θ ιςτοςελίδα φροντιςτιριο. 1. Πϊσ να πλοθγθκείτε ςτθν αρχικι ςελίδα 2.

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ Η ΤΑΞΗ ΤΗΣ ΤΕΛΙΚΗΣ ΕΠΙΛΟΓΗΣ. Στθ ΓϋΛυκείου οι Ομάδεσ Προςανατολιςμοφ είναι τρεισ:

Γ' ΛΥΚΕΙΟΥ Η ΤΑΞΗ ΤΗΣ ΤΕΛΙΚΗΣ ΕΠΙΛΟΓΗΣ. Στθ ΓϋΛυκείου οι Ομάδεσ Προςανατολιςμοφ είναι τρεισ: Γ' ΛΥΚΕΙΟΥ Η ΤΑΞΗ ΤΗΣ ΤΕΛΙΚΗΣ ΕΠΙΛΟΓΗΣ Στθ ΓϋΛυκείου οι Ομάδεσ Προςανατολιςμοφ είναι τρεισ: 1. Ομάδα Ανκρωπιςτικών Σπουδών 2. Ομάδα Οικονομικών, Πολιτικών, Κοινωνικών & Παιδαγωγικών Σπουδών 3. Ομάδα Θετικών

Διαβάστε περισσότερα

τατιςτικά ςτοιχεία ιςτότοπου Κ.Ε.Π.Α. Α.Ν.Ε.Μ, www.e-kepa.gr για τθν περίοδο 1/1/2011-31/12/2014

τατιςτικά ςτοιχεία ιςτότοπου Κ.Ε.Π.Α. Α.Ν.Ε.Μ, www.e-kepa.gr για τθν περίοδο 1/1/2011-31/12/2014 τατιςτικά ςτοιχεία ιςτότοπου Κ.Ε.Π.Α. Α.Ν.Ε.Μ, www.e-kepa.gr για τθν περίοδο 1/1/2011-31/12/2014 Ειςαγωγι Στο παρόν κείμενο παρουςιάηονται και αναλφονται τα ςτατιςτικά ςτοιχεία του ιςτοτόπου τθσ ΚΕΠΑ-ΑΝΕΜ,

Διαβάστε περισσότερα

Γράφοι. Δομζσ Δεδομζνων Διάλεξθ 9

Γράφοι. Δομζσ Δεδομζνων Διάλεξθ 9 Γράφοι Δομζσ Δεδομζνων Διάλεξθ 9 Περιεχόμενα Γράφοι Γενικζσ ζννοιεσ, οριςμόσ, κτλ Παραδείγματα Γράφων Αποκικευςθ Γράφων Βαςικοί Οριςμοί Γράφοι και Δζντρα Διάςχιςθ Γράφων Περιοδεφων Πωλθτισ Γράφοι Οριςμόσ:

Διαβάστε περισσότερα

Ενδεικτική Οργάνωςη Ενοτήτων. Α Σάξη. Διδ. 1 ΕΝΟΣΗΣΑ 1. 6 Ομαδοποίθςθ, Μοτίβα,

Ενδεικτική Οργάνωςη Ενοτήτων. Α Σάξη. Διδ. 1 ΕΝΟΣΗΣΑ 1. 6 Ομαδοποίθςθ, Μοτίβα, Ενδεικτική Οργάνωςη Ενοτήτων Α Σάξη Α/ Μαθηματικό περιεχόμενο Δείκτεσ Επιτυχίασ Ώρεσ Α Διδ. 1 ΕΝΟΣΗΣΑ 1 Αλ1.1 υγκρίνουν και ταξινομοφν αντικείμενα ςφμφωνα με κάποιο χαρακτθριςτικό/κριτιριο/ιδιότθτά Ομαδοποίθςθ,

Διαβάστε περισσότερα

Ενθμζρωςθ και προςταςία των καταναλωτών από τουσ κινδφνουσ που απορρζουν από τα χθμικά προϊόντα

Ενθμζρωςθ και προςταςία των καταναλωτών από τουσ κινδφνουσ που απορρζουν από τα χθμικά προϊόντα Ενθμζρωςθ και προςταςία των καταναλωτών από τουσ κινδφνουσ που απορρζουν από τα χθμικά προϊόντα Γενικό Χθμείο του Κράτουσ Διεφκυνςθ Περιβάλλοντοσ Δρ. Διμθτρα Δανιιλ Χθμικά προϊόντα Οι χθμικζσ ουςίεσ υπάρχουν

Διαβάστε περισσότερα

DIOSCOURIDES VERSION

DIOSCOURIDES VERSION DIOSCOURIDES VERSION 2.15.29 ΑΛΛΑΓΗ ΥΠΑ ΚΑΙ & ΕΠΑΝΤΠΟΛΟΓΙΜΟ ΛΙΑΝΙΚΗ ΣΙΜΗ ΠΑΡΑΥΑΡΜΑΚΩΝ Για τθν τροποποίθςθ των παραπάνω ςτοιχείων ςτθ νζα ζκδοςθ ςασ δίνουμε τθ δυνατότθτα να αλλάξετε το ΦΠΑ και τθ λιανικι

Διαβάστε περισσότερα

ΚΥΚΛΩΜΑΤΑ VLSI. Ασκήσεις Ι. Γ. Τσιατούχας. Πανεπιςτιμιο Ιωαννίνων. Τμιμα Μθχανικϊν Η/Υ και Πλθροφορικισ 8/11/18

ΚΥΚΛΩΜΑΤΑ VLSI. Ασκήσεις Ι. Γ. Τσιατούχας. Πανεπιςτιμιο Ιωαννίνων. Τμιμα Μθχανικϊν Η/Υ και Πλθροφορικισ 8/11/18 ΚΥΚΛΩΜΑΤΑ LSI Πανεπιςτιμιο Ιωαννίνων Ασκήσεις Ι Τμιμα Μθχανικϊν Η/Υ και Πλθροφορικισ 8/11/18 Γ. Τσιατούχας Άσκηση 1 1) Σχεδιάςτε τισ ςφνκετεσ COS λογικζσ πφλεσ (ςε επίπεδο τρανηίςτορ) που υλοποιοφν τισ

Διαβάστε περισσότερα

Μετατροπι Αναλογικοφ Σιματοσ ςε Ψθφιακό. Διάλεξθ 10

Μετατροπι Αναλογικοφ Σιματοσ ςε Ψθφιακό. Διάλεξθ 10 Μετατροπι Αναλογικοφ Σιματοσ ςε Ψθφιακό Διάλεξθ 10 Γενικό Σχιμα Μετατροπζασ Αναλογικοφ ςε Ψθφιακό Ψθφιακό Τθλεπικοινωνιακό Κανάλι Μετατροπζασ Ψθφιακοφ ςε Αναλογικό Τα αναλογικά ςιματα μετατρζπονται ςε

Διαβάστε περισσότερα

Αυτόματη δημιουργία στηλών Αντιστοίχηση νέων λογαριασμών ΦΠΑ

Αυτόματη δημιουργία στηλών Αντιστοίχηση νέων λογαριασμών ΦΠΑ Αυτόματη δημιουργία στηλών Αντιστοίχηση νέων λογαριασμών ΦΠΑ 1 Περίληψη Το ςυγκεκριμζνο εγχειρίδιο δημιουργήθηκε για να βοηθήςει την κατανόηςη τησ διαδικαςίασ αυτόματησ δημιουργίασ ςτηλών και αντιςτοίχιςησ

Διαβάστε περισσότερα

ΑΞΙΟΛΟΓΗΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ

ΑΞΙΟΛΟΓΗΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΑΞΙΟΛΟΓΗΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ Ειςαγωγή Τπάρχουν τρία επίπεδα ςτα οποία καλείςτε να αξιολογιςετε το εργαςτιριο D-ID: Νζα κζματα Σεχνολογία Διδακτικι Νέα θέματα Σο εργαςτιριο κα ειςαγάγουν τουσ ςυμμετζχοντεσ

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Αυτοματοποίηςησ Κυκλώματοσ Πληρωμών ΟΛΠ μζςω e-banking VERSION <Final>

Εγχειρίδιο Χρήςησ Αυτοματοποίηςησ Κυκλώματοσ Πληρωμών ΟΛΠ μζςω e-banking VERSION <Final> Εγχειρίδιο Χρήςησ Αυτοματοποίηςησ Κυκλώματοσ Πληρωμών ΟΛΠ μζςω e-banking VERSION Document Control File Name Εγχειρίδιο Χρήςτη Ebanking ΟΛΠ V2.Doc Prepared By Σωκράτησ καλαματιανόσ (skalamatianos@eurobank.gr)

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Περιφέρειες)

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Περιφέρειες) Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Περιφέρειες) Ιούνιοσ 2013 Περιεχόμενα: Ειςαγωγή... 3 1. Περιφζρεια... 3 1.1 Διαχειριςτήσ Αιτήςεων Περιφζρειασ... 3 1.1.1. Είςοδοσ... 3 1.1.2. Αρχική

Διαβάστε περισσότερα

17. Πολυδιάςτατοι πίνακεσ

17. Πολυδιάςτατοι πίνακεσ Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων 17. Πολυδιάςτατοι πίνακεσ Ιωάννθσ Κατάκθσ Πολυδιάςτατοι πίνακεσ o Μζχρι τϊρα μιλοφςαμε για μονοδιάςτατουσ πίνακεσ ι int age[5]= 31,28,31,30,31; o Για παράλλθλουσ

Διαβάστε περισσότερα

Πωσ δημιουργώ μάθημα ςτο e-class του ΠΣΔ [επίπεδο 1]

Πωσ δημιουργώ μάθημα ςτο e-class του ΠΣΔ [επίπεδο 1] Το e-class του Πανελλινιου Σχολικοφ Δίκτυου [ΠΣΔ/sch.gr] είναι μια πολφ αξιόλογθ και δοκιμαςμζνθ πλατφόρμα για αςφγχρονο e-learning. Ανικει ςτθν κατθγορία του ελεφκερου λογιςμικοφ. Αρχίηουμε από τθ διεφκυνςθ

Διαβάστε περισσότερα

ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ. ΚΕΦΑΛΑΙΟ 3: Εργονομία

ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ. ΚΕΦΑΛΑΙΟ 3: Εργονομία ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ Εργονομία, ωςτι ςτάςθ εργαςίασ, Εικονοςτοιχείο (pixel), Ανάλυςθ οκόνθσ (resolution), Μζγεκοσ οκόνθσ Ποιεσ επιπτϊςεισ μπορεί να ζχει θ πολφωρθ χριςθ του υπολογιςτι ςτθν

Διαβάστε περισσότερα

Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων. 19. Αλφαριθμητικά II. Ιωάννθσ Κατάκθσ. ΕΠΛ 032: Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων

Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων. 19. Αλφαριθμητικά II. Ιωάννθσ Κατάκθσ. ΕΠΛ 032: Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων 19. Αλφαριθμητικά II Ιωάννθσ Κατάκθσ Αλφαρικμθτικά ςτθ C Ζνα string είναι μία ακολουκία αλφαρικμθτικϊν χαρακτήρων, ςθμείων ςτίξθσ κτλ. Π.χ. Hello How are you?

Διαβάστε περισσότερα

ΥΡΟΝΣΙ ΣΗΡΙΟ Μ. Ε. ΚΑΙ ΚΕΝΣΡΟ ΙΔΙΑΙΣΕΡΩΝ ΜΑΘΗΜΑΣΩΝ «ΚΤΡΙΣ Η» ΔΙΑΓΩΝΙ ΜΑ ΑΕΠΠ

ΥΡΟΝΣΙ ΣΗΡΙΟ Μ. Ε. ΚΑΙ ΚΕΝΣΡΟ ΙΔΙΑΙΣΕΡΩΝ ΜΑΘΗΜΑΣΩΝ «ΚΤΡΙΣ Η» ΔΙΑΓΩΝΙ ΜΑ ΑΕΠΠ ΥΡΟΝΣΙ ΣΗΡΙΟ Μ. Ε. ΚΑΙ ΚΕΝΣΡΟ ΙΔΙΑΙΣΕΡΩΝ ΜΑΘΗΜΑΣΩΝ «ΚΤΡΙΣ Η» ΔΙΑΓΩΝΙ ΜΑ ΘΕΜΑΣΑ Β ΛΤΚΕΙΟΤ ΑΠΡΙΛΙΟ 2018 ΚΑΘΗΓΗΤΗΣ: Γιώργος Πασσαλίδης ΑΕΠΠ ΟΝΟΜΑΣΕΠΩΝΤΜΟ: ΒΑΘΜΟ : ΘΕΜΑ Α Α1. Για κακεμία από τισ παρακάτω προτάςεισ

Διαβάστε περισσότερα