Αναγωγή Προφίλ Μεταδεδομζνων Dublin Core ςε Λογικζσ Περιγραφήσ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αναγωγή Προφίλ Μεταδεδομζνων Dublin Core ςε Λογικζσ Περιγραφήσ"

Transcript

1 Αναγωγή Προφίλ Μεταδεδομζνων Dublin Core ςε Λογικζσ Περιγραφήσ Δρ. Δθμιτριοσ Α. Κουτςομθτρόπουλοσ Εργαςτιριο Πλθροφοριακϊν Συςτθμάτων Υψθλϊν Επιδόςεων Νοζμβριοσ 2008 Στθν αναφορά αυτι εξθγείται πώσ ςχετίηονται τα παραδοςιακά προφίλ μεταδεδομζνων εφαρμογισ (metadata application profiles) με τισ οντολογίεσ Ιςτοφ και τισ Λογικζσ Περιγραφισ. Δείχνεται ότι τα προφίλ μεταδεδομζνων μποροφν να αναχκοφν ςε Λογικζσ Περιγραφισ και αποδεικνφεται παραδόξωσ ότι θ OWL (2) με τθν τρζχουςα εκφραςτικότθτα, δεν επαρκεί για το ςκοπό αυτό. Αρχικά, γίνεται μια ςφντομθ περιγραφι τθσ πρόςφατθσ πρόταςθσ για αναπαράςταςθ προφίλ μεταδεδομζνων μζςω τθσ ζννοιασ των Προφίλ Συνόλων Περιγραφών (DSP) και βάςει του XML Schema, όπου τονίηεται θ ςκοπιμότθτα μιασ αντίςτοιχθσ αναπαράςταςθσ και με χριςθ οντολογικών γλωςςών. Στθ ςυνζχεια ειςάγεται θ αναγωγι των DSP ςε Λογικζσ Περιγραφισ και ςυηθτοφνται τα εκφραςτικά χαρακτθριςτικά που απαιτοφνται, κακώσ και θ επιβάρυνςθ που επιφζρουν ςτθν πολυπλοκότθτα του ςυλλογιςμοφ. 1. Σκοπόσ και αναγκαιότητα Η ανάγκθ τθσ φπαρξθσ ενόσ ςυνεποφσ πλαιςίου για τθν ανάπτυξθ προφίλ εφαρμογισ ζχει επίςθσ αναγνωριςτεί και από το ίδιο το DCMI. Ύςτερα από το ςυνζδριο DC 2007, το επονομαηόμενο «Πλαίςιο τθσ Σιγκαποφρθσ» για τθν ανάπτυξθ προφίλ μεταδεδομζνων εφαρμογισ που βαςίηονται ςτο DC ειςιχκθ ςτο (Nilsson, Baker, & Johnston, 2008). Βαςιςμζνο ςε ζννοιεσ του DCAM, το πλαίςιο τθσ Σιγκαποφρθσ ζχει ωσ κφρια προτεραιότθτα τθν ανάπτυξθ μιασ γλώςςασ περιοριςμών, όπωσ ακριβώσ ζνα XML Schema, που κα κακορίηει και τυπικά τι είδουσ ιδιότθτεσ (πικανώσ προερχόμενεσ από διαφορετικά πρότυπα) ςυμπεριλαμβάνονται ςτο εν λόγω προφίλ και τι είδουσ τιμζσ είναι κατάλλθλεσ για αυτζσ τισ ιδιότθτεσ, που πικανώσ να περιορίηονται από ςυγκεκριμζνα ςυντακτικά και λεξιλογικά ςχιματα κωδικοποίθςθσ. Ο ςτόχοσ ενόσ τζτοιου Προφίλ Συνόλων Περιγραφών (DSP) (Nilsson, 2008) είναι να προςδιορίηει εκείνεσ τισ εγγραφζσ μεταδεδομζνων που ταιριάηουν (ι ςυμμορφώνονται) προσ το ςυγκεκριμζνο DSP. Αυτό ςθμαίνει ότι θ γλώςςα για τθν ζκφραςθ των DSP μπορεί πρωτίςτωσ να χρθςιμοποιθκεί για τθν ζκφραςθ των δομικϊν και ςυντακτικϊν περιοριςμών που επιβάλλει ζνα προφίλ εφαρμογισ, αφινοντασ εκτόσ εμβζλειασ τθ ςθμαςιακι διαλειτουργικότθτα. Εξάλλου, όπωσ αναφζρεται ςτο Πλαίςιο τθσ Σιγκαποφρθσ: «Είναι ςθμαντικό να αντιλθφκεί κανείσ ότι θ ςθμαςιολογία των όρων που χρθςιμοποιοφνται ςτα προφίλ εφαρμογισ φζρεται από τουσ οριςμοφσ τουσ, που είναι ανεξάρτθτοι από το προφίλ εφαρμογισ [ ]. Η ςθμαςιακι διαλειτουργικότθτα παρζχεται από τθν ορκι χριςθ των όρων που ορίηονται ςε ζνα ι περιςςότερα λεξιλόγια και τα

2 προφίλ εφαρμογισ υπάρχουν για να παρζχουν υψθλοφ επιπζδου ςυντακτικι ι δομικι διαλειτουργικότθτα» Ζχει δειχκεί αλλοφ (Koutsomitropoulos, Paloukis, & Papatheodorou, 2007) ότι ο παραπάνω ιςχυριςμόσ δεν ιςχφει ςτθν περίπτωςθ των ςθμαςιακών προφίλ (semantic profiles) και επίςθσ ότι θ ςθμαςιακι προςαρμογι (semantic profiling) εκλεπτφνει τθ ςθμαςιολογία των όρων και οδθγεί προσ τθ ςθμαςιακι διαλειτουργικότθτα. Περαιτζρω, και παρά τθν υλοποίθςθ τθσ γλώςςασ DSP ςε ζνα XML Schema (Nilsson, 2008), μπορεί να κεωρθκεί ότι θ ζκφραςι τθσ ςε γλώςςα ςυμβατι με το RDF είναι καταλλθλότερθ, δεδομζνων και των πρόςφατων υλοποιιςεων του DC ςε RDF(S), αλλά και τθσ οντολογίασ DC ςε OWL (Koutsomitropoulos, Solomou, & Papatheodorou, 2008). 2. Η διαδικαςία τησ αναγωγήσ Αρχικά παρατθροφμε ότι οι δομικοί περιοριςμοί, όπωσ οι επιτρεπόμενεσ τιμζσ και οι τφποι των πόρων, ζχουν τθν αντιςτοιχία τουσ ςτουσ περιοριςμοφσ πεδίου οριςμοφ και πεδίου τιμών του RDFS. Επίςθσ θ ζννοια των επιτρεπόμενων ιδιοτιτων (allowed properties) μπορεί να αναπαραςτακεί ωσ εξισ: Βαςικό δομικό ςτοιχείο ενόσ DSP είναι το πρότυπο περιγραφισ (description template). Ζνα DSP μπορεί να περιλαμβάνει πολλά τζτοια πρότυπα. Ζνα πρότυπο περιγραφισ αντιςτοιχεί ςτθν περιγραφι πόρων ενόσ ςυγκεκριμζνου τφπου (π.χ. items, persons ) και ορίηει περιοριςμοφσ πάνω ςτο ςφνολο των ιδιοτιτων που αφοροφν το ςυγκεκριμζνο τφπο πόρων (είναι δθλαδι ςτο πεδίο οριςμοφ τουσ). Οι περιοριςμοί ςε μια ιδιότθτα εκφράηονται μζςω του προτφπου διλωςθσ (statement template) και άρα ζνα πρότυπο περιγραφισ μπορεί να ζχει πολλά πρότυπα διλωςθσ. Ζνα πρότυπο περιγραφισ μπορεί επομζνωσ να ειδωκεί ωσ μία μόνο ιδιότθτα, που διαμερίηεται ςτο ςφνολο των επιτρεπόμενων ιδιοτιτων (δθλαδι μια ν-αδικι ιδιότθτα). Ζνασ τρόποσ για τον οριςμό τζτοιων ν-αδικών ιδιοτιτων δίνεται ςτο (Noy & Rector, 2006). Για κάκε πρότυπο περιγραφισ μπορεί να οριςτεί μια κλάςθ Description_ID. Στθ ςυνζχεια, για κάκε επιτρεπόμενθ ιδιότθτα P 1,, P n : Description_ID P 1.range 1 P n.range n (1) Το παραπάνω εκφράηει τον περιοριςμό ότι κάκε ςτιγμιότυπο του Description_ID ζχει τουλάχιςτον μία ςχζςθ, διαμζςου των P 1,, P n με ζνα ςτιγμιότυπο από το κατάλλθλο πεδίο τιμών (range). Για να εκφραςτεί ο περιοριςμόσ ότι οι P 1,, P n μποροφν να ςυςχετίηουν τα ςτιγμιότυπα του Description_ID μόνο με τα κατάλλθλα πεδία τιμών, μπορεί να χρθςιμοποιθκεί κακολικι ποςοτικοποίθςθ: Description_ID P 1.range 1 P n.range n (2) Περιοριςμοί που αφοροφν το πλικοσ των επιτρεπόμενων πλθρωτών για κάκε ιδιότθτα μποροφν να αναπαραςτακοφν με ανάλογο τρόπο, χρθςιμοποιώντασ προςδιοριςμζνουσ περιοριςμοφσ αρικμοφ, αντικακιςτώντασ ζτςι τουσ (πιο γενικοφσ) υπαρξιακοφσ περιοριςμοφσ. Για να φανεί ότι οι παραπάνω εκφράςεισ είναι επίςθσ και ικανζσ (όχι μόνο αναγκαίεσ), ζςτω ότι x Description_ID και P k (x, y), όπου 1 k n και το y δεν ανικει ςτο επιτρεπόμενο

3 πεδίο τιμών. Τότε, λόγω (2), θ οντολογία κακίςταται αςυνεπισ, αφοφ το y πρζπει να ανικει ςτο κατάλλθλο για τθν P k πεδίο τιμών. Επίςθσ, λόγω (1), το x πρζπει να ζχει (αν και μπορεί να μθν ζχουν δθλωκεί ακόμα) άλλεσ n-1 ςχζςεισ, μζςα από τισ επιτρεπόμενεσ ιδιότθτεσ. Η ζκφραςθ του γεγονότοσ ότι οι P 1,, P n είναι οι μόνεσ ιδιότθτεσ που επιτρζπονται είναι κάπωσ πιο περίτεχνθ. Αυτό που χρειάηεται είναι θ δυνατότθτα ζκφραςθσ του αξιώματοσ τομισ και ςυμπλθρϊματοσ ρόλων. Η OWL 2 επιτρζπει ξζνουσ ρόλουσ, αλλά όχι και τομζσ ρόλων εν γζνει. Ζςτω U o κακολικόσ ρόλοσ, δθλαδι ο γονζασ όλων των ρόλων. Ιςχφει ότι: P 1.range 1 P n.range n U. Θζλουμε να εκφράςουμε ότι οι κλάςεισ P m.range m, για κάκε m διαφορετικό από 1 n, δεν επιτρζπονται μζςα ςτο Descrption_ID. Αν ζχουμε ςτθ διάκεςι μασ τομι και ςυμπλιρωμα ρόλων, το ςφνολο των μθ επιτρεπόμενων ιδιοτιτων μπορεί να ςυμβολιςτεί ωσ: U (P 1 P n ) Το Description_ID κα πρζπει να μθν περιλαμβάνει ςτιγμιότυπα τα οποία να ςχετίηονται με άλλα μζςω των μθ επιτρεπόμενων ιδιοτιτων. Δθλαδι: Descrption_ID (U (P 1 P n )). 3. Εκφραςτικά χαρακτηριςτικά και πολυπλοκότητα Καταλιγουμε λοιπόν ότι για τθν ζκφραςθ των DSP απαιτείται θ διακεςιμότθτα των τριών λογικών τελεςτών (ζνωςθ, τομι, ςυμπλιρωμα) και ςε εκφράςεισ ι τουλάχιςτον μόνο ςε ονόματα ρόλων, κανζνασ από τουσ οποίουσ δεν είναι διακζςιμοσ ςτθν OWL 2. Επίςθσ απαιτείται θ φπαρξθ προςδιοριςμζνων περιοριςμών αρικμοφ (το Q ςτθν ονοματολογία) που δεν υπάρχει ςτθν OWL DL, ενώ ο κακολικόσ ρόλοσ μπορεί και να απαλειφκεί. Οι Lutz και Sattler (Lutz & Sattler, 2000) δείχνουν ότι θ Λογικι Περιγραφισ ALC (,, ) δθλαδι θ βαςικι λογικι ALC με λογικοφσ τελεςτζσ ςτουσ ρόλουσ ανικει ςτθν κλάςθ πολυπλοκότθτασ NEXP. Επίςθσ, ςτο (Tobies, 2001), δείχνεται ότι θ Λογικι Περιγραφισ ALCIQ (,, ), δθλαδι θ προθγοφμενθ λογικι εκτεταμζνθ με προςδιοριςμζνουσ περιοριςμοφσ αρικμοφ και αντίςτροφουσ ρόλουσ, θ οποία επαρκεί για τθν ζκφραςθ DSP, αλλά δεν αντιςτοιχεί ςε κάποια οντολογικι γλώςςα, είναι NEXP-complete. Με τον περιοριςμό ότι οι εκφράςεισ ρόλων, αν μεταςχθματιςτοφν ςε Διαηευγμζνθ Κανονικι Μορφι (Disjunctive Normal Form, DNF, δθλαδι ςε ζνωςθ τομών), κα πρζπει ςε κάκε ςτοιχείο τθσ διάηευξθσ (ζνωςθσ) να ζχουν τουλάχιςτον ζνα μθ αρνθτικό ςκζλοσ, θ λογικι αυτι γίνεται PSPACE-complete. Για παράδειγμα, θ ζκφραςθ (P 1 P n ) ςε DNF γράφεται P 1 P n που αποτελείται από ζνα μόνο ςτοιχείο διάηευξθσ το οποίο δεν ζχει κανζνα μθ αρνθτικό ςκζλοσ, εκτόσ αν χρθςιμοποιθκεί ο κακολικόσ ρόλοσ. Ακόμθ, οι Schmidt και Tishkovsky (Schmidt & Tishkovsky, 2007) δείχνουν ότι θ Λογικι Περιγραφισ ALBO, δθλαδι θ βαςικι λογικι ALC, εκτεταμζνθ με ζνωςθ και ςυμπλιρωμα ρόλων, αντίςτροφουσ ρόλουσ και ονοματικά είναι NEXP-complete (θ τομι δεν αναφζρεται γιατί P R ( P R), όπου P, R ονόματα ρόλων) και υλοποιοφν αντίςτοιχο αλγόρικμο ταμπλό. Αναφζρουν επίςθσ ότι θ εφαρμογι ςυμπλθρώματοσ πάνω ςε αλυςίδεσ ρόλων

4 οδθγεί ςε μθ αποφαςιςιμότθτα, κάτι που ιςχφει επίςθσ και για τθν εφαρμογι τθσ τομισ (Calvanese & Giacomo, 2007). Συμπεραςματικά, θ ςθμαςιολογία του RDF(S) και τθσ OWL δεν επαρκεί για τθν ζκφραςθ των δομικών και ςυντακτικών περιοριςμών των προφίλ εφαρμογισ. Επιπρόςκετα, αν και ρθτόσ ςτόχοσ των DSP είναι θ εναςχόλθςθ με ςυντακτικοφσ μόνο περιοριςμοφσ, αποδεικνφεται ότι ζχουν ςοβαρζσ ςθμαςιακζσ προεκτάςεισ. 4. Συμπεράςματα Παραδόξωσ, θ ζκφραςθ κλαςικών προφίλ εφαρμογισ μεταδεδομζνων, όπωσ αυτά επιχειρείται πρόςφατα να τυποποιθκοφν, γφρω από το DC, με το πλαίςιο τθσ Σιγκαποφρθσ, δεν μπορεί να γίνει με τθν τρζχουςα εκφραςτικότθτα τθσ OWL. Δείξαμε ακριβώσ ποια εκφραςτικά χαρακτθριςτικά απουςιάηουν από τθν τελευταία προδιαγραφι τθσ γλώςςασ και απαιτοφνται για τον προςδιοριςμό τζτοιων προφίλ. Αποδείξαμε παρ όλα αυτά ότι οι ςυντακτικοί περιοριςμοί που επιβάλλει ζνα κλαςςικό προφίλ μποροφν να αναχκοφν ςε ςθμαςιακοφσ περιοριςμοφσ μζςα ςε μία οντολογία. Η δυςκολία -ζωσ και μθ αποφαςιςιμότθτα- που κα ζχει ο ςυλλογιςμόσ με τθν προςκικθ και αυτών των χαρακτθριςτικών δεν κα πρζπει όμωσ να ειδωκεί ωσ αδυναμία: Αφενόσ, το XML Schema μπορεί πολφ εφκολα να χρθςιμοποιθκεί για τθν επιβολι και επαλικευςθ τζτοιων ςυντακτικών περιοριςμών και, αφετζρου, το ιςοδφναμό τουσ ςε Λογικζσ Περιγραφισ δεν υπάρχει ανάγκθ να ςυνοδεφεται από τθν ταυτόχρονθ φπαρξθ και των υπολοίπων εκφραςτικών χαρακτθριςτικών τθσ OWL 2, εκτόσ μόνο από λίγων. 5. Βιβλιογραφία Calvanese, D., & Giacomo, G. d. (2007). Expressive Description Logics. In F. Baader, D. Calvanese, D. McGuinness, D. Nardi, & P. F. Patel-Schneider (Eds.), The Description Logic Handbook (2nd ed.). Cambridge. Koutsomitropoulos, D. A., Paloukis, G. E., & Papatheodorou, T. S. (2007). From Metadata Application Profiles to Semantic Profiling: Ontology Refinement and Profiling to Strengthen Inference-based Queries on the Semantic Web. Int. J. on Metadata, Semantics and Ontologies, 2 (4), pp Koutsomitropoulos, D. A., Solomou, G. D., & Papatheodorou, T. S. (2008). Semantic Interoperability of Dublin Core Metadata in Digital Repositories. 5th Int. Conference on Innovations in Information Technology. IEEE. Lutz, C., & Sattler, U. (2000). Mary likes all Cats. Proc. of the 2000 Int. Workshop in Description Logics (DL 2000), Vol 33 in CEUR-WS, pp Nilsson, M. (2008). Description Set Profiles: A constraint language for Dublin Core Application Profiles. DCMI Working Draft. Retrieved from Nilsson, M., Baker, T., & Johnston, P. (2008). The Singapore Framework for Dublin Core Application Profiles. Retrieved from Noy, N., & Rector, A. (Eds.). (2006). Defining N-ary Relations on the Semantic Web. Semantic Web Best Practices and Deployment Working Group Note. Retrieved from

5 Schmidt, R. A., & Tishkovsky, D. (2007). Using Tableau to Decide Expressive Description Logics with Role Negation. Proc. of the 6th Int. Semantic Web Conference (ISWC 2007) (pp ). Springer. Tobies, S. (2001). Complexity results and practical algorithms for logics in Knowledge Representation. PhD Thesis, LuFG Theoretical Computer Science,RWTH-Aachen.

Τυπικζσ Γλϊςςεσ Περιγραφισ Υλικοφ Εργαςτιριο 1

Τυπικζσ Γλϊςςεσ Περιγραφισ Υλικοφ Εργαςτιριο 1 Τμήμα Μησανικών Πληποφοπικήρ, Τ.Ε.Ι. Ηπείπος Ακαδημαϊκό Έτορ 2016-2017, 6 ο Εξάμηνο Τυπικζσ Γλϊςςεσ Περιγραφισ Υλικοφ Εργαςτιριο 1 Διδάςκων Τςιακμάκθσ Κυριάκοσ, Phd MSc in Electronic Physics (Radioelectrology)

Διαβάστε περισσότερα

ΒΙΟΛΟΓΟΙ ΓΙΑ ΦΥΣΙΚΟΥΣ

ΒΙΟΛΟΓΟΙ ΓΙΑ ΦΥΣΙΚΟΥΣ ΦΥΣΙΚΗ vs ΒΙΟΛΟΓΙΑ ΒΙΟΛΟΓΟΙ ΓΙΑ ΦΥΣΙΚΟΥΣ «Προτείνω να αναπτφξουμε πρώτα αυτό που κα μποροφςε να ζχει τον τίτλο: «ιδζεσ ενόσ απλοϊκοφ φυςικοφ για τουσ οργανιςμοφσ». Κοντολογίσ, τισ ιδζεσ που κα μποροφςαν

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ. Φιλιοποφλου Ειρινθ

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ. Φιλιοποφλου Ειρινθ ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ Φιλιοποφλου Ειρινθ Προςθήκη νζων πεδίων Ασ υποκζςουμε ότι μετά τθ δθμιουργία του πίνακα αντιλαμβανόμαςτε ότι ζχουμε ξεχάςει κάποια πεδία. Είναι ζνα πρόβλθμα το οποίο

Διαβάστε περισσότερα

ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι

ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι Παράςταςη κινητήσ υποδιαςτολήσ ςφμφωνα με το πρότυπο ΙΕΕΕ Δρ. Χρήστος Ηλιούδης το πρότυπο ΙΕΕΕ 754 ζχει χρθςιμοποιθκεί ευρζωσ ςε πραγματικοφσ υπολογιςτζσ. Το πρότυπο αυτό κακορίηει δφο βαςικζσ μορφζσ κινθτισ

Διαβάστε περισσότερα

Βάςεισ Δεδομζνων Ι. Ενότητα 12: Κανονικοποίηςη. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ

Βάςεισ Δεδομζνων Ι. Ενότητα 12: Κανονικοποίηςη. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ Βάςεισ Δεδομζνων Ι Ενότητα 12: Κανονικοποίηςη Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΑΝΣΙΣΡΟΦΗ ΤΝΑΡΣΗΗ. f y x y f A αντιςτοιχίηεται ςτο μοναδικό x A για το οποίο. Παρατθριςεισ Ιδιότθτεσ τθσ αντίςτροφθσ ςυνάρτθςθσ 1. Η. f A τθσ f.

ΑΝΣΙΣΡΟΦΗ ΤΝΑΡΣΗΗ. f y x y f A αντιςτοιχίηεται ςτο μοναδικό x A για το οποίο. Παρατθριςεισ Ιδιότθτεσ τθσ αντίςτροφθσ ςυνάρτθςθσ 1. Η. f A τθσ f. .. Αντίςτροφθ ςυνάρτθςθ Ζςτω θ ςυνάρτθςθ : A θ οποία είναι " ". Τότε ορίηεται μια νζα ςυνάρτθςθ, θ μζςω τθσ οποίασ το κάκε ιςχφει y. : A με Η νζα αυτι ςυνάρτθςθ λζγεται αντίςτροφθ τθσ. y y A αντιςτοιχίηεται

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ. Κεφάλαιο 8 Η γλϊςςα Pascal

ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ. Κεφάλαιο 8 Η γλϊςςα Pascal ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ Κεφάλαιο 8 Η γλϊςςα Pascal Παράγραφοσ 8.2 Βαςικοί τφποι δεδομζνων Σα δεδομζνα ενόσ προγράμματοσ μπορεί να: είναι αποκθκευμζνα εςωτερικά ςτθν μνιμθ είναι αποκθκευμζνα εξωτερικά

Διαβάστε περισσότερα

ΦΥΕ 14 ΑΚΑΔ. ΕΤΟΣ Η ΕΡΓΑΣΙΑ. Ημερομηνία παράδοςησ: 12 Νοεμβρίου (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 10 μονάδεσ θ κάκε μία)

ΦΥΕ 14 ΑΚΑΔ. ΕΤΟΣ Η ΕΡΓΑΣΙΑ. Ημερομηνία παράδοςησ: 12 Νοεμβρίου (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 10 μονάδεσ θ κάκε μία) ΦΥΕ ΑΚΑΔ. ΕΤΟΣ 007-008 Η ΕΡΓΑΣΙΑ Ημερομηνία παράδοςησ: Νοεμβρίου 007 (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 0 μονάδεσ θ κάκε μία) Άςκηςη α) Να υπολογιςκεί θ προβολι του πάνω ςτο διάνυςμα όταν: (.

Διαβάστε περισσότερα

ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 7 θ Διάλεξθ Διαχείριςθ Μνιμθσ Μζροσ Γ

ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 7 θ Διάλεξθ Διαχείριςθ Μνιμθσ Μζροσ Γ ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ 7 θ Διάλεξθ Διαχείριςθ Μνιμθσ Μζροσ Γ ελιδοποίθςθ (1/10) Σόςο θ κατάτμθςθ διαμεριςμάτων ςτακεροφ μεγζκουσ όςο και θ κατάτμθςθ διαμεριςμάτων μεταβλθτοφ και άνιςου μεγζκουσ δεν κάνουν

Διαβάστε περισσότερα

Αναπαράςταςθ Γνώςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 5: Κανόνεσ Λογικι και Συμπεραςμόσ

Αναπαράςταςθ Γνώςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 5: Κανόνεσ Λογικι και Συμπεραςμόσ Αναπαράςταςθ Γνώςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 5: Κανόνεσ Λογικι και Συμπεραςμόσ Ιωάννησ Χατζηλυγεροφδησ Πολυτεχνικι Σχολι Τμιμα Μθχ/κών Η/Υπολογιςτών & Πλθροφορικισ Περιεχόμενα ενότθτασ 1. Λογικι & Κανόνεσ

Διαβάστε περισσότερα

Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8

Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Διαχείριςθ Μνιμθσ Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Κάκε μεταβλθτι ςχετίηεται με μία κζςθ ςτθν κφρια μνιμθ του υπολογιςτι. Κάκε κζςθ ςτθ μνιμθ ζχει τθ δικι τθσ ξεχωριςτι διεφκυνςθ. Με άμεςθ

Διαβάστε περισσότερα

Αςφάλεια και Προςταςία Δεδομζνων

Αςφάλεια και Προςταςία Δεδομζνων Αςφάλεια και Προςταςία Δεδομζνων Κρυπτογράφθςθ υμμετρικι και Αςφμμετρθ Κρυπτογραφία Αλγόρικμοι El Gamal Diffie - Hellman Σςιρόπουλοσ Γεώργιοσ ΣΙΡΟΠΟΤΛΟ ΓΕΩΡΓΙΟ 1 υμμετρικι Κρυπτογραφία υμμετρικι (Κλαςικι)

Διαβάστε περισσότερα

Πλαγιογώνια Συςτήματα Συντεταγμζνων Γιϊργοσ Καςαπίδθσ

Πλαγιογώνια Συςτήματα Συντεταγμζνων Γιϊργοσ Καςαπίδθσ Πρόλογοσ το άρκρο αυτό κα δοφμε πωσ διαμορφϊνονται κάποιεσ ζννοιεσ όπωσ το εςωτερικό γινόμενο διανυςμάτων, οι ςυνκικεσ κακετότθτασ και παραλλθλίασ διανυςμάτων και ευκειϊν, ο ςυντελεςτισ διευκφνςεωσ διανφςματοσ

Διαβάστε περισσότερα

Ειδικά Θζματα Βάςεων Δεδομζνων

Ειδικά Θζματα Βάςεων Δεδομζνων Ειδικά Θζματα Βάςεων Δεδομζνων Ενότητα 11: Αντικειμενοςτραφήσ και αντικείμενοςχεςιακζσ βάςεισ Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Πλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

8 τριγωνομετρία. βαςικζσ ζννοιεσ. γ ςφω. εφω και γ. κεφάλαιο

8 τριγωνομετρία. βαςικζσ ζννοιεσ. γ ςφω. εφω και γ. κεφάλαιο κεφάλαιο 8 τριγωνομετρία Α βαςικζσ ζννοιεσ τθν τριγωνομετρία χρθςιμοποιοφμε τουσ τριγωνομετρικοφσ αρικμοφσ, οι οποίοι ορίηονται ωσ εξισ: θμω = απζναντι κάκετθ πλευρά υποτείνουςα Γ ςυνω = εφω = προςκείμενθ

Διαβάστε περισσότερα

Πολυπλέκτες. 0 x 0 F = S x 0 + Sx 1 1 x 1

Πολυπλέκτες. 0 x 0 F = S x 0 + Sx 1 1 x 1 Πολυπλέκτες Ο πολυπλζκτθσ (multipleer - ) είναι ζνα ςυνδυαςτικό κφκλωμα που επιλζγει δυαδικι πλθροφορία μιασ από πολλζσ γραμμζσ ειςόδου και τθν κατευκφνει ςε μια και μοναδικι γραμμι εξόδου. Η επιλογι μιασ

Διαβάστε περισσότερα

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό.

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό. Κωδικοποιητές Ο κωδικοποιθτισ (nor) είναι ζνα κφκλωμα το οποίο διακζτει n γραμμζσ εξόδου και το πολφ μζχρι m = 2 n γραμμζσ ειςόδου και (m 2 n ). Οι ζξοδοι παράγουν τθν κατάλλθλθ λζξθ ενόσ δυαδικοφ κϊδικα

Διαβάστε περισσότερα

Εισαγωγικές έννοιες. Αντώνησ Κ Μαώργιώτησ

Εισαγωγικές έννοιες. Αντώνησ Κ Μαώργιώτησ Εισαγωγικές έννοιες Αντώνησ Κ Μαώργιώτησ Έννοιεσ που πρϋπει να επιβεβαιώςουμε ότι τισ ξϋρουμε (1) - αναζότηςη Ιςτοςελίδα Αρχείο που περιζχει πλθροφορίεσ προοριςμζνεσ για δθμοςίευςθ ςτο Παγκόςμιο Ιςτό (www).

Διαβάστε περισσότερα

Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα

Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα Περιεχόμενα Ζννοια δομισ Οριςμόσ δομισ Διλωςθ μεταβλθτϊν Απόδοςθ Αρχικϊν τιμϊν Αναφορά ςτα μζλθ μιασ δομισ Ζνκεςθ Δομισ Πίνακεσ Δομϊν Η ζννοια τθσ δομισ Χρθςιμοποιιςαμε

Διαβάστε περισσότερα

Ενθμζρωςθ και προςταςία των καταναλωτών από τουσ κινδφνουσ που απορρζουν από τα χθμικά προϊόντα

Ενθμζρωςθ και προςταςία των καταναλωτών από τουσ κινδφνουσ που απορρζουν από τα χθμικά προϊόντα Ενθμζρωςθ και προςταςία των καταναλωτών από τουσ κινδφνουσ που απορρζουν από τα χθμικά προϊόντα Γενικό Χθμείο του Κράτουσ Διεφκυνςθ Περιβάλλοντοσ Δρ. Διμθτρα Δανιιλ Χθμικά προϊόντα Οι χθμικζσ ουςίεσ υπάρχουν

Διαβάστε περισσότερα

Αςφάλεια και Προςταςία Δεδομζνων

Αςφάλεια και Προςταςία Δεδομζνων Αςφάλεια και Προςταςία Δεδομζνων Μοντζλα Αςφάλειασ Σςιρόπουλοσ Γεϊργιοσ ΣΙΡΟΠΟΤΛΟ ΓΕΩΡΓΙΟ 1 Μοντζλα Αςφάλειασ Οι μθχανιςμοί που είναι απαραίτθτοι για τθν επιβολι μιασ πολιτικισ αςφάλειασ ςυμμορφϊνονται

Διαβάστε περισσότερα

Ψθφιακά Ηλεκτρονικά. Ενότθτα 7 : Ελαχιςτοποίθςθ και κωδικοποίθςθ καταςτάςεων Φϊτιοσ Βαρτηιϊτθσ

Ψθφιακά Ηλεκτρονικά. Ενότθτα 7 : Ελαχιςτοποίθςθ και κωδικοποίθςθ καταςτάςεων Φϊτιοσ Βαρτηιϊτθσ Ελλθνικι Δθμοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 7 : Ελαχιςτοποίθςθ και κωδικοποίθςθ καταςτάςεων Φϊτιοσ Βαρτηιϊτθσ 1 Ανοιχτά Ακαδημαϊκά Μαθήματα ςτο ΤΕΙ Ηπείρου Τμιμα

Διαβάστε περισσότερα

Λαμβάνοντασ υπόψη ότι κατά την πρόςθεςη δφο δυαδικϊν ψηφίων ιςχφει: Κρατοφμενο

Λαμβάνοντασ υπόψη ότι κατά την πρόςθεςη δφο δυαδικϊν ψηφίων ιςχφει: Κρατοφμενο Αριθμητικά κυκλώματα Ημιαθροιστής (Half Adder) Ο ημιαθροιςτήσ είναι ζνα κφκλωμα το οποίο προςθζτει δφο δυαδικά ψηφία (bits) και δίνει ωσ αποτζλεςμα το άθροιςμά τουσ και το κρατοφμενο. Με βάςη αυτή την

Διαβάστε περισσότερα

Αναπαράςταςθ Γνώςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 2: XML Δομθμζνα Ζγγραφα Ιςτοφ, Μζροσ 4 ο XPath

Αναπαράςταςθ Γνώςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 2: XML Δομθμζνα Ζγγραφα Ιςτοφ, Μζροσ 4 ο XPath Αναπαράςταςθ Γνώςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 2: XML Δομθμζνα Ζγγραφα Ιςτοφ, Μζροσ 4 ο XPath Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχ/κών Η/Υπολογιςτών & Πλθροφορικισ Περιεχόμενα ενότθτασ

Διαβάστε περισσότερα

Παράςταςη ςυμπλήρωμα ωσ προσ 1

Παράςταςη ςυμπλήρωμα ωσ προσ 1 Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ ΣΤ1 Προςθεςη αφαίρεςη ςτο ΣΤ1 2 ή ΣΤ1 Ονομάηουμε ςυμπλιρωμα ωσ προσ μειωμζνθ βάςθ R ενόσ μθ προςθμαςμζνου αρικμοφ Χ = ( Χ θ-1 Χ θ-2... Χ 0 ) R ζναν άλλον αρικμό Χ'

Διαβάστε περισσότερα

Αςκιςεισ ςε (i) Δομζσ Ευρετθρίων και Οργάνωςθ Αρχείων (ii) Κανονικοποίθςθ

Αςκιςεισ ςε (i) Δομζσ Ευρετθρίων και Οργάνωςθ Αρχείων (ii) Κανονικοποίθςθ Αςκιςεισ ςε (i) Δομζσ Ευρετθρίων και Οργάνωςθ Αρχείων (ii) Κανονικοποίθςθ Δεκζμβριοσ 2016 Άςκθςθ 1 Θεωρείςτε ότι κζλουμε να διαγράψουμε τθν τιμι 43 ςτο Β+ δζντρο τθσ Εικόνασ 1. Η διαγραφι αυτι προκαλεί

Διαβάστε περισσότερα

Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2

Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Δρ. Χρήζηος Ηλιούδης Μθ Προςθμαςμζνοι Ακζραιοι Εφαρμογζσ (ςε οποιαδιποτε περίπτωςθ δεν χρειάηονται αρνθτικοί αρικμοί) Καταμζτρθςθ. Διευκυνςιοδότθςθ.

Διαβάστε περισσότερα

Πωσ δθμιουργώ φακζλουσ;

Πωσ δθμιουργώ φακζλουσ; Πωσ δθμιουργώ φακζλουσ; Για να μπορζςετε να δθμιουργιςετε φακζλουσ ςτο χαρτοφυλάκιό ςασ ςτο Mahara κα πρζπει να μπείτε ςτο ςφςτθμα αφοφ πατιςετε πάνω ςτο ςφνδεςμο Mahara profiles από οποιοδιποτε ςελίδα

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium V Στατιςτική Συμπεραςματολογία Ι Σημειακζσ Εκτιμήςεισ Διαςτήματα Εμπιςτοςφνησ Στατιςτική Συμπεραςματολογία (Statistical Inference) Το πεδίο τθσ Στατιςτικισ Συμπεραςματολογία,

Διαβάστε περισσότερα

HY437 Αλγόριθμοι CAD

HY437 Αλγόριθμοι CAD HY437 Αλγόριθμοι CAD Διδάςκων: Χ. Σωτηρίου http://inf-server.inf.uth.gr/courses/ce437/ 1 Περιεχόμενα Σφνολα και Σχζςεισ Πράξεισ Συνόλων Κατθγορίεσ Σχζςεων Σχζςεισ Ιςοδυναμίασ, Διάταςθσ, Συμβατότθτασ Συναρτιςεισ

Διαβάστε περισσότερα

Δείκτεσ απόδοςθσ υλικών

Δείκτεσ απόδοςθσ υλικών Δείκτεσ απόδοςθσ υλικών Κάκε ςυνδυαςμόσ λειτουργίασ, περιοριςμϊν και ςτόχων, οδθγεί ςε ζνα μζτρο τθσ απόδοςθσ τθσ λειτουργίασ του εξαρτιματοσ και περιζχει μια ομάδα ιδιοτιτων των υλικϊν. Αυτι θ ομάδα των

Διαβάστε περισσότερα

Εγχειρίδιο Χριςθσ τθσ διαδικτυακισ εφαρμογισ «Υποβολι και παρακολοφκθςθ τθσ ζγκριςθσ Εκπαιδευτικών Πακζτων»

Εγχειρίδιο Χριςθσ τθσ διαδικτυακισ εφαρμογισ «Υποβολι και παρακολοφκθςθ τθσ ζγκριςθσ Εκπαιδευτικών Πακζτων» Εγχειρίδιο Χριςθσ τθσ διαδικτυακισ εφαρμογισ «Υποβολι και παρακολοφκθςθ τθσ ζγκριςθσ Εκπαιδευτικών Πακζτων» Το Πλθροφοριακό Σφςτθμα τθσ δράςθσ «e-κπαιδευτείτε» ζχει ςτόχο να αυτοματοποιιςει τισ ακόλουκεσ

Διαβάστε περισσότερα

Ειςαγωγι ςτο Δομθμζνο Προγραμματιςμό. Βαγγζλθσ Οικονόμου

Ειςαγωγι ςτο Δομθμζνο Προγραμματιςμό. Βαγγζλθσ Οικονόμου Ειςαγωγι ςτο Δομθμζνο Προγραμματιςμό Βαγγζλθσ Οικονόμου Περιεχόμενα Πλθροφορίεσ Μακιματοσ Δομθμζνοσ Προγραμματιςμόσ (Οριςμοί, Γενικζσ Ζννοιεσ) Αλγόρικμοι και Ψευδοκϊδικασ Γλϊςςα προγραμματιςμοφ C Πλθροφορίεσ

Διαβάστε περισσότερα

Οδθγία 2014/95/ΕΕ Ευρωπαϊκοφ Κοινοβουλίου και Συμβουλίου τθσ 22/10/14. Ημερομθνία Δθμοςίευςθσ ςτθν Εφθμερίδα Ε.Ε.: 15/11/14

Οδθγία 2014/95/ΕΕ Ευρωπαϊκοφ Κοινοβουλίου και Συμβουλίου τθσ 22/10/14. Ημερομθνία Δθμοςίευςθσ ςτθν Εφθμερίδα Ε.Ε.: 15/11/14 Οδθγία 2014/95/ΕΕ Ευρωπαϊκοφ Κοινοβουλίου και Συμβουλίου τθσ 22/10/14 Ημερομθνία Δθμοςίευςθσ ςτθν Εφθμερίδα Ε.Ε.: 15/11/14 Δθμοςιοποίθςθ μθ χρθματοοικονομικών πλθροφοριών Ημερομθνία Εφαρμογισ τθσ Ευρωπαϊκισ

Διαβάστε περισσότερα

Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων

Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Ενότητα 3: υςτιματα ουρϊν αναμονισ Κακθγθτισ Γιάννθσ Γιαννίκοσ χολι Οργάνωςθσ και Διοίκθςθσ Επιχειριςεων Σμιμα Διοίκθςθσ Επιχειριςεων Σκοποί ενότητασ Μελζτθ ςυςτθμάτων

Διαβάστε περισσότερα

Θεςιακά ςυςτιματα αρίκμθςθσ

Θεςιακά ςυςτιματα αρίκμθςθσ Θεςιακά ςυςτιματα αρίκμθςθσ Δρ. Χρήστος Ηλιούδης αρικμθτικό ςφςτθμα αρίκμθςθσ (Number System) Αξία (value) παράςταςθ Οι αξίεσ (π.χ. το βάροσ μιασ ποςότθτασ μιλων) μποροφν να παραςτακοφν με πολλοφσ τρόπουσ

Διαβάστε περισσότερα

Α) Ενδεικτικϋσ απαντόςεισ των θεμϊτων

Α) Ενδεικτικϋσ απαντόςεισ των θεμϊτων Πανελλόνιεσ εξετϊςεισ Γ Τϊξησ 2011 Ανϊπτυξη Εφαρμογών ςε Προγραμματιςτικό Περιβϊλλον ΘΕΜΑ Α Α) Ενδεικτικϋσ απαντόςεισ των θεμϊτων Α1. Σ/Λ 1. Σωςτι 2. Σωςτι 3. Λάκοσ 4. Λάκοσ 5. Λάκοσ Α2. Σ/Λ 1. Σωςτι 2.

Διαβάστε περισσότερα

ΡΑΝΕΛΛΘΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΧΗΜΕΙΑ ΘΕΤΙΚΘΣ ΚΑΤΕΥΘΥΝΣΘΣ

ΡΑΝΕΛΛΘΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΧΗΜΕΙΑ ΘΕΤΙΚΘΣ ΚΑΤΕΥΘΥΝΣΘΣ ΡΑΝΕΛΛΘΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΧΗΜΕΙΑ ΘΕΤΙΚΘΣ ΚΑΤΕΥΘΥΝΣΘΣ Θζμα Α Α1: γ, Α2: β, Α3: α, Α4: β, A5: β Θζμα Β Β1: Σ ι Λ (ελλιπισ διατφπωςθ), Λ, Σ, Σ, Σ Β2: α) Οι διαφορζσ μεταξφ ς και π δεςμοφ είναι: α. Στον ς

Διαβάστε περισσότερα

HY437 Αλγόριθμοι CAD

HY437 Αλγόριθμοι CAD HY437 Αλγόριθμοι CAD Διδάςκων: Χ. Σωτηρίου http://inf-server.inf.uth.gr/courses/ce437/ 1 ΗΥ437 - Πολυεπίπεδθ Λογικι Απλοποίθςθ με Περιεχόμενα Είδθ Αδιάφορων Τιμϊν ςε Πολφ-επίπεδα Δυαδικά Δίκτυα Αδιάφορεσ

Διαβάστε περισσότερα

Ενδεικτικζσ Λφςεισ Θεμάτων

Ενδεικτικζσ Λφςεισ Θεμάτων c AM (t) x(t) ΤΕΙ Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σειρά Β Ειςηγητήσ: Δρ Απόςτολοσ Γεωργιάδησ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Ενδεικτικζσ Λφςεισ Θεμάτων Θζμα 1 ο (1 μον.) Ζςτω περιοδικό ςιμα πλθροφορίασ με περίοδο.

Διαβάστε περισσότερα

ΜΑ032: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Εαρινό εξάμηνο , Διδάςκων: Γιώργοσ Γεωργίου ΕΝΔΙΑΜΕΗ ΕΞΕΣΑΗ, 21 Μαρτίου, 2012 Διάρκεια: 2 ώρεσ

ΜΑ032: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Εαρινό εξάμηνο , Διδάςκων: Γιώργοσ Γεωργίου ΕΝΔΙΑΜΕΗ ΕΞΕΣΑΗ, 21 Μαρτίου, 2012 Διάρκεια: 2 ώρεσ ΜΑ: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Εαρινό εξάμηνο -, Διδάςκων: Γιώργοσ Γεωργίου ΕΝΔΙΑΜΕΗ ΕΞΕΣΑΗ, Μαρτίου, Διάρκεια: ώρεσ ΟΝΟΜΑ: Αρ. Πολ. Σαυτ. Πρόβλημα. Θεωροφμε τα διανφςματα u =,,,, v =,,,4, w =,,,, (α) Υπολογίςτε

Διαβάστε περισσότερα

Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο του Άβακα

Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο του Άβακα Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο του Άβακα Αυτζσ οι οδθγίεσ ζχουν ςτόχο λοιπόν να βοθκιςουν τουσ εκπαιδευτικοφσ να καταςκευάςουν τισ δικζσ τουσ δραςτθριότθτεσ με το μοντζλο του Άβακα. Παρουςίαςη

Διαβάστε περισσότερα

ΗΛΕΚΣΡΟΝΙΚΗ ΤΠΗΡΕΙΑ ΑΠΟΚΣΗΗ ΑΚΑΔΗΜΑΪΚΗ ΣΑΤΣΟΣΗΣΑ

ΗΛΕΚΣΡΟΝΙΚΗ ΤΠΗΡΕΙΑ ΑΠΟΚΣΗΗ ΑΚΑΔΗΜΑΪΚΗ ΣΑΤΣΟΣΗΣΑ ΗΛΕΚΣΡΟΝΙΚΗ ΤΠΗΡΕΙΑ ΑΠΟΚΣΗΗ ΑΚΑΔΗΜΑΪΚΗ ΣΑΤΣΟΣΗΣΑ Οδηγός Χρήσης Εφαρμογής Ελέγχου Προσφορών Αφοφ πιςτοποιθκεί ο λογαριαςμόσ που δθμιουργιςατε ςτο πρόγραμμα ωσ Πάροχοσ Προςφορϊν, κα λάβετε ζνα e-mail με

Διαβάστε περισσότερα

Ψθφιακά Ηλεκτρονικά. Ενότθτα 5 : Ανάλυςθ κυκλώματοσ με D και JK FLIP- FLOP Φώτιοσ Βαρτηιώτθσ

Ψθφιακά Ηλεκτρονικά. Ενότθτα 5 : Ανάλυςθ κυκλώματοσ με D και JK FLIP- FLOP Φώτιοσ Βαρτηιώτθσ Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 5 : Ανάλυςθ κυκλώματοσ με D και JK FLIP- FLOP Φώτιοσ Βαρτηιώτθσ 1 Ανοιχτά Ακαδημαϊκά Μαθήματα ςτο ΤΕΙ Ηπείρου Σμιμα

Διαβάστε περισσότερα

Εργαςτιριο Βάςεων Δεδομζνων

Εργαςτιριο Βάςεων Δεδομζνων Εργαςτιριο Βάςεων Δεδομζνων 2010-2011 Μάθημα 1 ο 1 Ε. Σςαμούρα Σμήμα Πληροφορικήσ ΑΠΘ Σκοπόσ του 1 ου εργαςτθριακοφ μακιματοσ Σκοπόσ του πρϊτου εργαςτθριακοφ μακιματοσ είναι να μελετιςουμε ερωτιματα επιλογισ

Διαβάστε περισσότερα

Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό. μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ

Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό. μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ Για τθν ανάδειξθ του κζματοσ κα λφνουμε κάποια προβλιματα

Διαβάστε περισσότερα

Περιεχόμενα. χολι Χοροφ Αντιγόνθ Βοφτου - Πολιτικι Διαχείριςθσ Cookie 1

Περιεχόμενα. χολι Χοροφ Αντιγόνθ Βοφτου - Πολιτικι Διαχείριςθσ Cookie 1 Περιεχόμενα Περιεχόμενα... 1 1. Ειςαγωγή... 2 1.1 Σχετικά... 2 2. Γενικέσ Πληροφορίεσ για τα Cookies... 2 2.1 Οριςμόσ... 2 2.2 Χρήςη... 3 2.3 Τφποι... 3 2.4 Έλεγχοσ... 3 3. Cookies Σχολήσ... 4 3.1 Ειςαγωγή...

Διαβάστε περισσότερα

ελ. 11/235, Περιεχόμενα Φακζλου "Σεχνικι Προςφορά"

ελ. 11/235, Περιεχόμενα Φακζλου Σεχνικι Προςφορά υντάκτθσ : Ευάγγελοσ Κρζτςιμοσ χόλιο: ΠΑΡΑΣΗΡΗΗ 1 ελ. 11/235, Περιεχόμενα Φακζλου "Σεχνικι Προςφορά" Για τθν αποφυγι μεγάλου όγκου προςφοράσ και για τθ διευκόλυνςθ του ζργου τθσ επιτροπισ προτείνεται τα

Διαβάστε περισσότερα

Megatron ERP Βάςη δεδομζνων Π/Φ - κατηγοριοποίηςη Databox

Megatron ERP Βάςη δεδομζνων Π/Φ - κατηγοριοποίηςη Databox Megatron ERP Βάςη δεδομζνων Π/Φ - κατηγοριοποίηςη Databox 03 05 ΙΛΤΔΑ ΠΛΗΡΟΦΟΡΙΚΗ Α.Ε. αρμά Ιηαμπζλλα Βαρλάμθσ Νίκοσ Ειςαγωγι... 1 Σι είναι το Databox...... 1 Πότε ανανεϊνεται...... 1 Μπορεί να εφαρμοςτεί

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΙΚΗΣ ΛΟΓΙΚΗΣ

ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΙΚΗΣ ΛΟΓΙΚΗΣ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΙΚΗΣ ΛΟΓΙΚΗΣ Λογικι πρόταςθ: Με τον όρο λογικι πρόταςθ (ι απλά πρόταςθ) ςτα μακθματικά, εννοοφμε μια ζκφραςθ με πλιρεσ νόθμα που δζχεται τον χαρακτθριςμό ι μόνο αλθκισ ι μόνο ψευδισ. Παραδείγματα:

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον

Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον Γραπτι Εξζταςθ ςτο μάκθμα Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον Όνομα: Επϊνυμο: Τμιμα: Ημερομθνία: 20/02/11 Θζμα 1 ο Α. Να χαρακτθρίςετε κακεμιά από τισ παρακάτω προτάςεισ ωσ Σωςτι (Σ) ι Λάκοσ

Διαβάστε περισσότερα

ΑΔΡΑΝΕΙΑ ΜΑΘΗΣΕ: ΜΑΡΙΑΝΝΑ ΠΑΡΑΘΤΡΑ ΑΝΑΣΑΗ ΠΟΤΛΙΟ ΠΑΝΑΓΙΩΣΗ ΠΡΟΔΡΟΜΟΤ ΑΝΑΣΑΙΑ ΠΟΛΤΧΡΟΝΙΑΔΟΤ ΙΩΑΝΝΑ ΠΕΝΓΚΟΤ

ΑΔΡΑΝΕΙΑ ΜΑΘΗΣΕ: ΜΑΡΙΑΝΝΑ ΠΑΡΑΘΤΡΑ ΑΝΑΣΑΗ ΠΟΤΛΙΟ ΠΑΝΑΓΙΩΣΗ ΠΡΟΔΡΟΜΟΤ ΑΝΑΣΑΙΑ ΠΟΛΤΧΡΟΝΙΑΔΟΤ ΙΩΑΝΝΑ ΠΕΝΓΚΟΤ ΑΔΡΑΝΕΙΑ ΜΑΘΗΣΕ: ΜΑΡΙΑΝΝΑ ΠΑΡΑΘΤΡΑ ΑΝΑΣΑΗ ΠΟΤΛΙΟ ΠΑΝΑΓΙΩΣΗ ΠΡΟΔΡΟΜΟΤ ΑΝΑΣΑΙΑ ΠΟΛΤΧΡΟΝΙΑΔΟΤ ΙΩΑΝΝΑ ΠΕΝΓΚΟΤ Οριςμόσ: Με τον όρο αδράνεια ςτθ Φυςικι ονομάηεται θ χαρακτθριςτικι ιδιότθτα των ςωμάτων να αντιςτζκονται

Διαβάστε περισσότερα

Η γλώςςα προγραμματιςμού C

Η γλώςςα προγραμματιςμού C Η γλώςςα προγραμματιςμού C Οι εντολζσ επανάλθψθσ (while, do-while, for) Γενικά για τισ εντολζσ επανάλθψθσ Συχνά ςτο προγραμματιςμό είναι επικυμθτι θ πολλαπλι εκτζλεςθ μιασ ενότθτασ εντολϊν, είτε για ζνα

Διαβάστε περισσότερα

Τυπικζσ Γλϊςςεσ Περιγραφισ Υλικοφ Διάλεξθ 4

Τυπικζσ Γλϊςςεσ Περιγραφισ Υλικοφ Διάλεξθ 4 Τμήμα Μησανικών Πληποφοπικήρ, Τ.Ε.Ι. Ηπείπος Ακαδημαϊκό Έτορ 2016-2017, 6 ο Εξάμηνο Τυπικζσ Γλϊςςεσ Περιγραφισ Υλικοφ Διάλεξθ 4 Διδάςκων Τςιακμάκθσ Κυριάκοσ, Phd MSc in Electronic Physics (Radioelectrology)

Διαβάστε περισσότερα

Ιςοηυγιςμζνα δζντρα και Β- δζντρα. Δομζσ Δεδομζνων

Ιςοηυγιςμζνα δζντρα και Β- δζντρα. Δομζσ Δεδομζνων Ιςοηυγιςμζνα δζντρα και Β- δζντρα Δομζσ Δεδομζνων Περιεχόμενα Ιςοηυγιςμζνα δζντρα Μζκοδοι ιςοηφγιςθσ δζντρων Μονι Περιςτροφι Διπλι Περιςτροφι Β - δζντρα Ιςοηυγιςμζνα δζντρα Η μορφι ενόσ δυαδικοφ δζντρου

Διαβάστε περισσότερα

Βαςεις δεδομενων 1. Δρ. Αλζξανδροσ Βακαλουδθσ

Βαςεις δεδομενων 1. Δρ. Αλζξανδροσ Βακαλουδθσ Βαςεις δεδομενων 1 Δρ. Αλζξανδροσ Βακαλουδθσ επικοινωνια Email: avakaloudis@hotmail.com Website: http://teiser.alvak.gr Ερωτιςεισ Στο ΤΕΙ Σερρϊν Δευτζρα, Τριτθ (κατοπιν ςυννενόθςθσ) Σιμερα Μοντζλο οντοτιτων

Διαβάστε περισσότερα

Μάκθμα 1 Ειςαγωγι ςτθν αναπθρία

Μάκθμα 1 Ειςαγωγι ςτθν αναπθρία Πανεπιςτιμιο Θεςςαλίασ Παιδαγωγικό Τμιμα Προςχολικισ Εκπαίδευςθσ Ένταξθ και Αναπθρία: Εκπαιδευτικζσ Προςεγγίςεισ Μάκθμα 1 Ειςαγωγι ςτθν αναπθρία Διδάςκων: Βαςίλθσ Στρογγυλόσ Περιεχόμενο μακιματοσ Ειςαγωγι

Διαβάστε περισσότερα

lim x και lim f(β) f(β). (β > 0)

lim x και lim f(β) f(β). (β > 0) . Δίνεται θ παραγωγίςιμθ ςτο * α, β + ( 0 < α < β ) ςυνάρτθςθ f για τθν οποία ιςχφουν: f(α) lim (-) a και lim ( f(β)) = Να δείξετε ότι: α. f(α) < α και f(β) > β β. Αν g() = τότε θ C f και C g ζχουν ζνα

Διαβάστε περισσότερα

Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο τησ Αριθμογραμμήσ

Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο τησ Αριθμογραμμήσ Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο τησ Αριθμογραμμήσ Αυτζσ οι οδθγίεσ ζχουν ςτόχο να βοθκιςουν τουσ εκπαιδευτικοφσ να καταςκευάςουν τισ δικζσ τουσ δραςτθριότθτεσ με το μοντζλο τθσ Αρικμογραμμισ.

Διαβάστε περισσότερα

ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 8 θ Διάλεξθ Ιδεατι Μνιμθ Μζροσ Α

ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 8 θ Διάλεξθ Ιδεατι Μνιμθ Μζροσ Α ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ 8 θ Διάλεξθ Ιδεατι Μνιμθ Μζροσ Α Βαςικι Ορολογία Ιδεατή Μνήμη: χιμα ανάκεςθσ αποκθκευτικοφ χϊρου, ςτο οποίο θ δευτερεφουςα μνιμθ μπορεί να διευκυνςιοδοτθκεί ςαν να ιταν μζροσ τθσ κφριασ

Διαβάστε περισσότερα

ΓΕΦΤΡΟΠΟΙΪΑ: ΜΟΝΙΜΑ ΚΑΙ ΚΙΝΗΣΑ ΦΟΡΣΙΑ. ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τ.Ε.Ι. Δυτικής Ελλάδας

ΓΕΦΤΡΟΠΟΙΪΑ: ΜΟΝΙΜΑ ΚΑΙ ΚΙΝΗΣΑ ΦΟΡΣΙΑ. ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τ.Ε.Ι. Δυτικής Ελλάδας 1 ΓΕΦΤΡΟΠΟΙΪΑ: ΜΟΝΙΜΑ ΚΑΙ ΚΙΝΗΣΑ ΦΟΡΣΙΑ ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τ.Ε.Ι. Δυτικής Ελλάδας Μόνιμα Φορτία Ίδιον Βάροσ (για Οπλιςμζνο Σκυρόδεμα): g=25 KN/m 3 Σε οδικζσ γζφυρεσ πρζπει

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων

Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων Δρ. Θεοδώρου Παύλοσ theodorou@uoc.gr Περιεχόμενα Τι είναι οι Βάςεισ Δεδομζνων (DataBases) Τι είναι Σφςτθμα Διαχείριςθσ Βάςεων Δεδομζνων (DBMS) Οι Στόχοι

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΖσ ΒΆΕΩΝ ΔΕΔΟΜΖΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΥΟΤ. Ειρινθ Φιλιοποφλου

ΕΦΑΡΜΟΓΖσ ΒΆΕΩΝ ΔΕΔΟΜΖΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΥΟΤ. Ειρινθ Φιλιοποφλου ΕΦΑΡΜΟΓΖσ ΒΆΕΩΝ ΔΕΔΟΜΖΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΥΟΤ Ειρινθ Φιλιοποφλου Ειςαγωγι Ο Παγκόςμιοσ Ιςτόσ (World Wide Web - WWW) ι πιο απλά Ιςτόσ (Web) είναι μία αρχιτεκτονικι για τθν προςπζλαςθ διαςυνδεδεμζνων εγγράφων

Διαβάστε περισσότερα

ςυςτιματα γραμμικϊν εξιςϊςεων

ςυςτιματα γραμμικϊν εξιςϊςεων κεφάλαιο 7 Α ςυςτιματα γραμμικϊν εξιςϊςεων αςικζσ ζννοιεσ Γραμμικά, λζγονται τα ςυςτιματα εξιςϊςεων ςτα οποία οι άγνωςτοι εμφανίηονται ςτθν πρϊτθ δφναμθ. Σα γραμμικά ςυςτιματα με δφο εξιςϊςεισ και δφο

Διαβάστε περισσότερα

ΟΝΟΜΑΣΟΛΟΓΙΑ ΠΑΡΑΜΕΣΡΩΝ ΓΙΑ ΠΡΟΑΡΜΟΜΕΝΕ ΑΝΑΦΟΡΕ. @XXX@_<όνομα παραμζτρου> (Εμφανίηεται ςαν Caption ςτθν φόρμα των φίλτρων).

ΟΝΟΜΑΣΟΛΟΓΙΑ ΠΑΡΑΜΕΣΡΩΝ ΓΙΑ ΠΡΟΑΡΜΟΜΕΝΕ ΑΝΑΦΟΡΕ. @XXX@_<όνομα παραμζτρου> (Εμφανίηεται ςαν Caption ςτθν φόρμα των φίλτρων). ΟΝΟΜΑΣΟΛΟΓΙΑ ΠΑΡΑΜΕΣΡΩΝ ΓΙΑ ΠΡΟΑΡΜΟΜΕΝΕ ΑΝΑΦΟΡΕ. @XXX@_ (Εμφανίηεται ςαν Caption ςτθν φόρμα των φίλτρων). Βαςικοί παράμετροι @EDT@_ @CHK@_ @CXD@_ @CXDC@_ @CMB@_ @CHKLB@_ Παράμετροσ που

Διαβάστε περισσότερα

Μετατροπι Αναλογικοφ Σιματοσ ςε Ψθφιακό. Διάλεξθ 10

Μετατροπι Αναλογικοφ Σιματοσ ςε Ψθφιακό. Διάλεξθ 10 Μετατροπι Αναλογικοφ Σιματοσ ςε Ψθφιακό Διάλεξθ 10 Γενικό Σχιμα Μετατροπζασ Αναλογικοφ ςε Ψθφιακό Ψθφιακό Τθλεπικοινωνιακό Κανάλι Μετατροπζασ Ψθφιακοφ ςε Αναλογικό Τα αναλογικά ςιματα μετατρζπονται ςε

Διαβάστε περισσότερα

Αναπαράςταςθ Γνϊςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 3: RDF Περιγραφι Πόρων Ιςτοφ, Μζροσ 1 ο RDF

Αναπαράςταςθ Γνϊςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 3: RDF Περιγραφι Πόρων Ιςτοφ, Μζροσ 1 ο RDF Αναπαράςταςθ Γνϊςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 3: RDF Περιγραφι Πόρων Ιςτοφ, Μζροσ 1 ο RDF Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχ/κϊν Θ/Υπολογιςτϊν & Πλθροφορικισ Μζροσ 1 ο RDF 1. Ειςαγωγι

Διαβάστε περισσότερα

Εφδοξοσ+ Συνδεκείτε ςτθν Εφαρμογι Φοιτθτϊν και μεταβείτε ςτθ ςελίδα «Ανταλλαγι Βιβλίων (Εφδοξοσ+)».

Εφδοξοσ+ Συνδεκείτε ςτθν Εφαρμογι Φοιτθτϊν και μεταβείτε ςτθ ςελίδα «Ανταλλαγι Βιβλίων (Εφδοξοσ+)». Εφδοξοσ+ Διαθζτοντασ βιβλία μζςω του «Εφδοξοσ+» Συνδεκείτε ςτθν Εφαρμογι Φοιτθτϊν και μεταβείτε ςτθ ςελίδα «Ανταλλαγι Βιβλίων (Εφδοξοσ+)». Εμφανίηεται θ λίςτα με όλα ςασ τα βιβλία. Από εδϊ μπορείτε: -

Διαβάστε περισσότερα

Σφντομεσ Οδθγίεσ Χριςθσ

Σφντομεσ Οδθγίεσ Χριςθσ Σφντομεσ Οδθγίεσ Χριςθσ Περιεχόμενα 1. Επαφζσ... 3 2. Ημερολόγιο Επιςκζψεων... 4 3. Εκκρεμότθτεσ... 5 4. Οικονομικά... 6 5. Το 4doctors ςτο κινθτό ςου... 8 6. Υποςτιριξθ... 8 2 1. Επαφζσ Στισ «Επαφζσ»

Διαβάστε περισσότερα

«Χάρβεϊ» *Art therapy* Αριάδνθ Λεγάκθ

«Χάρβεϊ» *Art therapy* Αριάδνθ Λεγάκθ «Χάρβεϊ» *Art therapy* Αριάδνθ Λεγάκθ *Art therapy* H Art therapy, ι αλλιϊσ θεραπεία τέχνησ, είναι μια μορφι κεραπείασ που χρθςιμοποιεί τθ δθμιουργικι διαδικαςία μζςω τθσ τζχνθσ, για να βελτιϊςει τθ φυςικι

Διαβάστε περισσότερα

Κεφάλαιο 6: Δομικι μοντελοποίθςθ

Κεφάλαιο 6: Δομικι μοντελοποίθςθ Κεφάλαιο 6: Δομικι μοντελοποίθςθ τόχοι Κατανόθςθ των κανόνων και των γενικϊν κατευκφνςεων για τθ δθμιουργία καρτϊν CRC, διαγραμμάτων κλάςεων και διαγραμμάτων αντικειμζνων Κατανόθςθ των διαδικαςιϊν που

Διαβάστε περισσότερα

Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν:

Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν: Μζθοδος Simplex Η πλζον γνωςτι και περιςςότερο χρθςιμοποιουμζνθ μζκοδοσ για τθν επίλυςθ ενόσ γενικοφ προβλιματοσ γραμμικοφ προγραμματιςμοφ, είναι θ μζκοδοσ Simplex θ οποία αναπτφχκθκε από τον George Dantzig.

Διαβάστε περισσότερα

Κλαςικι Ηλεκτροδυναμικι

Κλαςικι Ηλεκτροδυναμικι Κλαςικι Ηλεκτροδυναμικι Ενότθτα 21: Διάδοςθ θλεκτρομαγνθτικών κυμάτων Ανδρζασ Τερηισ Σχολι Θετικών Επιςτθμών Τμιμα Φυςικισ Σκοποί ενότθτασ Σκοπόσ τθσ ενότθτασ είναι να ςυνεχίςει τθν μελζτθ που αφορά τθν

Διαβάστε περισσότερα

Διορκώνω τισ εργαςίεσ των ςυμφοιτθτών μου

Διορκώνω τισ εργαςίεσ των ςυμφοιτθτών μου Διορκώνω τισ εργαςίεσ των ςυμφοιτθτών μου Ένασ φοιτητήσ έγραψε ςτην αναφορά του το παρακάτω: Κατά τθ γνώμθ μου θ πλθροφορία για τισ επιχειριςεισ λαμβάνει πολφ ςθμαντικό ρόλο. Κατά τθ γνώμθ μου, ο ρόλοσ

Διαβάστε περισσότερα

Η ΤΜΒΟΛΗ ΣΩΝ ΓΟΝΕΩΝ ΣΗΝ ΠΡΟΩΘΗΗ ΣΗ ΜΑΘΗΗ: ΠΟΡΙΜΑΣΑ ΣΗ ΕΡΕΤΝΑ ΓΙΑ ΣΗΝ ΕΚΠΑΙΔΕΤΣΙΚΗ ΑΠΟΣΕΛΕΜΑΣΙΚΟΣΗΣΑ

Η ΤΜΒΟΛΗ ΣΩΝ ΓΟΝΕΩΝ ΣΗΝ ΠΡΟΩΘΗΗ ΣΗ ΜΑΘΗΗ: ΠΟΡΙΜΑΣΑ ΣΗ ΕΡΕΤΝΑ ΓΙΑ ΣΗΝ ΕΚΠΑΙΔΕΤΣΙΚΗ ΑΠΟΣΕΛΕΜΑΣΙΚΟΣΗΣΑ «Προωθώντασ την Ποιότητα και την Ιςότητα ςτην Εκπαίδευςη: Ανάπτυξη, Εφαρμογή και Αξιολόγηςη Παρεμβατικοφ Προγράμματοσ για Παροχή Ίςων Εκπαιδευτικών Ευκαιριών ςε όλουσ τουσ Μαθητζσ» Η ΤΜΒΟΛΗ ΣΩΝ ΓΟΝΕΩΝ

Διαβάστε περισσότερα

1. Κατέβαςμα του VirtueMart

1. Κατέβαςμα του VirtueMart 1. Κατέβαςμα του VirtueMart Αρχικό βήμα (προαιρετικό). Κατζβαςμα και αποςυμπίεςη αρχείων VirtueMart ΠΡΟΟΧΗ. Αυτό το βήμα να παρακαμφθεί ςτο εργαςτήριο. Τα αρχεία θα ςασ δοθοφν από τουσ καθηγητζσ ςασ. Οι

Διαβάστε περισσότερα

Μάθημα 9 ο ΤΕΧΝΙΚΕΣ ΔΙΑΧΕΙΡΙΣΗΣ ΕΙΚΟΝΙΚΗΣ ΜΝΗΜΗΣ

Μάθημα 9 ο ΤΕΧΝΙΚΕΣ ΔΙΑΧΕΙΡΙΣΗΣ ΕΙΚΟΝΙΚΗΣ ΜΝΗΜΗΣ Μάθημα 9 ο ΤΕΧΝΙΚΕΣ ΔΙΑΧΕΙΡΙΣΗΣ ΕΙΚΟΝΙΚΗΣ ΜΝΗΜΗΣ Ειςαγωγό Όπωσ είδαμε, ο χϊροσ εικονικϊν διευκφνςεων μνιμθσ που χρθςιμοποιεί κάκε διεργαςία, είναι αρκετά μεγαλφτεροσ από το χϊρο των φυςικϊν διευκφνςεων.

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2: ΤΟ ΛΟΓΙΣΜΙΚΟ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ. ΚΕΦΑΛΑΙΟ 5: Γνωριμία με το λογιςμικό του υπολογιςτι

ΕΝΟΤΗΤΑ 2: ΤΟ ΛΟΓΙΣΜΙΚΟ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ. ΚΕΦΑΛΑΙΟ 5: Γνωριμία με το λογιςμικό του υπολογιςτι ΕΝΟΤΗΤΑ 2: ΤΟ ΛΟΓΙΣΜΙΚΟ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ ΚΕΦΑΛΑΙΟ 5: Γνωριμία με το λογιςμικό του υπολογιςτι Λογιςμικό (Software), Πρόγραμμα (Programme ι Program), Προγραμματιςτισ (Programmer), Λειτουργικό Σφςτθμα (Operating

Διαβάστε περισσότερα

Παράγοντεσ υμμετοχήσ Ενηλίκων ςτην Εκπαίδευςη: Ζητήματα Κινητοποίηςησ και Πρόςβαςησ ςε Οργανωμζνεσ Εκπαιδευτικζσ Δραςτηριότητεσ

Παράγοντεσ υμμετοχήσ Ενηλίκων ςτην Εκπαίδευςη: Ζητήματα Κινητοποίηςησ και Πρόςβαςησ ςε Οργανωμζνεσ Εκπαιδευτικζσ Δραςτηριότητεσ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Παράγοντεσ υμμετοχήσ Ενηλίκων ςτην Εκπαίδευςη: Ζητήματα Κινητοποίηςησ και Πρόςβαςησ ςε Οργανωμζνεσ Εκπαιδευτικζσ Δραςτηριότητεσ Ενότητα 7:

Διαβάστε περισσότερα

Οντοκεντρικόσ Προγραμματιςμόσ

Οντοκεντρικόσ Προγραμματιςμόσ Οντοκεντρικόσ Προγραμματιςμόσ Ενότθτα 7: C++ TEMPLATES, ΤΠΕΡΦΟΡΣΩΗ ΣΕΛΕΣΩΝ, ΕΞΑΙΡΕΕΙ Templates Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι χολι Σμιμα Μθχανικών Η/Τ & Πλθροφορικισ Templates Ειςαγωγι Templates o

Διαβάστε περισσότερα

ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 2 ο Εργαςτιριο Διαχείριςθ Διεργαςιϊν

ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 2 ο Εργαςτιριο Διαχείριςθ Διεργαςιϊν ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ 2 ο Εργαςτιριο Διαχείριςθ Διεργαςιϊν Τπόβακρο (1/3) τουσ παλαιότερουσ υπολογιςτζσ θ Κεντρικι Μονάδα Επεξεργαςίασ (Κ.Μ.Ε.) μποροφςε κάκε ςτιγμι να εκτελεί μόνο ζνα πρόγραμμα τουσ ςφγχρονουσ

Διαβάστε περισσότερα

Ονοματεπϊνυμο.. ΔΙΑΓΩΝΙΣΜΑ ΑΕΠΠ

Ονοματεπϊνυμο.. ΔΙΑΓΩΝΙΣΜΑ ΑΕΠΠ Ονοματεπϊνυμο.. ΔΙΑΓΩΝΙΣΜΑ ΑΕΠΠ ΘΕΜΑ 1 Ο Α) Ερωτισεις τφπου ωστοφ-λάκους 1. Κάκε βρόχος Για μπορεί να μετατραπεί σε Όσο 2. Κάκε βρόχος που υλοποιείται με τθν εντολι Όσο...επανάλαβε μπορεί να γραφεί και

Διαβάστε περισσότερα

Δομθμζνοσ Προγραμματιςμόσ. Βαγγζλθσ Οικονόμου Εργαςτιριο 9

Δομθμζνοσ Προγραμματιςμόσ. Βαγγζλθσ Οικονόμου Εργαςτιριο 9 Δομθμζνοσ Προγραμματιςμόσ Βαγγζλθσ Οικονόμου Εργαςτιριο 9 Συναρτιςεισ Αφαιρετικότθτα ςτισ διεργαςίεσ Συνάρτθςεισ Διλωςθ, Κλιςθ και Οριςμόσ Εμβζλεια Μεταβλθτών Μεταβίβαςθ παραμζτρων ςε ςυναρτιςεισ Συναρτιςεισ

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο)

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Ιοφνιοσ 2013 Περιεχόμενα: Ειςαγωγή... 3 1.Εθνικό Τυπογραφείο... 3 1.1. Είςοδοσ... 3 1.2. Αρχική Οθόνη... 4 1.3. Διεκπεραίωςη αίτηςησ...

Διαβάστε περισσότερα

ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ. ΚΕΦΑΛΑΙΟ 3: Εργονομία

ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ. ΚΕΦΑΛΑΙΟ 3: Εργονομία ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ Εργονομία, ωςτι ςτάςθ εργαςίασ, Εικονοςτοιχείο (pixel), Ανάλυςθ οκόνθσ (resolution), Μζγεκοσ οκόνθσ Ποιεσ επιπτϊςεισ μπορεί να ζχει θ πολφωρθ χριςθ του υπολογιςτι ςτθν

Διαβάστε περισσότερα

Διαδικαςία Προγράμματοσ Ωρομζτρθςθσ. (v.1.0.7)

Διαδικαςία Προγράμματοσ Ωρομζτρθςθσ. (v.1.0.7) (v.1.0.7) 1 Περίλθψθ Σο ςυγκεκριμζνο εγχειρίδιο δθμιουργικθκε για να βοθκιςει τθν κατανόθςθ τθσ Διαδικαςίασ Προγράμματοσ Ωρομζτρθςθσ. Παρακάτω προτείνεται μια αλλθλουχία ενεργειϊν τθν οποία ο χριςτθσ πρζπει

Διαβάστε περισσότερα

Ακολουκιακά Λογικά Κυκλώματα

Ακολουκιακά Λογικά Κυκλώματα Ακολουκιακά Λογικά Κυκλώματα Τα ψθφιακά λογικά κυκλϊματα που μελετιςαμε μζχρι τϊρα ιταν ςυνδυαςτικά κυκλϊματα. Στα ςυνδυαςτικά κυκλϊματα οι ζξοδοι ςε κάκε χρονικι ςτιγμι εξαρτϊνται αποκλειςτικά και μόνο

Διαβάστε περισσότερα

Division of Pediatric-Adolescent Gynecology. Chairman: Prof. G. Creatsas

Division of Pediatric-Adolescent Gynecology. Chairman: Prof. G. Creatsas Division of Pediatric-Adolescent Gynecology 2 & nd Reconstructive Department of Surgery Obstetrics & Gynecology University 2 nd Department of Athens, of Obstetrics Medical School, & Gynecology, Aretaieion

Διαβάστε περισσότερα

5 ΜΕΘΟΔΟΙ - ΠΑΡΑΜΕΤΡΟΙ

5 ΜΕΘΟΔΟΙ - ΠΑΡΑΜΕΤΡΟΙ 5 ΜΕΘΟΔΟΙ - ΠΑΡΑΜΕΤΡΟΙ Να γραφεί πρόγραμμα, το οποίο κα δίνει τισ τιμζσ 5 και 6 ςε δφο μεταβλθτζσ a και b και κα υπολογίηει και κα εμφανίηει το άκροιςμά τουσ sum. ΛΟΓΙΚΟ ΔΙΑΓΡΑΜΜΑ a 5 b 6 sum a+b sum ΑΛΓΟΡΙΘΜΟ

Διαβάστε περισσότερα

ΙΝΣΙΣΟΤΣΟ ΕΚΠΑΙΔΕΤΣΙΚΗ ΠΟΛΙΣΙΚΗ

ΙΝΣΙΣΟΤΣΟ ΕΚΠΑΙΔΕΤΣΙΚΗ ΠΟΛΙΣΙΚΗ ΑΝΑΡΣΗΣΕΑ ΣΟ ΔΙΑΔΙΚΣΤΟ Ι Ν Σ Ι Σ Ο Τ Σ Ο Ε Κ Π Α Ι Δ Ε Τ Σ Ι Κ Η Π Ο Λ Ι Σ Ι Κ Η ΣΜΗΜΑ ΔΙΑΓΩΝΙΜΩΝ ΚΑΙ ΤΜΒΑΕΩΝ ΕΤΡΩΠΑΪΚΗ ΕΝΩΗ ΕΤΡΩΠΑΪΚΟ ΚΟΙΝΩΝΙΚΟ TAMEIO Σαχ. Δ/νςη : Αν. Τςόχα 36 Σ. Κ. Πόλη : 115 21- Αμπελόκθποι,

Διαβάστε περισσότερα

MySchool Πρακτικζσ οδθγίεσ χριςθσ

MySchool Πρακτικζσ οδθγίεσ χριςθσ MySchool Πρακτικζσ οδθγίεσ χριςθσ 1) Δθμιουργία τμθμάτων (ΣΧΟΛΙΚΗ ΜΟΝΑΔΑ, Διαχείριςθ, Διαχείριςθ τμθμάτων) Το πρώτο που πρζπει να κάνουμε ςτο MySchool είναι να δθμιουργιςουμε τα τμιματα που υπάρχουν ςτο

Διαβάστε περισσότερα

ΘΕΡΜΟΔΤΝΑΜΙΚΗ IΙ. Ενότθτα 4: Χθμικζσ αντιδράςεισ αερίων τακερά Χθμικισ Ιςορροπίασ Πρότυπθ Ελεφκερθ Ενζργεια

ΘΕΡΜΟΔΤΝΑΜΙΚΗ IΙ. Ενότθτα 4: Χθμικζσ αντιδράςεισ αερίων τακερά Χθμικισ Ιςορροπίασ Πρότυπθ Ελεφκερθ Ενζργεια ΘΕΡΜΟΔΤΝΑΜΙΚΗ IΙ Ενότθτα 4: Χθμικζσ αντιδράςεισ αερίων τακερά Χθμικισ Ιςορροπίασ Πρότυπθ Ελεφκερθ Ενζργεια ογομών Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικών Μθχανικών κοποί ενότθτασ κοπόσ τθσ ενότθτασ αυτισ

Διαβάστε περισσότερα

Qualifiers: Ο μζγιςτοσ αρικμόσ ςυμμετοχϊν ςε κάκε qualifier είναι 128. Δίνεται θ δυνατότθτα ςτισ ομάδεσ να επιλζξουν ςε ποιο από τα 2 qualifiers

Qualifiers: Ο μζγιςτοσ αρικμόσ ςυμμετοχϊν ςε κάκε qualifier είναι 128. Δίνεται θ δυνατότθτα ςτισ ομάδεσ να επιλζξουν ςε ποιο από τα 2 qualifiers Qualifiers: Ο μζγιςτοσ αρικμόσ ςυμμετοχϊν ςε κάκε qualifier είναι 128. Δίνεται θ δυνατότθτα ςτισ ομάδεσ να επιλζξουν ςε ποιο από τα 2 qualifiers επικυμοφν να διαγωνιςτοφν κατά τθ διάρκεια τθσ ςυμπλιρωςθσ

Διαβάστε περισσότερα

Οδηγίεσ για την Τποβολή Καταςτάςεων υμφωνητικών μζςω xml αρχείου

Οδηγίεσ για την Τποβολή Καταςτάςεων υμφωνητικών μζςω xml αρχείου Οδηγίεσ για την Τποβολή Καταςτάςεων υμφωνητικών μζςω xml αρχείου Περιεχόμενα Ρυθμίςεισ αςφάλειασ κατά την εγκατάςταςη τησ εφαρμογήσ TAXISnet offline ςε JAVA 1.6... 2 Χρήςη Εφαρμογήσ-υνοπτικά Βήματα...

Διαβάστε περισσότερα

Διαδικαςία Διαχείριςθσ Στθλϊν Βιβλίου Εςόδων - Εξόδων. (v.1.0.7)

Διαδικαςία Διαχείριςθσ Στθλϊν Βιβλίου Εςόδων - Εξόδων. (v.1.0.7) Διαδικαςία Διαχείριςθσ Στθλϊν Βιβλίου Εςόδων - Εξόδων (v.1.0.7) 1 Περίληψη Το ςυγκεκριμζνο εγχειρίδιο δθμιουργικθκε για να βοθκιςει τθν κατανόθςθ τθσ διαδικαςίασ διαχείριςθσ ςτθλών βιβλίου Εςόδων - Εξόδων.

Διαβάστε περισσότερα

Μθχανολογικό Σχζδιο, από τθ κεωρία ςτο πρακτζο Χριςτοσ Καμποφρθσ, Κων/νοσ Βαταβάλθσ

Μθχανολογικό Σχζδιο, από τθ κεωρία ςτο πρακτζο Χριςτοσ Καμποφρθσ, Κων/νοσ Βαταβάλθσ Λεπτζσ Αξονικζσ γραμμζσ χρθςιμοποιοφνται για να δθλϊςουν τθν φπαρξθ ςυμμετρίασ του αντικειμζνου. Υπενκυμίηουμε ότι οι άξονεσ ςυμμετρίασ χρθςιμοποιοφνται μόνον όταν το ίδιο το εξάρτθμα είναι πραγματικά

Διαβάστε περισσότερα

Βάςεισ Δεδομζνων Λ. Ενότθτα 8: SQL Γλώςςα χειριςμοφ δεδομζνων. Δρ. Σςιμπίρθσ Αλκιβιάδθσ Σμιμα Μθχανικών Πλθροφορικισ ΣΕ

Βάςεισ Δεδομζνων Λ. Ενότθτα 8: SQL Γλώςςα χειριςμοφ δεδομζνων. Δρ. Σςιμπίρθσ Αλκιβιάδθσ Σμιμα Μθχανικών Πλθροφορικισ ΣΕ Βάςεισ Δεδομζνων Λ Ενότθτα 8: SQL Γλώςςα χειριςμοφ δεδομζνων Δρ. Σςιμπίρθσ Αλκιβιάδθσ Άδειεσ Χριςθσ Σο παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για εκπαιδευτικό υλικό, όπωσ

Διαβάστε περισσότερα

Ανάλυςη κλειςτϊν δικτφων

Ανάλυςη κλειςτϊν δικτφων Ανάλυςη κλειςτϊν δικτφων Θ ανάλυςθ κλειςτϊν δικτφων ςτθρίηεται ςτθ διατιρθςθ τθσ μάηασ και τθσ ενζργειασ. Σε ζνα τυπικό βρόχο ABCDA υπάρχει ζνασ αρικμόσ από κόμβουσ, εδϊ A,B,C,D, ςτουσ οποίουσ ιςχφει θ

Διαβάστε περισσότερα

Ε. ε περίπτωςθ που θ διαφορά των δφο ηαριϊν είναι 3 τότε ο παίκτθσ ξαναρίχνει μόνο ζνα ηάρι.

Ε. ε περίπτωςθ που θ διαφορά των δφο ηαριϊν είναι 3 τότε ο παίκτθσ ξαναρίχνει μόνο ζνα ηάρι. 1 ο Σετ Ασκήσεων Δομή Επιλογής - Επανάληψης Άςκθςθ 1θ: Ζνα παιχνίδι με ηάρια παίηεται ωσ εξισ: Α. Ο παίκτθσ αρχικά ποντάρει κάποιο ποςό και ρίχνει δφο ηάρια. Β. Ο παίκτθσ κερδίηει (το ποςό που ζχει ποντάρει)

Διαβάστε περισσότερα

Διαχείριςθ Δικτφων - Ευφυι Δίκτυα

Διαχείριςθ Δικτφων - Ευφυι Δίκτυα Διαχείριςθ Δικτφων - Ευφυι Δίκτυα Πρωτόκολλο του επιπζδου εφαρμογισ για τθ διαχείριςθ ςφνκετων δικτφων TCP/IP. Υλοποιεί λειτουργίεσ διαχείριςθσ και παρακολοφκθςθσ δικτυακϊν ςυςκευϊν που απαιτοφν παρζμβαςθ

Διαβάστε περισσότερα