Πλαγιογώνια Συςτήματα Συντεταγμζνων Γιϊργοσ Καςαπίδθσ
|
|
- Αελλα Βενιζέλος
- 5 χρόνια πριν
- Προβολές:
Transcript
1 Πρόλογοσ το άρκρο αυτό κα δοφμε πωσ διαμορφϊνονται κάποιεσ ζννοιεσ όπωσ το εςωτερικό γινόμενο διανυςμάτων, οι ςυνκικεσ κακετότθτασ και παραλλθλίασ διανυςμάτων και ευκειϊν, ο ςυντελεςτισ διευκφνςεωσ διανφςματοσ και ευκείασ, όταν οι ςχετικζσ ζννοιεσ είναι εκφραςμζνεσ όχι ωσ προσ ζνα ορκοκανονικό, αλλά ωσ προσ ζνα πλαγιογϊνιο ςφςτθμα ςυντεταγμζνων. Ειδικότερα κα μελετθκοφν δυο διαφορετικά αλλά ςτενά ςυνδεδεμζνα ςυςτιματα ςυντεταγμζνων, οι ανταλλοίωτεσ και οι ςυναλλοίωτεσ ςυντεταγμζνεσ ωσ προσ ζνα πλαγιογϊνιο ςφςτθμα. Ωσ μια απλι εφαρμογι των ιδεϊν που κα αναπτυχκοφν ςτο άρκρο, κα δοκεί και μια ερμθνεία του επονομαηόμενου πλζον κεωριματοσ του Κοφτρα. Γιώργοσ Καςαπίδησ Δράμα 1/1/2019 1
2 Συντεταγμζνεσ ωσ προσ ζνα πλαγιογώνιο ςφςτημα ςυντεταγμζνων το επίπεδο κεωροφμε ζνα (πλαγιογϊνιο) ςφςτθμα ςυντεταγμζνων xoy. χιμα 1 Αν Γ είναι ζνα ςθμείο του επιπζδου, τότε θ κζςθ του ωσ προσ το ςφςτθμα xoy μπορεί να κακοριςτεί με πολλοφσ τρόπουσ. υνικωσ όμωσ κάνουμε χριςθ δυο ςυγκεκριμζνων τρόπων, οι οποίοι και καταλιγουν ςτον οριςμό δυο διαφορετικϊν ςυςτθμάτων ςυντεταγμζνων τα οποία ςχετίηονται ςτενά. Α. Ανταλλοίωτεσ ςυντεταγμζνεσ Ζςτω το διάνυςμα με αρχι το ςθμείο Ο (αρχι ςυςτιματοσ ςυντεταγμζνων) και πζρασ το ςθμείο Γ. Ζςτω επίςθσ τα μοναδιαία διανφςματα των αξόνων. Από το ςθμείο Γ φζρνουμε παράλληλεσ προσ τουσ άξονεσ ςυντεταγμζνων. χιμα 2 2
3 Αν θ παράλλθλθ προσ τον άξονα y, τζμνει τον άξονα x, ςτο ςθμείο με τετμθμζνθ x 1, ενϊ θ παράλλθλθ προσ τον άξονα x τζμνει τον y-άξονα ςτο ςθμείο με ζνδειξθ y 1, τότε το ηεφγοσ των πραγματικϊν αρικμϊν (x 1,y 1 ) λζμε ότι είναι οι ανταλλοίωτεσ ςυντεταγμζνεσ του διανφςματοσ. Ιςχφει θ ςχζςθ. (1) τθν περίπτωςθ αυτι λζμε επίςθσ ότι το ςθμείο Γ ζχει ανταλλοίωτεσ ςυντεταγμζνεσ (x 1,y 1 ) και γράφουμε Γ(x 1,y 1 ). Β. Συναλλοίωτεσ ςυντεταγμζνεσ Από το ςθμείο Γ φζρνουμε κάθετεσ πάνω ςτουσ άξονεσ του ςυςτιματοσ ςυντεταγμζνων. χιμα 3 Αν θ κάκετθ από το Γ προσ τον χ-άξονα τον τζμνει ςτο ςθμείο με τετμθμζνθ x 1, ενϊ θ κάκετθ προσ τον y-άξονα τον τζμνει ςτο ςθμείο με τετμθμζνθ y 1, τότε λζμε ότι το ηεφγοσ πραγματικϊν αρικμϊν (x 1,y 1 ) είναι οι ςυναλλοίωτεσ ςυντεταγμζνεσ του διανφςματοσ κακϊσ και του ςθμείου Γ. υνικωσ το γεγονόσ αυτό το ςθμειϊνουμε και πάλι ωσ Γ(x 1,y 1 ). Ζνα εφλογο ερϊτθμα ςτθν περίπτωςθ αυτι είναι αν υφίςταται κάποια ςχζςθ ςαν τθν (1). Προφανϊσ ςτθν περίπτωςθ αυτι. Πωσ ςυνδζονται λοιπόν οι ςυναλλοίωτεσ ςυντεταγμζνεσ του με το ίδιο το διάνυςμα; Η δυϊκή βάςη τησ { } Αναφορικά με τθν βάςθ { } του ςυςτιματοσ ςυντεταγμζνων, ορίηουμε ζνα νζο ςφςτθμα ςυντεταγμζνων x Oy του οποίου οι άξονεσ είναι κάκετοι πάνω ςτουσ άξονεσ του xoy και τα μοναδιαία διανφςματα των αξόνων { } ορίηονται μζςω των ςχζςεων όπου είναι το δ του Kronecker, και ιςοφται με 0 όταν i j ενϊ =1 όταν i=j. Σο ςφςτθμα των διανυςμάτων { } λζμε ότι αποτελεί τθν δυϊκι βάςθ τθσ { }. 3
4 χιμα 4 Ζτςι ςτο ςχιμα 4 ζχουμε,,,. Λόγω των δυο τελευταίων ςχζςεων, γενικά τα μοναδιαία διανφςματα των αξόνων των δυο ςυςτθμάτων δεν ζχουν γενικά το ίδιο μικοσ. (Ιςχφει ότι ). Μετρϊντασ όμωσ με βάςθ τα οριςκζντα διανφςματα του δυϊκοφ ςυςτιματοσ, οι ανταλλοίωτεσ ςυντεταγμζνεσ του διανφςματοσ ωσ προσ τθν δυϊκι βάςθ είναι το ηεφγοσ (x 1,y 1 ) των ςυναλλοίωτων ςυντεταγμζνων ωσ προσ τθ βάςθ { }. Βεβαίωσ κα ιςχφει θ ςχζςθ (2). Παρατήρηςη 1: Θ ορολογία ανταλλοίωτεσ ι ςυναλλοίωτεσ ςυντεταγμζνεσ ενόσ διανφςματοσ ζχει να κάνει με τον τρόπο όπου οι ςυντεταγμζνεσ αυτζσ μεταςχθματίηονται όταν τισ εκφράηουμε ωσ προσ ζνα άλλο κατάλλθλο ςφςτθμα ςυντεταγμζνων, και δεν κα μασ απαςχολιςει ςτο ςυγκεκριμζνο άρκρο. Οι ενδιαφερόμενοι μποροφν να ςυμβουλευτοφν οποιοδιποτε βιβλίο τανυςτικοφ λογιςμοφ για να μελετιςουν τισ λεπτομζρειεσ. το άρκρο αυτό επίςθσ δεν κα κάνουμε χριςθ του κλαςικοφ τρόπου ςυμβολιςμοφ ανταλλοίωτων και ςυναλλοίωτων ςυντεταγμζνων. Παρατήρηςη 2: Είναι φανερό ότι όταν το ςφςτθμα των αξόνων, είναι ορκογϊνιο (ω=90 0 ), τότε οι ανταλλοίωτεσ και οι ςυναλλοίωτεσ ςυντεταγμζνεσ του ςθμείου Γ ταυτίηονται. και 4
5 Η ςχζςη μεταξφ ανταλλοίωτων και ςυναλλοίωτων ςυντεταγμζνων Θεωροφμε ζνα πλαγιογϊνιο ςφςτθμα ςυντεταγμζνων ςτο επίπεδο και ασ είναι ω θ γωνία που ςχθματίηουν οι άξονεσ του ςυςτιματοσ. (0 0 <ω<180 0 ). χιμα 5 Είναι πολφ εφκολο να δοφμε ότι x 1 -x 1 =y 1 ςυνω και y 1 -y 1 =x 1 ςυνω, οπότε κα ζχουμε τελικά x 1 =x 1 + y 1 ςυνω και y 1 = x 1 ςυνω+y 1 (3) Μποροφμε επίςθσ να βροφμε τθν παραπάνω ςχζςθ μζςω των ςχζςεων (1), (2) και του γεγονότοσ ότι Εςωτερικό γινόμενο διανυςμάτων τον διανυςματικό χϊρο Δ των διανυςμάτων του επιπζδου δοκζντων δυο διανυςμάτων και είναι γνωςτό ότι ορίηεται μεταξφ τουσ μια πράξθ που τθν αποκαλοφμε εςωτερικό γινόμενο μέσω της σχέσης σ θ όπο θ η γω ί τω δι σμάτω και. Θ πράξθ αυτι ωσ γνωςτόν ικανοποιεί τισ παρακάτω ιδιότθτεσ: 1. = 2. ( ) ( ) ( ), για λ R 3. ( γ ) γ 4., όπου θ ιςότθτα ιςχφει ακριβϊσ όταν. 5. Για τα μοναδιαία διανφςματα των αξόνων, ιςχφει,, σ ω. 5
6 Είναι γνωςτό ότι αν τα διανφςματα ζχουν ςυντεταγμζνεσ =(x 1,y 1 ), =(x 2,y 2 ) ωσ προσ ζνα ορκοκανονικό ςφςτθμα ςυντεταγμζνων, τότε το εςωτερικό τουσ γινόμενο δίνεται από τθν ςχζςθ =x 1 x 2 +y 1 y 2. Σι ςυμβαίνει όμωσ όταν το ςφςτθμα ςυντεταγμζνων δεν είναι ορκοκανονικό; Ζςτω λοιπόν ότι ωσ προσ το πλαγιογϊνιο ςφςτθμα ςυντεταγμζνων xoy του οποίου οι άξονεσ ςχθματίηουν γωνία ω, τα διανφςματα δίνονται μζςω των ανταλλοίωτων ςυντεταγμζνων τουσ από τισ ςχζςεισ =x 1 +y 1 και =x 2 +y 2. Σότε =( x 1 +y 1 ) ( x 2 +y 2 ). Με χριςθ των ιδιοτιτων 1-4 βρίςκουμε: =x 1 x 2 +(x 1 y 2 +y 1 x 2 ) +y 1 y 2 =x 1 x 2 +y 1 y 2 +(x 1 y 2 +y 1 x 2 )ςυνω (4) Ζχουμε δει ότι =x 1 x 2 +y 1 y 2 +(x 1 y 2 +y 1 x 2 )ςυνω. Απ τθν άλλθ κάνοντασ χριςθ των ςχζςεων (3) παρατθροφμε ότι θ παράςταςθ x 1 x 2 +y 1 y 2 = x 1 x 2 +y 1 y 2 +(x 1 y 2 +y 1 x 2 )ςυνω. Άρα αν κάνουμε χριςθ ταυτόχρονα ανταλλοίωτων και ςυναλλοίωτων ςυντεταγμζνων ο τφποσ του εςωτερικοφ γινομζνου παίρνει τθ ευκολομνθμόνευτθ «κλαςικι» μορφι: = x 1 x 2 +y 1 y 2 =x 1 x 2 +y 1 y 2. (5) 6
7 Σνντελεςτήσ διευθφνςεωσ διανφςματοσ ωσ προσ ζνα πλαγιογώνιο ςφςτημα. Είναι φανερό ότι θ διεφκυνςθ ενόσ διανφςματοσ, μπορεί να κακοριςτεί πλιρωσ από τθ γωνία κ που ςχθματίηει το διάνυςμα με τον άξονα των χ-ςυντεταγμζνων. χιμα 6 Σο ερϊτθμα που προκφπτει είναι πωσ ςχετίηεται θ γωνία κ με τισ ςυντεταγμζνεσ του διανφςματοσ. Είναι γνωςτό ότι αν θ γωνία ω είναι ορκι και το ςφςτθμα ςυντεταγμζνων ορκοκανονικό, τότε με τθν προχπόκεςθ ότι το διάνυςμα δεν είναι παράλλθλο ςτον y-άξονα και οι ςυντεταγμζνεσ του είναι (x 1,y 1 ), τότε ε θ. Σι γίνεται όμωσ όταν θ γωνία ω των αξόνων δεν είναι ορκι; Αν υποκζςουμε ότι το διάνυςμα ζχει ανταλλοίωτεσ ςυνιςτϊςεσ (x 1,y 1 ). χιμα 7 Από τον νόμο των θμιτόνων ςτο τρίγωνο ΟΑΚ προκφπτει ( ). 7
8 Ο ίδιοσ τφποσ ιςχφει ακόμθ κι αν θ γωνία κ είναι αμβλεία. χιμα 8 Είναι φανερό ότι ο παραπάνω τφποσ ιςχφει με τθν προχπόκεςθ ότι το διάνυςμα δεν είναι παράλλθλο ςτον άξονα y, δθλ. κ ω π ω. Σον λόγο ( ) (6) κα τον ςυμβολίηουμε με λ(κ) ι, και κα τον ονομάηουμε ανταλλοίωτη κλίςη ι ανταλλοίωτο ςυντελεςτή διεφθυνςησ του διανφςματοσ. Θ ςυνάρτθςθ λ είναι μια π-περιοδικι ςυνάρτθςθ που θ γραφικι τθσ παράςταςθ μοιάηει πολφ με αυτιν τθσ γραφικισ παράςταςθσ τθσ εφχ. χιμα 9 Επειδι μασ ενδιαφζρουν τιμζσ τθσ γωνίασ κ για τισ οποίεσ 0 κ<2π, θ γραφικι παράςταςθ τθσ λ κα ζχει τθ μορφι: 8
9 χιμα 10 Ιςχφει λ(κ 1 )=λ(κ 2 ) κ 1 =κ 2 ι κ 2 =π+κ 1 πράγμα που ςθμαίνει ότι τα αντίςτοιχα διανφςματα κα είναι παράλλθλα. Δθλαδι ζχουμε τθν ςυνκικθ παραλλθλίασ διανυςμάτων: //. (7) (Με τθν προχπόκεςθ ότι ορίηονται οι αντίςτοιχοι ανταλλοίωτοι ςυντελεςτζσ διεφκυνςθσ). Αν τϊρα κεωριςουμε ότι το διάνυςμα παριςτάνεται μζςω των ςυναλλοίωτων ςυνιςτωςϊν του (x 1,y 1 ), τότε ο λόγοσ = ( ) (8) καλείται ςυναλλοίωτη κλίςη του και ςυμβολίηεται με κ(κ) ι. Θ ςυνάρτθςθ κ είναι μια επίςθσ π- περιοδικι ςυνάρτθςθ με γραφικι παράςταςθ όπωσ φαίνεται παρακάτω: χιμα 11 9
10 Ειδικά για 0 κ<2π, θ γραφικι παράςταςθ τθσ κ κα ζχει τθ μορφι: χιμα 12 Ιςχφει κ(κ 1 )=κ(κ 2 ) κ 1 =κ 2 ι κ 2 =π+κ 1 πράγμα που ςθμαίνει ότι τα αντίςτοιχα διανφςματα κα είναι παράλλθλα. Δθλαδι ζχουμε τθν ςυνκικθ παραλλθλίασ διανυςμάτων: //. (9) (Με τθν προχπόκεςθ ότι ορίηονται οι αντίςτοιχοι ςυναλλοίωτοι ςυντελεςτζσ διεφκυνςθσ). τθν παρακάτω εικόνα βλζπουμε ταυτόχρονα τισ γραφικζσ παραςτάςεισ των ςυναρτιςεων λ, κ, και εφ για τθν τιμι ω=2,8. χιμα 13 Λαμβάνοντασ υπόψθ τισ ςχζςεισ που ςυνδζουν τισ ανταλλοίωτεσ με τισ ςυναλλοίωτεσ ςυντεταγμζνεσ, βρίςκουμε τθ ςχζςθ που ζχουν μεταξφ τουσ θ ςυναλλοίωτθ με τθν ανταλλοίωτθ κλίςθ ενόσ διανφςματοσ. υγκεκριμζνα:. (10) 10
11 Συνθήκεσ παραλληλίασ και καθετότητασ διανυςμάτων Α. Συνθήκη παραλληλίασ Όπωσ είδαμε όταν ορίηονται οι ςυντελεςτζσ διεφκυνςθσ, ζχουμε // x 1 y 2 =x 2 y 1 x 1 y 2 -x 2 y 1 =0 det( ). Θ τελευταία ςυνκικθ είναι εφκολο να δοφμε ότι ιςχφει ςε κάκε περίπτωςθ ακόμθ κι αν δεν ορίηονται οι ςυντελεςτζσ διεφκυνςθσ. Ώςτε γενικά // det( ). (11) Αν D ςυμβολίηει τθν ορίηουςα των διανυςμάτων ςυναρτιςει των ανταλλοίωτων ςυντεταγμζνων τουσ και Dϋ θ ορίηουςα των διανυςμάτων ςυναρτιςει των ςυναλλοίωτων ςυντεταγμζνων τουσ, τότε D =(1-ςυνω)D. Ζτςι D=0 Dϋ=0. Άρα // και γενικά // D=0 D =0. (12) Β. Συνθήκη καθετότητασ Είναι γνωςτό ότι τα διανφςματα είναι κάκετα αν και μόνο αν το εςωτερικό τουσ γινόμενο ιςοφται με μθδζν. Δθλαδι. (13) Ζτςι κάνοντασ χριςθ των τφπων που βρικαμε παραπάνω για το εςωτερικό γινόμενο ζχουμε: x 1 x 2 +y 1 y 2 +(x 1 y 2 +y 1 x 2 )ςυνω=0 (14) όπου (x 1,y 1 ), (x 2,y 2 ) οι ανταλλοίωτεσ ςυνιςτϊςεσ των διανυςμάτων. Επίςθσ x 1 x 2 +y 1 y 2 =x 1 x 2 +y 1 y 2 =0 (15) με ταυτόχρονθ χριςθ ςυναλλοίωτων και ανταλλοίωτων ςυντεταγμζνων. Αν τα διανφςματα δεν είναι παράλλθλα προσ τον ψ-άξονα, οι τελευταίεσ ιςότθτεσ δίνουν τισ ςυνκικεσ:. (16) Με όρουσ μόνο ανταλλοίωτων ςυντελεςτϊν διευκφνςεωσ ζχουμε: ( ). (17) 11
12 Εξίςωςη ευθείασ ωσ προσ πλαγιογώνιο ςφςτημα αναφοράσ Εξίςωςη ευθείασ που περνάει από δοθζν ςημείο Ι και είναι παράλληλη ςτο διάνυςμα. Ζςτω Ι(x 0,y 0 ) και λ ο ανταλλοίωτοσ ςυντελεςτισ διεφκυνςθσ του δ το οποίο είναι παράλλθλο ςτθν (ε). Σο τυχαίο ςθμείο Ρ(x,y) ανικει ςτθν ευκεία (ε) αν και μόνο αν ιςχφει //δ. χιμα 14 Θα είναι y-y 0 =λ(x-x 0 ). (18) Αν κάνουμε χρήςη ςυναλλοίωτων ςυντεταγμζνων και αν P(x,y ), I(x 0,y 0 ) είναι οι ςυναλλοίωτεσ ςυντεταγμζνεσ των ςθμείων Ρ και Ι αντίςτοιχα και κ ο ςυναλλοίωτοσ ςυντελεςτισ διεφκυνςθσ του διανφςματοσ δ, τότε εφκολα διαπιςτϊνουμε κάνοντασ χριςθ των ςχζςεων που ςυνδζουν τα δυο είδθ ςυντεταγμζνων, ότι θ εξίςωςθ τθσ ευκείασ παίρνει τθ μορφι y -y 0 =κ(x -x 0 ). (19) Είναι προφανισ θ πλιρθσ αναλογία μεταξφ των δυο τελευταίων εξιςϊςεων. 12
13 Μια τελική παρατήρηςη (Θεώρημα Κοφτρα) χιμα 15 Ωσ «κεϊρθμα Κοφτρα» ςε κάποιεσ ιςτοςελίδεσ 1 αναφζρεται θ πρόταςθ που αναφορικά με το ςχιμα 15 δθλϊνει ότι οι ευκείεσ ΜΝ και ΑΒ είναι κάκετεσ αν και μόνο αν ιςχφει. φμφωνα με όςα ειπϊκθκαν παραπάνω για τισ ανταλλοίωτεσ και τισ ςυναλλοίωτεσ ςυντεταγμζνεσ, είναι πολφ εφκολο να δοφμε ότι θ ςυνκικθ του κεωριματοσ δεν είναι τίποτα άλλο παρά μια ερμθνεία του τφπου (15) ι του τφπου (16) που εκφράηει τθν κακετότθτα διανυςμάτων ι ευκειϊν με ταυτόχρονθ χριςθ ανταλλοίωτων και ςυναλλοίωτων ςυντεταγμζνων. Πράγματι αν ΟΑ=α, ΟΒ=β,ΟΗ=η,ΟΕ=ε, ΟD=d,OC=c, τότε οι ςυναλλοίωτεσ ςυντεταγμζνεσ του διανφςματοσ είναι (η-ε,d-c), ενϊ οι ανταλλοίωτεσ ςυντεταγμζνεσ του διανφςματοσ είναι (-β,α). Ζτςι =0 - (ζ-ε) (d-c)=0 -O ΕΖ Ο CD=
Η γραφικι παράςταςθ τθσ ςυνάρτθςθσ f(x)=αx+β είναι μια ευκεία με εξίςωςθ y=αx+β θ οποία τζμνει τον άξονα των y ςτο ςθμείο Β(0,β) και ζχει κλίςθ λ=α.
ε καρτεςιανό ςφςτθμα ςυντεταγμζνων Οxy δίνεται ευκεία ε. Σί ονομάηουμε : α) γωνία που ςχθματίηει θ ευκεία ε με τον άξονα xϋx; β) ςυντελεςτι διευκφνςεωσ τθσ ευκείασ ε; ΑΠΑΝΤΗΣΗ α) Παρατιρθςθ β) Παρατιρθςθ
Διαβάστε περισσότεραΦΥΕ 14 ΑΚΑΔ. ΕΤΟΣ Η ΕΡΓΑΣΙΑ. Ημερομηνία παράδοςησ: 12 Νοεμβρίου (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 10 μονάδεσ θ κάκε μία)
ΦΥΕ ΑΚΑΔ. ΕΤΟΣ 007-008 Η ΕΡΓΑΣΙΑ Ημερομηνία παράδοςησ: Νοεμβρίου 007 (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 0 μονάδεσ θ κάκε μία) Άςκηςη α) Να υπολογιςκεί θ προβολι του πάνω ςτο διάνυςμα όταν: (.
Διαβάστε περισσότεραΑΝΣΙΣΡΟΦΗ ΤΝΑΡΣΗΗ. f y x y f A αντιςτοιχίηεται ςτο μοναδικό x A για το οποίο. Παρατθριςεισ Ιδιότθτεσ τθσ αντίςτροφθσ ςυνάρτθςθσ 1. Η. f A τθσ f.
.. Αντίςτροφθ ςυνάρτθςθ Ζςτω θ ςυνάρτθςθ : A θ οποία είναι " ". Τότε ορίηεται μια νζα ςυνάρτθςθ, θ μζςω τθσ οποίασ το κάκε ιςχφει y. : A με Η νζα αυτι ςυνάρτθςθ λζγεται αντίςτροφθ τθσ. y y A αντιςτοιχίηεται
Διαβάστε περισσότερα1. Αν θ ςυνάρτθςθ είναι ΠΟΛΤΩΝΤΜΙΚΗ τότε το πεδίο οριςμοφ είναι το διότι για κάκε x θ f(x) δίνει πραγματικό αρικμό.
ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΑ ΝΑ ΒΡΙΚΟΤΜΕ ΣΟ ΠΕΔΙΟ ΟΡΙΜΟΤ ΤΝΑΡΣΗΗ Για να οριςκεί μια ςυνάρτθςθ πρζπει να δοκοφν δφο ςτοιχεία : Σο πεδίο οριςμοφ τθσ Α και Η τιμι τθσ f() για κάκε Α. Οριςμζνεσ φορζσ μασ δίνουν μόνο τον
Διαβάστε περισσότεραΑν η ςυνάρτηςη ƒ είναι ςυνεχήσ ςτο να προςδιορίςετε το α.
1 AΣΚΗΣΕΙΣ 1. Να υπολογιςθοφν τα παρακάτω όρια Ι. ΙΙ. ΙΙΙ. Ιν. ν. νι. νιι. νιιι. 2. Να βρεθοφν τα όρια Ι. ΙΙ. 3. Αν ƒ(χ)= α. Να βρείτε το πεδίο οριςμοφ Β. Να βρείτε τα όρια Ι. ΙΙ. 4. Δίνεται η ςυνάρτηςη
Διαβάστε περισσότεραΓενικά Μαθηματικά ΙΙ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 10 η : Εφαρμογζσ Διανυςματικών Συναρτιςεων Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΓενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ Λουκάσ Βλάχοσ Τμιμα Φυςικισ Α.Π.Θ. Θεςςαλονίκθ, 2014 Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ
Διαβάστε περισσότεραΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι
Παράςταςη κινητήσ υποδιαςτολήσ ςφμφωνα με το πρότυπο ΙΕΕΕ Δρ. Χρήστος Ηλιούδης το πρότυπο ΙΕΕΕ 754 ζχει χρθςιμοποιθκεί ευρζωσ ςε πραγματικοφσ υπολογιςτζσ. Το πρότυπο αυτό κακορίηει δφο βαςικζσ μορφζσ κινθτισ
Διαβάστε περισσότεραlim x και lim f(β) f(β). (β > 0)
. Δίνεται θ παραγωγίςιμθ ςτο * α, β + ( 0 < α < β ) ςυνάρτθςθ f για τθν οποία ιςχφουν: f(α) lim (-) a και lim ( f(β)) = Να δείξετε ότι: α. f(α) < α και f(β) > β β. Αν g() = τότε θ C f και C g ζχουν ζνα
Διαβάστε περισσότεραΗ αυτεπαγωγή ενός δακτυλίου
Η αυτεπαγωγή ενός δακτυλίου Υποκζςτε ότι κρατάτε ςτο χζρι ςασ ζναν μεταλλικό δακτφλιο διαμζτρου πχ 5 cm. Ζνασ φυςικόσ πικανότθτα κα προβλθματιςτεί: τι αυτεπαγωγι ζχει άραγε; Νομίηω κα ιταν μια καλι ιδζα
Διαβάστε περισσότεραΓενικά Μαθηματικά ΙΙ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 13 η : Επαναλθπτικι Ενότθτα Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότερα8 τριγωνομετρία. βαςικζσ ζννοιεσ. γ ςφω. εφω και γ. κεφάλαιο
κεφάλαιο 8 τριγωνομετρία Α βαςικζσ ζννοιεσ τθν τριγωνομετρία χρθςιμοποιοφμε τουσ τριγωνομετρικοφσ αρικμοφσ, οι οποίοι ορίηονται ωσ εξισ: θμω = απζναντι κάκετθ πλευρά υποτείνουςα Γ ςυνω = εφω = προςκείμενθ
Διαβάστε περισσότεραΘεςιακά ςυςτιματα αρίκμθςθσ
Θεςιακά ςυςτιματα αρίκμθςθσ Δρ. Χρήστος Ηλιούδης αρικμθτικό ςφςτθμα αρίκμθςθσ (Number System) Αξία (value) παράςταςθ Οι αξίεσ (π.χ. το βάροσ μιασ ποςότθτασ μιλων) μποροφν να παραςτακοφν με πολλοφσ τρόπουσ
Διαβάστε περισσότεραΔΙΠΛΨΜΑΣΙΚΗ ΕΡΓΑΙΑ. Η πποβολική τυή σηρ μεσπικήρ ςσιρ κλαςςικέρ γεωμεσπίερ. και διδακσικέρ πποεκσάςειρ ΚΨΣΑ ΓΕΨΡΓΙΟ
ΠΑΝΕΠΙΣΗΜΙΟ ΑΘΗΝΨΝ ΠΑΝΕΠΙΣΗΜΙΟ ΚΤΠΡΟΤ ΣΜΗΜΑ MΑΘΗΜΑΣΙΚΨΝ ΣΜΗΜΑ ΜΑΘΗΜΑΣΙΚΨΝ ΚΑΙ ΣΑΣΙΣΙΚΗ ΣΜΗΜΑ ΜΕΘΟΔΟΛΟΓΙΑ, ΙΣΟΡΙΑ ΣΜΗΜΑ ΕΠΙΣΗΜΨΝ ΑΓΨΓΗ ΚΑΙ ΘΕΨΡΙΑ ΣΗ ΕΠΙΣΗΜΗ ΣΜΗΜΑ ΥΙΛΟΟΥΙΑ ΠΑΙΔΑΓΨΓΙΚΗ & ΧΤΦΟΛΟΓΙΑ Διαπανεπιςτημιακό
Διαβάστε περισσότεραΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ ΜΕΛΕΣΗ ΣΗ ΚΙΝΗΗ ΩΜΑΣΟ Ε ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ - ΜΕΣΡΗΗ ΣΟΤ ΤΝΣΕΛΕΣΗ ΣΡΙΒΗ ΟΛΙΘΗΗ
ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ ΜΕΛΕΣΗ ΣΗ ΚΙΝΗΗ ΩΜΑΣΟ Ε ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ - ΜΕΣΡΗΗ ΣΟΤ ΤΝΣΕΛΕΣΗ ΣΡΙΒΗ ΟΛΙΘΗΗ ΕΚΦΕ Α & Β ΑΝΑΣΟΛΙΚΗ ΑΣΣΙΚΗ τόχοι Μετά το πζρασ τθσ εργαςτθριακισ άςκθςθσ, οι μακθτζσ κα πρζπει να είναι ςε κζςθ:
Διαβάστε περισσότεραΔείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8
Δείκτεσ Διαχείριςθ Μνιμθσ Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Κάκε μεταβλθτι ςχετίηεται με μία κζςθ ςτθν κφρια μνιμθ του υπολογιςτι. Κάκε κζςθ ςτθ μνιμθ ζχει τθ δικι τθσ ξεχωριςτι διεφκυνςθ. Με άμεςθ
Διαβάστε περισσότεραςυςτιματα γραμμικϊν εξιςϊςεων
κεφάλαιο 7 Α ςυςτιματα γραμμικϊν εξιςϊςεων αςικζσ ζννοιεσ Γραμμικά, λζγονται τα ςυςτιματα εξιςϊςεων ςτα οποία οι άγνωςτοι εμφανίηονται ςτθν πρϊτθ δφναμθ. Σα γραμμικά ςυςτιματα με δφο εξιςϊςεισ και δφο
Διαβάστε περισσότεραΚΤΚΛΩΜΑ RLC Ε ΕΙΡΑ (Απόκριςη ςε ημιτονοειδή είςοδο)
ΚΤΚΛΩΜΑ RLC Ε ΕΙΡΑ (Απόκριςη ςε ημιτονοειδή είςοδο) χήμα Κφκλωμα RLC ςε ςειρά χήμα 2 Διανυςματικι παράςταςθ τάςεων και ρεφματοσ Ζςτω ότι ςτο κφκλωμα του ςχιματοσ που περιλαμβάνει ωμικι, επαγωγικι και χωρθτικι
Διαβάστε περισσότεραΤο Ρολφεδρο. Ζδρεσ: ΑΗΘΔ, ΗΘΚΕ, ΕΚΓΒ, ΔΓΚΘ, ΑΒΓΔ. Κορυφζσ: Α, Β, Γ, Δ, Ε,Η Θ, Κ. Διαγϊνιοσ: ΑΚ. Ακμζσ: ΑΒ, ΒΓ, ΓΔ, ΑΔ,.
Το Ρολφεδρο Ζδρεσ: ΑΗΘΔ, ΗΘΚΕ, ΕΚΓΒ, ΔΓΚΘ, ΑΒΓΔ Κορυφζσ: Α, Β, Γ, Δ, Ε,Η Θ, Κ Διαγϊνιοσ: ΑΚ Ακμζσ: ΑΒ, ΒΓ, ΓΔ, ΑΔ,. Θ Ρριςματικι - Ρρίςμα οσ Οριςμόσ οσ Οριςμόσ Δίδεται μια Θ κλειςτι κυρτι πολυγωνικι γραμμι,
Διαβάστε περισσότεραα) Στο μιγαδικό επίπεδο οι εικόνεσ δφο ςυηυγϊν μιγαδικϊν είναι ςθμεία ςυμμετρικά ωσ προσ τον πραγματικό άξονα
ΘΕΜΑ Α ΠΑΝΕΛΛΗΝΙΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ ΚΑΙ ΕΠΑΛ ΟΜΑΔΑ Β ΔΕΤΣΕΡΑ 8 ΜΑΪΟΤ ΕΞΕΣΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΣΙΚΑ ΘΕΣΙΚΗ ΚΑΙ ΣΕΧΝΟΛΟΓΙΚΗ ΚΑΣΕΤΘΤΝΗ ΤΝΟΛΟ ΕΛΙΔΩΝ: ΣΕΕΡΙ A. Ζςτω μια ςυνάρτθςθ f θ
Διαβάστε περισσότεραΓενικά Μαθηματικά ΙΙ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 11 η : Μζγιςτα και Ελάχιςτα Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΆπειρεσ κροφςεισ. Τθ χρονικι ςτιγμι. t, ο δακτφλιοσ ςυγκροφεται με τον τοίχο με ταχφτθτα (κζντρου μάηασ) μζτρου
Άπειρεσ κροφςεισ Δακτφλιοσ ακτίνασ κυλάει ςε οριηόντιο δάπεδο προσ ζνα κατακόρυφο τοίχο όπωσ φαίνεται ςτο ςχιμα. Ο ςυντελεςτισ τριβισ ίςκθςθσ του δακτυλίου με το δάπεδο είναι, ενϊ ο τοίχοσ είναι λείοσ.
Διαβάστε περισσότεραΠόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό. μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ
Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ Για τθν ανάδειξθ του κζματοσ κα λφνουμε κάποια προβλιματα
Διαβάστε περισσότεραΔομζσ Αφαιρετικότθτα ςτα Δεδομζνα
Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα Περιεχόμενα Ζννοια δομισ Οριςμόσ δομισ Διλωςθ μεταβλθτϊν Απόδοςθ Αρχικϊν τιμϊν Αναφορά ςτα μζλθ μιασ δομισ Ζνκεςθ Δομισ Πίνακεσ Δομϊν Η ζννοια τθσ δομισ Χρθςιμοποιιςαμε
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση Συγγραφή:
Διαβάστε περισσότεραΠοσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη
Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR
Διαβάστε περισσότεραΜΑ032: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Εαρινό εξάμηνο , Διδάςκων: Γιώργοσ Γεωργίου ΕΝΔΙΑΜΕΗ ΕΞΕΣΑΗ, 21 Μαρτίου, 2012 Διάρκεια: 2 ώρεσ
ΜΑ: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Εαρινό εξάμηνο -, Διδάςκων: Γιώργοσ Γεωργίου ΕΝΔΙΑΜΕΗ ΕΞΕΣΑΗ, Μαρτίου, Διάρκεια: ώρεσ ΟΝΟΜΑ: Αρ. Πολ. Σαυτ. Πρόβλημα. Θεωροφμε τα διανφςματα u =,,,, v =,,,4, w =,,,, (α) Υπολογίςτε
Διαβάστε περισσότεραΣ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium V Στατιςτική Συμπεραςματολογία Ι Σημειακζσ Εκτιμήςεισ Διαςτήματα Εμπιςτοςφνησ Στατιςτική Συμπεραςματολογία (Statistical Inference) Το πεδίο τθσ Στατιςτικισ Συμπεραςματολογία,
Διαβάστε περισσότεραΠαράςταςη ςυμπλήρωμα ωσ προσ 1
Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ ΣΤ1 Προςθεςη αφαίρεςη ςτο ΣΤ1 2 ή ΣΤ1 Ονομάηουμε ςυμπλιρωμα ωσ προσ μειωμζνθ βάςθ R ενόσ μθ προςθμαςμζνου αρικμοφ Χ = ( Χ θ-1 Χ θ-2... Χ 0 ) R ζναν άλλον αρικμό Χ'
Διαβάστε περισσότεραΓενικά Μαθηματικά ΙΙ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 5 η : Μερικι Παράγωγοσ Ι Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΛαμβάνοντασ υπόψη ότι κατά την πρόςθεςη δφο δυαδικϊν ψηφίων ιςχφει: Κρατοφμενο
Αριθμητικά κυκλώματα Ημιαθροιστής (Half Adder) Ο ημιαθροιςτήσ είναι ζνα κφκλωμα το οποίο προςθζτει δφο δυαδικά ψηφία (bits) και δίνει ωσ αποτζλεςμα το άθροιςμά τουσ και το κρατοφμενο. Με βάςη αυτή την
Διαβάστε περισσότεραΤάξη Β. Φυςικθ Γενικθσ Παιδείασ. Τράπεζα ιεμάτων Κεφ.1 ο ΘΕΜΑ Δ. Για όλεσ τισ αςκθςεισ δίνεται η ηλεκτρικθ ςταιερά
Τάξη Β Φυςικθ Γενικθσ Παιδείασ Τράπεζα ιεμάτων Κεφ.1 ο ΘΕΜΑ Δ Για όλεσ τισ αςκθςεισ δίνεται η ηλεκτρικθ ςταιερά k 2 9 9 10 Nm 2 1. Δφο ακίνθτα ςθμειακά θλεκτρικά φορτία q 1 = - 2 μq και q 2 = + 3 μq, βρίςκονται
Διαβάστε περισσότεραΔιάδοση θερμότητας σε μία διάσταση
Διάδοση θερμότητας σε μία διάσταση Η θεωρητική μελζτη που ακολουθεί πραγματοποιήθηκε με αφορμή την εργαςτηριακή άςκηςη μζτρηςησ του ςυντελεςτή θερμικήσ αγωγιμότητασ του αλουμινίου, ςτην οποία διαγωνίςτηκαν
Διαβάστε περισσότεραΝΟΕΜΒΡΙΟ Ημερομηνία: 12/11/2016 Ώρα Εξέτασης: 10:00-12:00
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΕΠΑΡΧΙΑΚΟ ΔΙΑΓΩΝΙΜΟ ΝΟΕΜΒΡΙΟ 016 Α ΓΤΜΝΑΙΟΤ Ημερομηνία: 1/11/016 Ώρα Εξέτασης: 10:00-1:00 ΟΔΗΓΙΕ: 1. Να λφςετε όλα τα κζματα, αιτιολογϊντασ πλιρωσ τισ απαντιςεισ ςασ.. Κάκε
Διαβάστε περισσότεραΕνδεικτικζσ Λφςεισ Θεμάτων
c AM (t) x(t) ΤΕΙ Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σειρά Β Ειςηγητήσ: Δρ Απόςτολοσ Γεωργιάδησ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Ενδεικτικζσ Λφςεισ Θεμάτων Θζμα 1 ο (1 μον.) Ζςτω περιοδικό ςιμα πλθροφορίασ με περίοδο.
Διαβάστε περισσότεραΑΝΩΣΕΡΑ ΜΑΘΗΜΑΣΙΚΑ. Διαφορικόσ και Ολοκληρωτικόσ Λογιςμόσ Δφο ή Περιςςοτζρων Μεταβλητϊν
ΑΝΩΣΕΡΑ ΜΑΘΗΜΑΣΙΚΑ Διαφορικόσ και Ολοκληρωτικόσ Λογιςμόσ Δφο ή Περιςςοτζρων Μεταβλητϊν 1 υναρτιςεισ Περιςςοτζρων Μεταβλθτϊν Παράδειγμα.(E.F. Dbois S =επιφάνεια ςϊματοσ W =βάροσ ςϊματοσ H =φψοσ ςϊματοσ
Διαβάστε περισσότεραΓενικά Μαθηματικά ΙΙ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 4 η : Όρια και Συνζχεια Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΗ θεωρία τησ ςτατιςτικήσ ςε ερωτήςεισ-απαντήςεισ Μέροσ 1 ον (έωσ ομαδοποίηςη δεδομένων)
1)Πώσ ορύζεται η Στατιςτικό επιςτόμη; Στατιςτικι είναι ζνα ςφνολο αρχϊν και μεκοδολογιϊν για: το ςχεδιαςμό τθσ διαδικαςίασ ςυλλογισ δεδομζνων τθ ςυνοπτικι και αποτελεςματικι παρουςίαςι τουσ τθν ανάλυςθ
Διαβάστε περισσότεραΑΔΡΑΝΕΙΑ ΜΑΘΗΣΕ: ΜΑΡΙΑΝΝΑ ΠΑΡΑΘΤΡΑ ΑΝΑΣΑΗ ΠΟΤΛΙΟ ΠΑΝΑΓΙΩΣΗ ΠΡΟΔΡΟΜΟΤ ΑΝΑΣΑΙΑ ΠΟΛΤΧΡΟΝΙΑΔΟΤ ΙΩΑΝΝΑ ΠΕΝΓΚΟΤ
ΑΔΡΑΝΕΙΑ ΜΑΘΗΣΕ: ΜΑΡΙΑΝΝΑ ΠΑΡΑΘΤΡΑ ΑΝΑΣΑΗ ΠΟΤΛΙΟ ΠΑΝΑΓΙΩΣΗ ΠΡΟΔΡΟΜΟΤ ΑΝΑΣΑΙΑ ΠΟΛΤΧΡΟΝΙΑΔΟΤ ΙΩΑΝΝΑ ΠΕΝΓΚΟΤ Οριςμόσ: Με τον όρο αδράνεια ςτθ Φυςικι ονομάηεται θ χαρακτθριςτικι ιδιότθτα των ςωμάτων να αντιςτζκονται
Διαβάστε περισσότεραΠαράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2
Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Δρ. Χρήζηος Ηλιούδης Μθ Προςθμαςμζνοι Ακζραιοι Εφαρμογζσ (ςε οποιαδιποτε περίπτωςθ δεν χρειάηονται αρνθτικοί αρικμοί) Καταμζτρθςθ. Διευκυνςιοδότθςθ.
Διαβάστε περισσότεραΟδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο του Άβακα
Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο του Άβακα Αυτζσ οι οδθγίεσ ζχουν ςτόχο λοιπόν να βοθκιςουν τουσ εκπαιδευτικοφσ να καταςκευάςουν τισ δικζσ τουσ δραςτθριότθτεσ με το μοντζλο του Άβακα. Παρουςίαςη
Διαβάστε περισσότεραΑΝΩΣΑΣΟ ΕΚΠΑΙΔΕΤΣΙΚΟ ΙΔΡΤΜΑ ΠΕΙΡΑΙΑ ΣΕΧΝΟΛΟΓΙΚΟΤ ΣΟΜΕΑ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΤΣΟΜΑΣΙΜΟΤ Σ.Ε.
ΑΝΩΣΑΣΟ ΕΚΠΑΙΔΕΤΣΙΚΟ ΙΔΡΤΜΑ ΠΕΙΡΑΙΑ ΣΕΧΝΟΛΟΓΙΚΟΤ ΣΟΜΕΑ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΤΣΟΜΑΣΙΜΟΤ Σ.Ε. ΤΣΗΜΑΣΑ ΑΤΣΟΜΑΣΟΤ ΕΛΕΓΧΟΤ Ι ΑΚΗΕΙ ΠΡΑΞΗ Καθηγητήσ: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΤΛΟ Καθ. Εφαρμ:. ΒΑΙΛΕΙΑΔΟΤ
Διαβάστε περισσότεραΔιαγώνισμα Φυσική ς Α Λυκει ου Δυναμική σε μι α δια στασή και στο επι πεδο
Διαγώνισμα Φυσική ς Α Λυκει ου Δυναμική σε μι α δια στασή και στο επι πεδο Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-4 και δίπλα
Διαβάστε περισσότεραΗ άςκθςθ αποτελεί τροποποιθμζνθ εκδοχι του κζματοσ φυςικισ, τθσ Ευρωπαϊκισ Ολυμπιάδασ Φυςικών Επιςτθμών 2009_επιμζλεια κζματοσ: Κώςτασ Παπαμιχάλθσ
ΕΚΦΕ Αχαρνών Η άςκθςθ αποτελεί τροποποιθμζνθ εκδοχι του κζματοσ φυςικισ, τθσ Ευρωπαϊκισ Ολυμπιάδασ Φυςικών Επιςτθμών 9_επιμζλεια κζματοσ: Κώςτασ Παπαμιχάλθσ Εφαρμογζσ τθσ Αρχισ του Αρχιμιδθ & τθσ ςυνκικθσ
Διαβάστε περισσότεραx n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό.
Κωδικοποιητές Ο κωδικοποιθτισ (nor) είναι ζνα κφκλωμα το οποίο διακζτει n γραμμζσ εξόδου και το πολφ μζχρι m = 2 n γραμμζσ ειςόδου και (m 2 n ). Οι ζξοδοι παράγουν τθν κατάλλθλθ λζξθ ενόσ δυαδικοφ κϊδικα
Διαβάστε περισσότεραModellus 4.01 Συ ντομοσ Οδηγο σ
Νίκοσ Αναςταςάκθσ 4.01 Συ ντομοσ Οδηγο σ Περιγραφή Σο είναι λογιςμικό προςομοιϊςεων που ςτθρίηει τθν λειτουργία του ςε μακθματικά μοντζλα. ε αντίκεςθ με άλλα λογιςμικά (π.χ. Interactive Physics, Crocodile
Διαβάστε περισσότεραΕΡΓΑΣΗΡΙΟ ΕΦΑΡΜΟΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ
Στο εργαςτιριο αυτό κα δοφμε πωσ μποροφμε να προςομοιϊςουμε μια κίνθςθ χωρίσ τθ χριςθ εξειδικευμζνων εργαλείων, παρά μόνο μζςω ενόσ προγράμματοσ λογιςτικϊν φφλλων, όπωσ είναι το Calc και το Excel. Τα δφο
Διαβάστε περισσότεραΝΟΜΟΙ ΚΙΝΗΗ ΠΛΑΝΗΣΩΝ ΣΟΤ ΚΕΠΛΕΡ
ΝΟΜΟΙ ΚΙΝΗΗ ΠΛΑΝΗΣΩΝ ΣΟΤ ΚΕΠΛΕΡ 1. Νόμοσ των ελλειπτικών τροχιών Η τροχιζσ των πλανθτϊν είναι ελλείψεισ, των οποίων τθ μία εςτία κατζχει ο Ήλιοσ. Προφανϊσ όλοι οι πλανιτεσ του ίδιου πλανθτικοφ ςυςτιματοσ
Διαβάστε περισσότεραΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ ΘΔΜΑ Α ΘΔΜΑ Β
4 o ΔΙΓΩΝΙΜ ΠΡΙΛΙΟ 04: ΔΝΔΔΙΚΣΙΚΔ ΠΝΣΗΔΙ ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΤΔΥΘΥΝΣΗΣ 4 ο ΔΙΓΩΝΙΣΜ ΔΝΔΔΙΚΤΙΚΔΣ ΠΝΤΗΣΔΙΣ ΘΔΜ. β. β 3. α 4. γ 5. α.σ β.σ γ.λ δ.σ ε.λ. ΘΔΜ Β Σωςτι είναι θ απάντθςθ γ. Έχουμε ελαςτικι
Διαβάστε περισσότεραΣο θλεκτρικό κφκλωμα
Σο θλεκτρικό κφκλωμα Για να είναι δυνατι θ ροι των ελεφκερων θλεκτρονίων, για να ζχουμε θλεκτρικό ρεφμα, απαραίτθτθ προχπόκεςθ είναι θ φπαρξθ ενόσ κλειςτοφ θλεκτρικοφ κυκλϊματοσ. Είδθ κυκλωμάτων Σα κυκλϊματα
Διαβάστε περισσότεραΠροχωρθμζνα Θζματα Συςτθμάτων Ελζγχου
ΠΑΝΕΠΙΣΗΜΙΟ ΑΙΓΑIΟΤ & ΑΕΙ ΠΕΙΡΑΙΑ Σ.Σ. Σμήματα Ναυτιλίας και Επιχειρηματικών Τπηρεσιών & Μηχ. Αυτοματισμού ΣΕ Π.Μ.. «Νέες Σεχνολογίες στη Ναυτιλία και τις Μεταφορές» Προχωρθμζνα Θζματα Συςτθμάτων Ελζγχου
Διαβάστε περισσότεραΔυναμικι Μθχανϊν I. Διάλεξθ 16. Χειμερινό Εξάμθνο 2013 Τμιμα Μθχανολόγων Μθχ., ΕΜΠ
Δυναμικι Μθχανϊν I Διάλεξθ 16 Χειμερινό Εξάμθνο 2013 Τμιμα Μθχανολόγων Μθχ., ΕΜΠ 1 Ανακοινϊςεισ Office Hours: Δευτζρα 1-3 μμ, Εργαςτιριο Εμβιομθχανικισ, Ιςόγειο Κτθρίου Μ (210 772-1516) DMmeche2013@gmail.com
Διαβάστε περισσότεραΤεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων
Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Ενότητα 3: υςτιματα ουρϊν αναμονισ Κακθγθτισ Γιάννθσ Γιαννίκοσ χολι Οργάνωςθσ και Διοίκθςθσ Επιχειριςεων Σμιμα Διοίκθςθσ Επιχειριςεων Σκοποί ενότητασ Μελζτθ ςυςτθμάτων
Διαβάστε περισσότεραHY437 Αλγόριθμοι CAD
HY437 Αλγόριθμοι CAD Διδάςκων: Χ. Σωτηρίου http://inf-server.inf.uth.gr/courses/ce437/ 1 ΗΥ437 - Πολυεπίπεδθ Λογικι Απλοποίθςθ με Περιεχόμενα Είδθ Αδιάφορων Τιμϊν ςε Πολφ-επίπεδα Δυαδικά Δίκτυα Αδιάφορεσ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου)
ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου) 19 Μαρτίου 2011 10:00-11:15 3 point/μονάδες 1) Στθν πιο κάτω εικόνα πρζπει να υπάρχει αρικμόσ ςε κάκε κουκκίδα ϊςτε το άκροιςμα των αρικμϊν ςτα άκρα κάκε ευκφγραμμου τμιματοσ
Διαβάστε περισσότεραΗΥ101: Ειςαγωγι ςτθν Πλθροφορικι
Παράςταςη κινητήσ υποδιαςτολήσ Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ Παράςταςη ςταθεροφ ςημείου Παράςταςη αριθμών κινητοφ ςημείου 2 Παράςταςη ςταθεροφ ςημείου Στθν παράςταςθ αρικμϊν ςτακεροφ ςθμείου (Fixed
Διαβάστε περισσότεραΑςκήςεισ. Ενότητα 1. Πηγζσ τάςησ, ρεφματοσ και αντιςτάςεισ
Αςκήςεισ Ενότητα 1. Πηγζσ τάςησ, ρεφματοσ και αντιςτάςεισ 1. Ζςτω το ςιμα τάςθσ V(t)=V dc +Asin(ωt) που βλζπουμε ςτο επόμενο ςχιμα. Να προςδιορίςετε το πλάτοσ Α και τθν dc ςυνιςτώςα κακώσ και να υπολογίςτε
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΣΙΚΕ ΑΚΗΕΙ ΓΕΩΜΕΣΡΙΑ Α ΛΤΚΕΙΟΤ
ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΚΗΕΙ ΓΕΩΜΕΣΡΙΑ Α ΛΤΚΕΙΟΤ 1. Από τυχαίο ςθμείο Γ θμικυκλίου διαμζτρου ΑΒ φζρω παράλλθλθ προσ τθν ΑΒ, που τζμνει το θμικφκλιο ςτο Δ. i. Να δείξετε ότι το τετράπλευρο ΑΒΓΔ που ςχθματίηεται είναι
Διαβάστε περισσότεραΗ ίδια κατά μζτρο δφναμθ όταν εφαρμοςκεί ςε διαφορετικά ςθμεία τθσ πόρτασ προκαλεί διαφορετικά αποτελζςματα Ροιά;
; Η ίδια κατά μζτρο δφναμθ όταν εφαρμοςκεί ςε διαφορετικά ςθμεία τθσ πόρτασ προκαλεί διαφορετικά αποτελζςματα Ροιά; 30/1/ 2 Η φυςικι τθσ ςθμαςία είναι ότι προςδιορίηει τθ ςτροφικι κίνθςθ ενόσ ςτερεοφ ωσ
Διαβάστε περισσότεραΚΩΝΣΑΝΣΙΝΟ ΑΛ. ΝΑΚΟ ΜΑΘΗΜΑΣΙΚΟ M.Sc ΧΟΛΙΚΟ ΤΜΒΟΤΛΟ Πτυχ. ΚΟΙΝΩΝΙΚΗ ΟΙΚΟΝΟΜΙΑ
1 ΚΩΝΣΑΝΣΙΝΟ ΑΛ. ΝΑΚΟ ΜΑΘΗΜΑΣΙΚΟ M.Sc ΧΟΛΙΚΟ ΤΜΒΟΤΛΟ Πτυχ. ΚΟΙΝΩΝΙΚΗ ΟΙΚΟΝΟΜΙΑ.ΣΙΡΚΑ 8 και ΑΝΣΤΠΑ 30100 ΑΓΡΙΝΙΟ Email: nakosk@sch.gr Σηλ 64105400 κι.69749695 ΜΕΓΙΣΑ-ΕΛΑΧΙΣΑ ΧΩΡΙ ΠΑΡΑΓΩΓΟΤ 3 ΕΙΣΑΓΩΓΗ Σα
Διαβάστε περισσότεραΔιαγώνισμα Φυσική ς Α Λυκει ου Έργο και Ενε ργεια
Διαγώνισμα Φυσική ς Α Λυκει ου Έργο και Ενε ργεια Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-4 και δίπλα το γράμμα που αντιςτοιχεί
Διαβάστε περισσότεραΑπάντηση ΘΕΜΑ1 ΘΕΜΑ2. t=t 1 +T/2. t=t 1 +3T/4. t=t 1 +T ΔΙΑΓΩΝΙΣΜΑ ΣΕ ΤΑΛΑΝΤΩΣΕΙΣ-ΚΥΜΑΤΑ 1) (Β), 2. (Γ), 3. (Γ), 4. (Γ), 5. (Δ).
Απάντηση ΘΕΜΑ1 1) (Β), 2. (Γ), 3. (Γ), 4. (Γ), 5. (Δ). ΘΕΜΑ2 Α)Ανάκλαςθ ςε ακίνθτο άκρο. Το προςπίπτον κφμα ςε χρόνο Τ/2 κα ζχει μετακινθκεί προσ τα δεξιά κατά 2 τετράγωνα όπωσ φαίνεται ςτο ςχιμα. Για
Διαβάστε περισσότεραΔείκτεσ απόδοςθσ υλικών
Δείκτεσ απόδοςθσ υλικών Κάκε ςυνδυαςμόσ λειτουργίασ, περιοριςμϊν και ςτόχων, οδθγεί ςε ζνα μζτρο τθσ απόδοςθσ τθσ λειτουργίασ του εξαρτιματοσ και περιζχει μια ομάδα ιδιοτιτων των υλικϊν. Αυτι θ ομάδα των
Διαβάστε περισσότεραΧΕΔΙΑΜΟ ΠΡΟΪΟΝΣΩΝ ΜΕ Η/Τ
ΧΕΔΙΑΜΟ ΠΡΟΪΟΝΣΩΝ ΜΕ Η/Τ ΚΑΜΠΤΛΕ ΕΛΕΤΘΕΡΗ ΜΟΡΦΗ Χριςιμεσ για τθν περιγραφι ομαλών και ελεφκερων ςχθμάτων Αμάξωμα αυτοκινιτου, πτερφγια αεροςκαφών, ςκελετόσ πλοίου χιματα χαρακτιρων κινουμζνων ςχεδίων Περιγραφι
Διαβάστε περισσότεραΕρωτιςεισ & απαντιςεισ για τα ξφλινα πνευςτά
Τα νύλιμα! ΧΟΡΗΓΟΣ Ερωτιςεισ & απαντιςεισ για τα ξφλινα πνευςτά τα ξφλινα! 1. Γιατί τα λζμε ξφλινα πνευςτά; Πνευςτά ονομάηονται τα όργανα ςτα οποία ο ιχοσ παράγεται μζςα ςε ζνα ςωλινα απ όπου περνάει ο
Διαβάστε περισσότεραΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΙΚΗΣ ΛΟΓΙΚΗΣ
ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΙΚΗΣ ΛΟΓΙΚΗΣ Λογικι πρόταςθ: Με τον όρο λογικι πρόταςθ (ι απλά πρόταςθ) ςτα μακθματικά, εννοοφμε μια ζκφραςθ με πλιρεσ νόθμα που δζχεται τον χαρακτθριςμό ι μόνο αλθκισ ι μόνο ψευδισ. Παραδείγματα:
Διαβάστε περισσότεραΘΕΡΜΟΔΤΝΑΜΙΚΗ IΙ. Ενότθτα 4: Χθμικζσ αντιδράςεισ αερίων τακερά Χθμικισ Ιςορροπίασ Πρότυπθ Ελεφκερθ Ενζργεια
ΘΕΡΜΟΔΤΝΑΜΙΚΗ IΙ Ενότθτα 4: Χθμικζσ αντιδράςεισ αερίων τακερά Χθμικισ Ιςορροπίασ Πρότυπθ Ελεφκερθ Ενζργεια ογομών Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικών Μθχανικών κοποί ενότθτασ κοπόσ τθσ ενότθτασ αυτισ
Διαβάστε περισσότεραΜθχανολογικό Σχζδιο, από τθ κεωρία ςτο πρακτζο Χριςτοσ Καμποφρθσ, Κων/νοσ Βαταβάλθσ
Λεπτζσ Αξονικζσ γραμμζσ χρθςιμοποιοφνται για να δθλϊςουν τθν φπαρξθ ςυμμετρίασ του αντικειμζνου. Υπενκυμίηουμε ότι οι άξονεσ ςυμμετρίασ χρθςιμοποιοφνται μόνον όταν το ίδιο το εξάρτθμα είναι πραγματικά
Διαβάστε περισσότεραΒΙΟΛΟΓΟΙ ΓΙΑ ΦΥΣΙΚΟΥΣ
ΦΥΣΙΚΗ vs ΒΙΟΛΟΓΙΑ ΒΙΟΛΟΓΟΙ ΓΙΑ ΦΥΣΙΚΟΥΣ «Προτείνω να αναπτφξουμε πρώτα αυτό που κα μποροφςε να ζχει τον τίτλο: «ιδζεσ ενόσ απλοϊκοφ φυςικοφ για τουσ οργανιςμοφσ». Κοντολογίσ, τισ ιδζεσ που κα μποροφςαν
Διαβάστε περισσότεραΜΑΘΗΜΑΣΙΚΑ Γ ΓΕΝΙΚΗ ( ΑΠΟ ΘΕΜΑΣΑ ΛΤΚΕΙΩΝ ) ΕΡΩΣΗΕΙ ΩΣΟΤ ΛΑΘΟΤ ΑΝΑΛΤΗ
ΜΑΘΗΜΑΣΙΚΑ Γ ΓΕΝΙΚΗ ( ΑΠΟ ΘΕΜΑΣΑ ΛΤΚΕΙΩΝ ) ΕΡΩΣΗΕΙ ΩΣΟΤ ΛΑΘΟΤ ΑΝΑΛΤΗ 1. Αν οι ςυναρτιςεισ f και g ζχουν όρια ςτο x πραγματικοφσ αρικμοφσ, δθλαδι lim f( x) l 1 και lim g( x) l 2 με l 1, l 2 IR, τότε lim
Διαβάστε περισσότεραΓενικά Μαθηματικά ΙΙ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 7 η : Σφνκετεσ Συναρτιςεισ Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΕΙΣΗΓΗΣΗ. Από τον Γιώργο Σ. Ταςςόπουλο. Επίτιμο Σχολικό Σφμβουλο Μαθηματικών. ΘΕΜΑ: Η Μαθηματική Λογική ωσ εργαλείο ζκφραςησ και κατανόηςησ
ΕΙΣΗΓΗΣΗ Από τον Γιώργο Σ. Ταςςόπουλο Επίτιμο Σχολικό Σφμβουλο Μαθηματικών. ΘΕΜΑ: Η Μαθηματική Λογική ωσ εργαλείο ζκφραςησ και κατανόηςησ των Μαθηματικών του Λυκείου. (Ι) Στθ διδαςκαλία των Μακθματικϊν
Διαβάστε περισσότεραΕργαστηριακή άσκηση στο μάθημα του Αυτομάτου Ελέγχου (ΜΜ803)
Εργαστηριακή άσκηση στο μάθημα του Αυτομάτου Ελέγχου (ΜΜ803) Το ςφςτθμα τθσ φωτογραφίασ αποτελείται από ζνα κινθτιρα ςτον άξονα του οποίου ζχουμε προςαρμόςει ζνα φορτίο. Στον κινθτιρα υπάρχει ςυνδεδεμζνοσ
Διαβάστε περισσότεραΕνδεικτική Οργάνωςη Ενοτήτων. Α Σάξη. Διδ. 1 ΕΝΟΣΗΣΑ 1. 6 Ομαδοποίθςθ, Μοτίβα,
Ενδεικτική Οργάνωςη Ενοτήτων Α Σάξη Α/ Μαθηματικό περιεχόμενο Δείκτεσ Επιτυχίασ Ώρεσ Α Διδ. 1 ΕΝΟΣΗΣΑ 1 Αλ1.1 υγκρίνουν και ταξινομοφν αντικείμενα ςφμφωνα με κάποιο χαρακτθριςτικό/κριτιριο/ιδιότθτά Ομαδοποίθςθ,
Διαβάστε περισσότεραΘΕΜΟΔΥΝΑΜΙΚΘ Ι. Ενότθτα 7: Θεωριματα και ςχζςεισ μερικϊν παραγϊγων Σχζςεισ Maxwell Θερμοδυναμικζσ Καταςτατικζσ Εξιςϊςεισ
ΘΕΜΟΔΥΝΑΜΙΚΘ Ι Ενότθτα 7: Θεωριματα και ςχζςεισ μερικϊν παραγϊγων Σχζςεισ Maxwell Θερμοδυναμικζσ Καταςτατικζσ Εξιςϊςεισ Σογομϊν Μπογοςιάν Ρολυτεχνικι Σχολι Τμιμα Χθμικϊν Μθχανικϊν Σκοποί ενότθτασ Σκοπόσ
Διαβάστε περισσότεραΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»
Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος». * Συντελεστής διεύθυνσης µιας ευθείας (ε) είναι η εφαπτοµένη της γωνίας που σχηµατίζει η ευθεία (ε) µε τον άξονα x x. Σ Λ. * Ο συντελεστής διεύθυνσης
Διαβάστε περισσότεραΔιδάςκων: Κακθγθτισ Αλζξανδροσ Ριγασ υνεπικουρία: πφρογλου Ιωάννθσ
ΔΗΜΟΚΡΙΣΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΡΑΚΗ ΣΜΗΜΑ ΗΛΕΚΣΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΤΠΟΛΟΓΙΣΩΝ ΣΟΜΕΑ ΣΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΙ ΔΙΑΣΗΜΙΚΗ Βιοϊατρική Σεχνολογία 9 ο Εξάμηνο Διδάςκων: Κακθγθτισ Αλζξανδροσ Ριγασ υνεπικουρία:
Διαβάστε περισσότεραSlide 1. Εισαγωγή στη ψυχρομετρία
Slide 1 Εισαγωγή στη ψυχρομετρία 1 Slide 2 Σφντομη ειςαγωγή ςτη ψυχρομετρία. Διάγραμμα Mollier (πίεςησ-ενθαλπίασ P-H) Σο διάγραμμα Mollier είναι μία γραφικι παράςταςθ ςε ζναν άξονα ςυντεταγμζνων γραμμϊν
Διαβάστε περισσότεραΠΡΟΦΟΡΑ ΖΗΣΗΗ ΚΡΑΣΘΚΗ ΠΑΡΕΜΒΑΗ
ΠΡΟΦΟΡΑ ΖΗΣΗΗ ΚΡΑΣΘΚΗ ΠΑΡΕΜΒΑΗ 1 Ειςαγωγι: Οι αγοραίεσ δυνάµεισ τθσ προςφοράσ και ηιτθςθσ Προσφορά και Ζήτηση είναι οι πιο γνωςτοί οικονοµικοί όροι. Η λειτουργία των αγορϊν προςδιορίηεται από δφο βαςικζσ
Διαβάστε περισσότεραΑνάλυςη κλειςτϊν δικτφων
Ανάλυςη κλειςτϊν δικτφων Θ ανάλυςθ κλειςτϊν δικτφων ςτθρίηεται ςτθ διατιρθςθ τθσ μάηασ και τθσ ενζργειασ. Σε ζνα τυπικό βρόχο ABCDA υπάρχει ζνασ αρικμόσ από κόμβουσ, εδϊ A,B,C,D, ςτουσ οποίουσ ιςχφει θ
Διαβάστε περισσότεραΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ. ΚΕΦΑΛΑΙΟ 3: Εργονομία
ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ Εργονομία, ωςτι ςτάςθ εργαςίασ, Εικονοςτοιχείο (pixel), Ανάλυςθ οκόνθσ (resolution), Μζγεκοσ οκόνθσ Ποιεσ επιπτϊςεισ μπορεί να ζχει θ πολφωρθ χριςθ του υπολογιςτι ςτθν
Διαβάστε περισσότεραHY437 Αλγόριθμοι CAD
HY437 Αλγόριθμοι CAD Διδάςκων: Χ. Σωτηρίου http://inf-server.inf.uth.gr/courses/ce437/ 1 Περιεχόμενα Σφνολα και Σχζςεισ Πράξεισ Συνόλων Κατθγορίεσ Σχζςεων Σχζςεισ Ιςοδυναμίασ, Διάταςθσ, Συμβατότθτασ Συναρτιςεισ
Διαβάστε περισσότεραΕργαςτιριο Βάςεων Δεδομζνων
Εργαςτιριο Βάςεων Δεδομζνων 2010-2011 Μάθημα 1 ο 1 Ε. Σςαμούρα Σμήμα Πληροφορικήσ ΑΠΘ Σκοπόσ του 1 ου εργαςτθριακοφ μακιματοσ Σκοπόσ του πρϊτου εργαςτθριακοφ μακιματοσ είναι να μελετιςουμε ερωτιματα επιλογισ
Διαβάστε περισσότεραΔιαγώνισμα Χημείας Γ Λυκείου στα Κεφάλαια 1-4
Διαγώνισμα Χημείας Γ Λυκείου στα Κεφάλαια 1-4 Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-5 και δίπλα το γράμμα που αντιςτοιχεί ςτθ
Διαβάστε περισσότεραΜετατροπεσ Παραςταςεων
Δρ. Χρήστος Ηλιούδης Μεηαηποπή 346 10 ζε δςαδικο 346 10 1) 346/2 = 173 με ςπόλοιπο 0 2) 173/2 = 86 με ςπόλοιπο 1 3) 86/2 = 43 με ςπόλοιπο 0 4) 43/2 = 21 με ςπόλοιπο 1 5) 21/2 = 10 με ςπόλοιπο 1 6) 10/2
Διαβάστε περισσότεραΣχεδίαςη Σφγχρονων Ακολουθιακών Κυκλωμάτων
Σχεδίαςη Σφγχρονων Ακολουθιακών Κυκλωμάτων Πίνακεσ Διζγερςησ των FF Όπωσ είδαμε κατά τθ μελζτθ των FF, οι χαρακτθριςτικοί πίνακεσ δίνουν τθν τιμι τθσ επόμενθσ κατάςταςθσ κάκε FF ωσ ςυνάρτθςθ τθσ παροφςασ
Διαβάστε περισσότερα17. Πολυδιάςτατοι πίνακεσ
Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων 17. Πολυδιάςτατοι πίνακεσ Ιωάννθσ Κατάκθσ Πολυδιάςτατοι πίνακεσ o Μζχρι τϊρα μιλοφςαμε για μονοδιάςτατουσ πίνακεσ ι int age[5]= 31,28,31,30,31; o Για παράλλθλουσ
Διαβάστε περισσότεραΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 7 θ Διάλεξθ Διαχείριςθ Μνιμθσ Μζροσ Γ
ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ 7 θ Διάλεξθ Διαχείριςθ Μνιμθσ Μζροσ Γ ελιδοποίθςθ (1/10) Σόςο θ κατάτμθςθ διαμεριςμάτων ςτακεροφ μεγζκουσ όςο και θ κατάτμθςθ διαμεριςμάτων μεταβλθτοφ και άνιςου μεγζκουσ δεν κάνουν
Διαβάστε περισσότεραΓράφοι. Δομζσ Δεδομζνων Διάλεξθ 9
Γράφοι Δομζσ Δεδομζνων Διάλεξθ 9 Περιεχόμενα Γράφοι Γενικζσ ζννοιεσ, οριςμόσ, κτλ Παραδείγματα Γράφων Αποκικευςθ Γράφων Βαςικοί Οριςμοί Γράφοι και Δζντρα Διάςχιςθ Γράφων Περιοδεφων Πωλθτισ Γράφοι Οριςμόσ:
Διαβάστε περισσότεραΘΕΜΟΔΥΝΑΜΙΚΗ IΙ. Ενότθτα 1: Μερικζσ Γραμμομοριακζσ Ιδιότθτεσ. Σογομϊν Μπογοςιάν Ρολυτεχνικι Σχολι Τμιμα Χθμικϊν Μθχανικϊν
ΘΕΜΟΔΥΝΑΜΙΚΗ IΙ Ενότθτα 1: Μερικζσ Γραμμομοριακζσ Ιδιότθτεσ Σογομϊν Μπογοςιάν Ρολυτεχνικι Σχολι Τμιμα Χθμικϊν Μθχανικϊν Σκοποί ενότθτασ Σκοπόσ τθσ ενότθτασ αυτισ είναι θ ανάπτυξθ μακθματικϊν ςχζςεων μεταξφ
Διαβάστε περισσότεραΕρωτήσεις αντιστοίχισης
Ερωτήσεις αντιστοίχισης 1. ** Να αντιστοιχίσετε κάθε ευθεία που η εξίσωσή της βρίσκεται στη του πίνακα (Ι) µε τον συντελεστή της που βρίσκεται στη, συµπληρώνοντας τον πίνακα (ΙΙ) (α, β 0). 1. ε 1 : y =
Διαβάστε περισσότεραΓΕΦΤΡΟΠΟΙΪΑ: ΜΟΝΙΜΑ ΚΑΙ ΚΙΝΗΣΑ ΦΟΡΣΙΑ. ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τ.Ε.Ι. Δυτικής Ελλάδας
1 ΓΕΦΤΡΟΠΟΙΪΑ: ΜΟΝΙΜΑ ΚΑΙ ΚΙΝΗΣΑ ΦΟΡΣΙΑ ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τ.Ε.Ι. Δυτικής Ελλάδας Μόνιμα Φορτία Ίδιον Βάροσ (για Οπλιςμζνο Σκυρόδεμα): g=25 KN/m 3 Σε οδικζσ γζφυρεσ πρζπει
Διαβάστε περισσότεραΈνα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν:
Μζθοδος Simplex Η πλζον γνωςτι και περιςςότερο χρθςιμοποιουμζνθ μζκοδοσ για τθν επίλυςθ ενόσ γενικοφ προβλιματοσ γραμμικοφ προγραμματιςμοφ, είναι θ μζκοδοσ Simplex θ οποία αναπτφχκθκε από τον George Dantzig.
Διαβάστε περισσότεραδ) Αf=R-{ 2}=(-,-2)U(-2,2)U(2,+ ). f (x) f(x) ε) Αf=R- 3 =(-,- 3 )U(- 3, 3 )U( 3,+ ).
ΡΑΡΑΝΙΚΟΛΑΟΥ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ ) Nα μελετιςετε ωσ προσ τθ μονοτονία τισ ςυναρτιςεισ: β) f ( ) α) f ( ) γ) f ( ) δ) Αf=R-{ }=(-,-)U(-,)U(,+ ) ( 4) ( 4) ( 4) fϋ()= ( 4) f ( ) δ) f ( ) ε)
Διαβάστε περισσότεραΣχέσεις δύο μεταβλητών - Συναρτήσεις
Σέσεις δύο μεταβλητών - Συναρτήσεις. Από τι εξαρτάται; ΠΜΑ Βϋ Γυμναςίου Α. Αναγνωρίηουν ςυμμεταβαλλόμενα ποςά (μεταβλθτζσ) ςε ςυγκεκριμζνεσ καταςτάςεισ και διακρίνουν ποιο ποςό εξαρτάται από το άλλο. Α.
Διαβάστε περισσότεραΠανελλαδικε σ Εξετα ςεισ Γ Τα ξησ Ημερη ςιου και Δ Τα ξησ Εςπερινου Γενικου Λυκει ου
Ζνωςθ Ελλινων Χθμικϊν Πανελλαδικε σ Εξετα ςεισ Γ Τα ξησ Ημερη ςιου και Δ Τα ξησ Εςπερινου Γενικου Λυκει ου Χημεία 03/07/2017 Τμιμα Παιδείασ και Χθμικισ Εκπαίδευςθσ 0 Πανελλαδικε σ Εξετα ςεισ Γ Τα ξησ Ημερη
Διαβάστε περισσότεραΚλαςικι Ηλεκτροδυναμικι
Κλαςικι Ηλεκτροδυναμικι Ενότθτα 21: Διάδοςθ θλεκτρομαγνθτικών κυμάτων Ανδρζασ Τερηισ Σχολι Θετικών Επιςτθμών Τμιμα Φυςικισ Σκοποί ενότθτασ Σκοπόσ τθσ ενότθτασ είναι να ςυνεχίςει τθν μελζτθ που αφορά τθν
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 2: ΤΟ ΛΟΓΙΣΜΙΚΟ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ. ΚΕΦΑΛΑΙΟ 6: Το γραφικό περιβάλλον Επικοινωνίασ (Γ.Π.Ε)
ΕΝΟΤΗΤΑ 2: ΤΟ ΛΟΓΙΣΜΙΚΟ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ ΚΕΦΑΛΑΙΟ 6: Το γραφικό περιβάλλον Επικοινωνίασ (Γ.Π.Ε) Γραφικό Περιβάλλον Επικοινωνίασ Περιβάλλον Εντολϊν Γραμμισ (Graphical User Interface/GUI), (Command Line Interface),
Διαβάστε περισσότεραΕΛΑΣΘΚΟΣΗΣΑ ΖΗΣΗΗ ΚΑΘ ΠΡΟΦΟΡΑ
ΕΛΑΣΘΚΟΣΗΣΑ ΖΗΣΗΗ ΚΑΘ ΠΡΟΦΟΡΑ 1 ΜΕΡΟ Α. Ειςαγωγή: Ελαςτικότητα Σον χειμϊνα του 1881-2 ο Alfred Marshall κατζβθκε από τθν θλιόλουςτθ ταράτςα του ξενοδοχείου του ςτο Palermo ενκουςιαςμζνοσ γιατί είχε ανακαλφψει
Διαβάστε περισσότεραΕιςαγωγή ςτη μοντελοποίηςη και προςομοίωςη με τη χρήςη του λογιςμικού Interactive Physics [Οδηγόσ Γρήγορησ Εκκίνηςησ]
1 Ειςαγωγή ςτη μοντελοποίηςη και προςομοίωςη με τη χρήςη του λογιςμικού Interactive Physics 2005. [Οδηγόσ Γρήγορησ Εκκίνηςησ] A-Προετοιμαςία του περιβάλλοντοσ εργαςίασ το ςτάδιο αυτό κακορίηουμε τα οπτικά
Διαβάστε περισσότερα