Το θεώρημα του Fermat για Ν=3
|
|
- Θήρα Μητσοτάκης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Είναι αδύνατον μια κυβική δύναμη να γραφεί ως άθροισμα δυο κυβικών δυνάμεων ή μια τέταρτη δύναμη να γραφεί ως άθροισμα δύο τέταρτων δυνάμεων και γενικά οποιαδήποτε δύναμη μεγαλύτερη του τετραγώνου είναι αδύνατον να γραφεί ως άθροισμα ίδιων δυνάμεων. Έχω μια πραγματικά υπέροχη απόδειξη της πρότασης, που όμως δε χωρά σ ένα τόσο στενό περιθώριο. Pierre de Fermat Το θεώρημα του Fermat για Ν=3 1
2 Αρχικές παρατηρήσεις Για την απόδειξη του θεωρήματος Fermat στα πλαίσια της Αλγεβρικής Θεωρίας Αριθμών, θα δουλέψουμε στο δακτύλιο Z[ζ 3 ] όπου ζ 3 είναι η κυβική ρίζα της μονάδας ζ 3 = 1+ 3 = cos π 3 + isin π 3. Είναι Z[ζ 3 ] = { α+βζ 3 / α,β Z }. Πολύ εύκολα φαίνεται ότι Z[ 3] Z[ζ 3 ]. Ισχύει βέβαια ότι ζ 3 3 =1, ζ 3 +ζ 3 +1=0, ζ 3 = ζ 3. Αν w=α+βζ 3 είναι αριθμός του δακτυλίου Z[ζ 3 ] ορίζουμε ως νόρμα του αριθμού τον αριθμό Ν(w)=ww =α -αβ+β. Προφανώς Ν(w) Z και ισχύει η πολλαπλασιαστική ιδιότητα: Ν(zw)=N(z)N(w). Τα αντιστρέψιμα στοιχεία του δακτυλίου Z[ζ 3 ] καλούνται και μονάδες. Έτσι αν u είναι μια μονάδα θα πρέπει να υπάρχει κάποιο άλλο στοιχείο του Z[ζ 3 ] ώστε uu =1. Παίρνοντας νόρμες προκύπτει Ν(u)N(u )=Ν(1)=1. Άρα θα πρέπει Ν(u)=1 α -αβ+β =1 (α β ) + 3β 3β = 1. Αφού λοιπόν θα πρέπει 1 θα είναι β=0 ή β=1 ή 4 4 β=-1 και αντιστοίχως οι τιμές του α θα είναι α=±1, α=0 ή α=1, α=0 ή α=-1. Έτσι τελικά προκύπτει ότι το σύνολο των μονάδων του δακτυλίου Z[ζ 3 ] είναι το σύνολο U={±1,±ζ 3,±ζ 3 }. Στα παρακάτω για τυπογραφικούς λόγους θα συμβολίζουμε την τρίτη ρίζα της μονάδας ζ 3, απλά ως ζ. Έτσι θα είναι ζ= 1+ 3, οπότε 3=ζ+1. Αν η νόρμα του αριθμού w είναι πρώτος φυσικός αριθμός, τότε και ο w είναι πρώτος στο δακτύλιο Z[ζ 3 ]. Πράγματι αν w=zk για κάποιους ακεραίους του Z[ζ 3 ], τότε N(w)=N(z)N(k). Αφού Ν(w) είναι πρώτος θα έχουμε είτε N(z)=1, είτε N(k)=1 δηλαδή είτε z μονάδα είτε k μονάδα του Z[ζ 3 ]. Άρα ο w είναι πρώτος. Έτσι ο αριθμός 1-ζ είναι πρώτος αφού Ν(1-ζ)=3. Ο δακτύλιος Z[ζ 3 ] είναι ευκλείδειος δακτύλιος. Έτσι αν δοθούν οι αριθμοί w,z Z[ζ 3 ] με z 0, υπάρχουν ακέραιοι π,υ Z[ζ 3 ] τέτοιοι ώστε w=zπ+υ με υ=0 ή Ν(υ)<Ν(z). Από την Άλγεβρα είναι γνωστό ότι ένας ευκλείδειος δακτύλιος είναι περιοχή κυρίων ιδεοδών και κατά συνέπεια δακτύλιος με μονοσήμαντη ανάλυση. Το σύνολο πηλίκο Z[ζ 3 ]/ Z[ζ 3 ] = {0,1,ζ,1+ζ}, μ άλλα λόγια τα δυνατά υπόλοιπα της διαίρεσης ενός αριθμού w του Z[ζ 3 ] με το είναι ένας από τους αριθμούς του συνόλου {0,1,ζ,1+ζ}, δηλαδή w 0 mod ή w 1 mod ή w ζ mod ή w (1+ζ) mod. Εύκολα φαίνεται ότι w 3 0 ή 1 ή -1 mod Για τις μονάδες του Z[ζ 3 ] έχουμε ±1 1 mod, ±ζ ζ mod, ±ζ (1+ζ) mod. Η απόδειξη του θεωρήματος Fermat θα γίνει με απαγωγή σε άτοπο. Θα υποθέσουμε ότι υπάρχει λύση (χ,ψ,ω) της εξίσωσης χ 3 +ψ 3 =ω 3 (*) με χψω 0 και max{ χ, ψ, ω } ελάχιστο, και θα οδηγηθούμε σε άτοπο.
3 ΓΥΜΝΑΣΜΑΤΑ ΑΡΙΘΜΟΘΕΩΡΙΑΣ χ,ψ,ω είναι πρώτοι μεταξύ τους κατά ζεύγη, αφού αν ο λ διαιρεί δυο από τους χ,ψ,ω τότε θα διαιρεί και τον τρίτο. Έτσι η τριάδα ( χ, λ ψ, λ ω ) θα είναι λ επίσης λύση της (*) με max{ χ, λ ψ, λ ω } < max{ χ, ψ, ω }. λ Δίχως βλάβη της γενικότητας μπορούμε να υποθέσ0υμε ότι χ άρτιος και ψ,ω περιττοί. (Αν χ περιττός και ψ άρτιος η τριάδα (ψ,χ,ω) είναι επίσης λύση, ενώ αν ω άρτιος και χ,ψ περιττοί, η τριάδα (ω,-ψ,χ) είναι επίσης λύση). χ 3 +ψ 3 =ω 3 χ 3 =ω 3 -ψ 3 χ 3 =(ω-ψ)(ω-ζψ)(ω-ζ ψ) χ 3 =(ω-ψ)(ω-ζψ)(ω-ζ ψ) (1) Αν ένας πρώτος ρ διαιρεί δυο από τους αριθμούς ω-ψ, ω-ζψ, ω-ζ ψ τότε είναι ρ=(1-ζ) μονάδα. Πράγματι, αν ρ/ω-ψ και ρ/ω-ζψ τότε ρ/ψ(1-ζ). Ο ρ δεν μπορεί να διαρεί τον ψ γιατί τότε επίσης ρ/ω άτοπο σύμφωνα με την πρώτη παρατήρηση. Θα είναι επομένως ρ/1-ζ και αφού 1-ζ πρώτος θα έχουμε τελικά ότι ρ=(1-ζ) μονάδα. Αν ρ/ω-ψ και ρ/(ω-ζ ψ) τότε ρ/ψ(1-ζ ) ρ/(ζζ -ζ ) ρ/(1-ζ) γιατί ζ είναι μονάδα, οπότε και πάλι ρ=(1-ζ) μονάδα. Αν τέλος ρ/ω-ζψ και ρ/(ω-ζ ψ) τότε ρ/ψ(ζ-ζ ) ρ/ψ(ζ 3 -ζ ζ ) ρ/ψ(1-ζ) και παρομοίως προκύπτει ρ=(1-ζ) μονάδα. (1-ζ) 3 =1+ζ -ζ=-ζ-ζ=-3ζ άρα 3=(1-ζ) (-ζ ) (). Πρώτη περίπτωση: Αν 3 χ Τότε επίσης 1-ζ χ (Διαφορετικά 1-ζ/χ οπότε (1-ζ) /χ δηλαδή 3/χ άρα 3/χ). Οι αριθμοί ω-ψ, ω-ζψ, ω-ζ ψ είναι πρώτοι μεταξύ τους (γιατί διαφορετικά για τον κοινό πρώτο διαιρέτης τους το 1-ζ θα είχαμε (1-ζ)/χ). Από τη σχέση χ 3 =(ω-ψ)(ω-ζψ)(ω-ζ ψ) (1) προκύπτει ότι κάθε παράγοντας του δεξιού μέλους της (1) θα είναι το γινόμενο ενός κύβου επί μια μονάδα. Αν ω-ψ=β 3 μ τότε (ω-ψ) = ω-ψ = β 3 μ =(ββ ) 3 (μμ ) 3 = (ββ ) 3 Z. Μπορούμε λοιπόν να γράψουμε ω-ψ=γ 3 όπου γ Z. Επίσης ω-ζψ=δ 3 μ όπου μ μονάδα. Επειδή ω-ζψ (1-ζ) mod (1+ζ)mod ±ζ mod, θα είναι μ =±ζ κι έτσι μπορούμε να γράψουμε ω-ζψ=δ 3 ζ. ω ψ = γ 3 Συνοψίζοντας θα έχουμε { ω ζψ = δ 3 ζ (3) ω ζ ψ = δ 3 ζ Αν θέσουμε δ=α+βζ, τότε δ 3 =α 3 +β 3 +3α β+3αβ ζ =α 3-3αβ +β 3 +(3α β-3αβ )ζ (4) έτσι αφού ω-ζψ=δ 3 ζ θα είναι ζω-ζ ψ=δ 3 ψ+(ω+ψ)ζ=δ 3 (5). Από τις (4),(5) θα έχουμε: { ψ = α3 3αβ + β 3 ψ + ω = 3α β 3αβ { ψ = α3 3αβ + β 3 ω = α 3 + 3α β β 3 (6) Θα είναι επομένως ω-ψ= α 3 β 3 + 3α β + 3αβ =(α+β)(α-β)(β-α) κι έτσι γ 3 =(α+β)(α-β)(β-α) (7) Είναι εύκολο να δούμε ότι οι ακέραιοι α+β,α-β,β-α είναι πρώτοι μεταξύ τους ανά δύο. Σύμφωνα επομένως με την (7) ο καθένας τους οφείλει να είναι τέλειος κύβος. 3
4 α + β = Χ 3 Θα υπάρχουν λοιπόν ακέραιοι Χ, Ψ, Ω τέτοιοι ώστε { β α = Ψ 3 (8) α β = Ω 3 Βρίσκουμε λοιπόν Ψ 3 +Ω 3 =Χ 3 δηλαδή η τριάδα (Ψ,Ω,Χ) είναι επίσης λύση της (*). Αφού Χ 3,Ψ 3,Ω 3 /ω-ψ/χ θα είναι Χ, Ψ, Ω < χ (χ 3 =(ω-ψ)(ω +ωψ+ψ ), ω +ωψ+ψ >1 άρα ω-ψ < χ 3 ). Θα έχουμε έτσι Χ, Ψ, Ω < χ max{ χ, ψ, ω } άρα και max{ Χ, Ψ, Ω } < max{ χ, ψ, ω } άτοπο. Δεύτερη περίπτωση: Αν 3/χ Αφού 3=(1-ζ) ( ζ ) ο πρώτος 1-ζ διαιρεί τον χ. Όμως χ 3 =(ω-ψ)(ψ-ζψ)(ω-ζ ψ), επομένως ο 1-ζ θα διαιρεί κάποιον από τους (ω-ψ), (ψ-ζψ), (ω-ζ ψ). Είναι όμως (ω-ψ)-(ω-ζψ)=-ψ(1-ζ) και (ω-ψ)-(ω-ζ ψ)=-ψ(+ζ)=-ψ(3-1+ζ)=-ψ[(1-ζ) ζ -(1-ζ)] και επίσης (ω-ζψ)-(ω-ζ ψ)=ψ(ζ -ζ)=-ψζ(1-ζ), δηλαδή ω-ψ ω ζψ ω ζ ψ mod(1-ζ), άρα όλοι οι αριθμοί (ω-ψ), (ψ-ζψ), (ω-ζ ψ) διαιρούνται με τον 1-ζ. Αν ord 3 (x)=m (η μεγαλύτερη δύναμη του 3 που διαιρεί τον χ) και ord 3 (ω-ψ)=n τότε η σχέση χ 3 =(ω-ψ)(ψ-ζψ)(ω-ζ ψ) μας δίνει 6m=n+1+1. (Πράγματι οι ω-ζψ και ω-ζ ψ δεν διαιρούνται με (1-ζ) κ για κ>1 αφού το 3 θα διαιρούσε αυτούς τους αριθμούς και αν πχ ω-ζψ=3(α+βζ) με α,β Z τότε ω=3α και ψ=-3β άτοπο, ενώ αν ω-ζ ψ=3(α+βζ) τότε ω+ψ=3α και ψ=3β άτοπο και πάλι αφού ω ψ=1). Η σχέση 6m=n+ δίνει 3m=n+1 οπότε n. Θα έχουμε λοιπόν: ω-ψ=9γ με γ Z ω-ζψ=(1-ζ)κ ω-ζ ψ=(1-ζ )κ με κ ε Z[ζ]. Είναι ζ =ζ. Θα έχουμε λοιπόν χ 3 =9γ(1-ζ)(1-ζ )κκ χ 3 =9γ3 κκ ( χ 3 )3 = γκκ. Οι αριθμοί γ, κ, κ δεν έχουν κανένα κοινό πρώτο διαιρέτη μεταξύ τους γιατί διαφορετικά αυτός θα όφειλε να είναι της μορφής α=(1-ζ) μονάδα κι αυτό θα σήμαινε ότι ο ω-ζψ διαιρείται με τον (1-ζ) κ με κ>1. Έτσι συμπεραίνουμε ότι ω-ψ=9λ 3 ω-ζψ=u(1-ζ)δ 3 ω-ζ ψ=u (1 ζ )δ 3. Θα δείξουμε ότι u=±1. ω-ζψ (1-ζ)mod, ω-ζψ=u(1-ζ)δ 3. Ο κύβος όμως ενός μη μηδενικού στοιχείου του Z[ζ]/ Z[ζ] είναι 1. Δηλαδή δ 3 1mod οπότε 1-ζ u(1-ζ)mod άρα u 1mod άρα ω ψ = 9λ 3 u=±1. Έτσι μπορούμε να γράψουμε { ω ζψ = (1 ζ)δ 3 (9) ω ζ ψ = (1 ζ )δ 3 Θέτουμε δ=α+βζ με α,β Z. Τότε δ 3 =α 3-3α β+β 3 +ζ(3α -3αβ ) (1-ζ)δ 3 =α 3 +3α β-6αβ +β 3 +ζ(-α 3 -β 3 +6α β-3αβ ) και από την (9) προκύπτει ω= α 3 +3α β-6αβ +β 3 και ψ= α 3 +3αβ -6α β+β 3. Είναι λοιπόν ω-ψ=9α β-9αβ =9αβ(α-β) (10). Αφού ω-ψ=9λ 3 προκύπτει ότι αβ(α-β)=λ 3 (11). Οι ακέραιοι α,β,α-β είναι πρώτοι μεταξύ τους ανά δύο (αφού ω ψ=1), άρα θα υπάρχουν ακέραιοι χ 1,χ,χ 3 έτσι ώστε α=χ 3 1, β=χ 3, α-β=χ 3 3 δηλαδή χ 3 1 +(-χ ) 3 =χ 3 3. Η τριάδα (χ 1,-χ,χ 3 ) είναι λύση της (*) και όπως και στην περίπτωση (Ι) max( χ 1, χ, χ 3 )<max( χ, ψ, ω ) άτοπο. 4
5 Βιβλιογραφία ΓΥΜΝΑΣΜΑΤΑ ΑΡΙΘΜΟΘΕΩΡΙΑΣ 1. Fermat Last Theorem - Paulo Ribenboim. Number Theory 1, Fermat s Dream Kazuya Kato, Nobushige Kurokawa, Takeshi Saito 3. An introduction to theory of numbers Ivan Niven, Herbert Zuckerman, Hungh Montgomery 4. Θεωρία Αριθμών Δημήτριος Πουλάκης 5. Αριθμοθεωρητικός Λογισμός Κασαπίδης Γεώργιος 5
Το θεώρημα του Fermat για Ν=3 και Ν=4
Είναι αδύνατον μια κυβική δύναμη να γραφεί ως άθροισμα δυο κυβικών δυνάμεων ή μια τέταρτη δύναμη να γραφεί ως άθροισμα δύο τέταρτων δυνάμεων και γενικά οποιαδήποτε δύναμη μεγαλύτερη του τετραγώνου είναι
Διαβάστε περισσότερα4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ
14 4 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ Ας υποθέσουμε ότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης του με τον Σύμφωνα με το γνωστό αλγόριθμο της διαίρεσης, το πηλίκο θα είναι ένας ακέραιος κ, τέτοιος,
Διαβάστε περισσότεραΠΑΡΑΤΗΡΗΣΕΙΣ. 1. Η μέθοδος της μαθηματικής επαγωγής αποτελείται από δυο βήματα :
ΠΑΡΑΤΗΡΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ 1. Η μέθοδος της μαθηματικής επαγωγής αποτελείται από δυο βήματα : Βήμα 1 ο : Δείχνουμε ότι η πρόταση Ρ( ν ) είναι αληθής για το μικρότερο φυσικό για τον οποίο ζητείται
Διαβάστε περισσότεραΓΥΜΝΑΣΜΑΤΑ ΑΡΙΘΜΟΘΕΩΡΙΑΣ Κασαπίδης Γεώργιος Μαθηματικός Αναπαράσταση πρώτων αριθμών ως άθροισμα δυο τετραγώνων. p 1.
Κάθε πρώτος της μορφής κ+1 γράφεται ως άθροισμα δυο τετραγώνων. Έστω p πρώτος p 1 mod q= α. α 1modp β. Υπάρχουν ακέραιοι x,y με 0< x, y< p τέτοιοι ώστε α x y 0 modp γ. p=x +y και α=q!. Δείξτε ότι Απόδειξη
Διαβάστε περισσότεραΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ
ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 4. ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΤH Α. ΘΕΩΡΙΑ ΜΕΘΟ ΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ Εάν ζητείται να δειχθεί ισότητα ή ανίσωση
Διαβάστε περισσότεραAπάντηση Απόλυτη τιμή αριθμού είναι η απόσταση του αριθμού από το 0. Συμβολίζεται με 3 = 3-3 = 3 + και και είναι πάντα θετικός αριθμός. Π.
ΜΕΡΟΣ Α : Α Λ Γ Ε Β ΡΑ ΚΕΦΑΛΑΙΟ 1ο ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και πράξεις τους 1. Γράψε τα βασικότερα σύνολα τιμών: Aπάντηση Ν{0,1,,,4,5,6,..+
Διαβάστε περισσότεραΕπαναληπτικές Ασκήσεις
Επαναληπτικές Ασκήσεις Έστω ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου ( x ) α Να γράψετε την ταυτότητα της διαίρεσης β Να βρείτε τα 0 και Ρ γ Αν το πολυώνυμο ( x) είναι x να βρείτε: x + x είναι 3x
Διαβάστε περισσότεραΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. 1 ο ΚΕΦΑΛΑΙΟ
Ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΟΡΕΣΤΙΑΔΑΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ο ΚΕΦΑΛΑΙΟ Διάνυσμα ορίζεται ένα ευθύγραμμο τμήμα στο οποίο έχει ορισθεί ποια είναι η αρχή, ή σημείο εφαρμογής του
Διαβάστε περισσότεραΗ εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση
Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση Αλέξανδρος Γ. Συγκελάκης 6 Απριλίου 2006 Περίληψη Θέµα της εργασίας αυτής, είναι η απόδειξη οτι η εξίσωση x 3 + y 3 = z 3 όπου xyz 0,
Διαβάστε περισσότεραΟι Φυσικοί Αριθμοί. Παρατήρηση: Δεν στρογγυλοποιούνται αριθμοί τηλεφώνων, Α.Φ.Μ., κωδικοί αριθμοί κλπ. Πρόσθεση Φυσικών αριθμών
Οι Φυσικοί Αριθμοί Γνωρίζουμε ότι οι αριθμοί είναι ποσοτικές έννοιες και για να τους γράψουμε χρησιμοποιούμε τα αριθμητικά σύμβολα. Οι αριθμοί μετρούν συγκεκριμένα πράγματα και φανερώνουν το πλήθος της
Διαβάστε περισσότερα4.2 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ
4 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΘΕΩΡΗΜΑ (ΤΑΥΤΟΤΗΤΑ ΤΗΣ ΔΙΑΙΡΕΣΗΣ) Για κάθε ζεύγος πολυωνύμων ( και ( με ( 0 υπάρχουν δυο μοναδικά πολυώνυμα ( και (, τέτοια ώστε : ( ( όπου το ( ή είναι το μηδενικό
Διαβάστε περισσότεραΠαραγοντοποίηση. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd
0 Παραγοντοποίηση Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 0 1 Ενότητα 4 η Ταυτότητες Παραγοντοποίηση Σκοπός Ο σκοπός της 4 η ενότητας είναι να αποκτήσουν την ικανότητα
Διαβάστε περισσότεραΟριακά σημεία ακολουθιών
Οριακά σημεία ακολουθιών Ο πραγματικός αριθμός ξ καλείται οριακό σημείο της ακολουθίας πραγματικών αριθμών α ν όταν για κάθε θετικό αριθμό ε>0, και κάθε φυσικό αριθμό Ν υπάρχει φυσικός αριθμός n N έτσι
Διαβάστε περισσότερα9 Πολυώνυμα Διαίρεση πολυωνύμων
4ο Κεφάλαιο 9 Πολυώνυμα Διαίρεση πολυωνύμων Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισμοί Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής ν αx όπου α R, * ν N και x μια μεταβλητή που μπορεί να πάρει οποιαδήποτε
Διαβάστε περισσότεραΠολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 2 0 / 7 /
Πολυώνυμα Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 66 99 77... 00 00... 88 88... 88 88 Kgllykos..gr 0 / 7 / 0 1 8 Άλγεβρα Κεφάλαιο 17 ασκήσεις και τεχνικές σε 1 σελίδες εκδόσεις Καλό πήξιμο τηλ.
Διαβάστε περισσότεραF 5 = (F n, F n+1 ) = 1.
Λύσεις Θεμάτων Θεωρίας Αριθμών 1. (α) Να δειχθεί ότι ο πέμπτος αριθμός της μορφής Fermat, δηλαδή ο F 5 2 25 + 1 διαιρείται από το 641. (β) Εστω F n η ακολουθία των αριθμών Fermat, δηλαδή F n 2 2n + 1,
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ
ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ 10 ΕΠΑΝΑΛΗΨΕΙΣ ΑΠΟ ΠΡΟΗΓΟΥΜΕΝΕΣ ΤΑΞΕΙΣ α ) Ταυτότητες 1. (a-β)(a+β)=a - b. (a ± b ) = a ± ab + b 3 3 3 3. (a ± b ) = a ± 3a b + 3ab
Διαβάστε περισσότερα4. Να βρείτε τον βαθμό των πολυωνύμων ως προς χ, ως προς ψ και ως προς χ και ψ μαζί
1 ΑΣΚΗΣΕΙΣ 1. Να εκτελέσετε τις προσθέσεις, όπου αυτό είναι δυνατόν α) χ 3 +5ψ 3 β) χ 3 +6χ 3 γ) 4χ 5 ω-7ωχ 5 δ) 3χ 5 +4χ ε) χ 4 +3χ 4 ζ) χ -χ η) χ +χ θ) χ +χ ι) χ+χ 3 κ) χ -χ λ) 3χ 4-4χ 4 μ) 3χ-3χ 3.
Διαβάστε περισσότεραΡητοί αριθμοί είναι αυτοί που έχουν (ή μπορεί να πάρουν) κλασματική μορφή,
ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ.1 ΠΡΑΞΕΙΣ ΚΑΙ ΙΔΙΟΤΗΤΕΣ Οι αριθμοί 0,1,,,4, είναι οι Φυσικοί αριθμοί. Οι Φυσικοί αριθμοί μαζί με τους αντίθετούς τους αποτελούν τους Ακέραιους αριθμούς. Δηλαδή ακέραιοι είναι οι αριθμοί,-,-,-1,0,1,,,
Διαβάστε περισσότεραΟ μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση:
Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση: Να γνωρίζει: την αποδεικτική μέθοδο της μαθηματικής επαγωγής για την οποία πρέπει να γίνει κατανοητό ότι η αλήθεια
Διαβάστε περισσότεραΠολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α
Πολυώνυμα Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglykos.gr 1 / 1 / 0 1 6 Άλγεβρα Κεφάλαιο 4 174 ασκήσεις και τεχνικές σε 1 σελίδες εκδόσεις Καλό πήξιμο ΓΛΥΚΟΣ ΚΩΝ/ΝΟΣ τηλ.
Διαβάστε περισσότερα4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ
1 4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ ΘΕΩΡΙΑ 1. Θεώρηµα Αν α, β ακέραιοι µε β 0, τότε υπάρχουν µοναδικοί ακέραιοι κ και υ, έτσι ώστε α = κβ + υ µε 0 υ < β. 2. Τέλεια διαίρεση Αν το υπόλοιπο υ της Ευκλείδειας
Διαβάστε περισσότερα2.2 ιαίρεση Πολυωνύμων
ιαίρεση Πολυωνύμων Ταυτότητα διαίρεσης Όπως στους ακέραιους αριθμούς, έτσι και στα πολυώνυμα ισχύει η ταυτότητα της διαίρεσης Πιο συγκεκριμένα ισχύει ότι: Για κάθε ζεύγος πολυωνύμων Δ ( ) και δ ( ), με
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
0 ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Βαγγέλης Α Νικολακάκης Μαθηματικός . ΠΡΑΞΕΙΣ ΠΡΑΓΜΑΤΙΚΩΝ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΠΡΟΣΘΕΣΗ ΟΜΟΣΗΜΩΝ- ΕΤΕΡΟΣΗΜΩΝ Σε ομόσημους κάνω πρόσθεση και βάζω το κοινό
Διαβάστε περισσότεραΑΛΓΕΒΡΑ= = = = = = Α =ΛΥΚΕΙΟΥ
ΑΓΕΒΡΑ Α ΥΚΕΙΟΥ ΤΟΙΧΕΙΑ ΘΕΩΡΙΑ - ΑΚΗΕΙ ΘΕΩΡΙΑ. Οι πράξεις και οι ιδιότητες τους Αν α, β, γ, δ πραγματικοί αριθμοί τότε ισχύουν οι ιδιότητες : α = β Û α + γ = β + γ Αν γ ¹ 0, α = β Û αγ = βγ αβ = 0 Û α
Διαβάστε περισσότεραΕρωτήσεις πολλαπλής επιλογής
Ερωτήσεις πολλαπλής επιλογής 1. * Η µέθοδος της µαθηµατικής επαγωγής χρησιµοποιείται για την απόδειξη προτάσεων Ρ (ν), όταν Α. ν R Β. ν Q Γ. ν R*. ν N Ε. κανένα από τα προηγούµενα 2. * Για τους ακεραίους
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ. Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ 1)Ποιοι αριθμοί ονομάζονται άρτιοι και ποιοι περιττοί ; Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι που δεν διαιρούνται
Διαβάστε περισσότεραΚεφάλαιο 1 ο. Αλγεβρικές παραστάσεις.
Μαθηματικά Γ Γυμνασίου Κεφάλαιο 1 ο. Αλγεβρικές παραστάσεις. Μέρος Α Θεωρία. 1. Πως προσθέτουμε δύο πραγματικούς αριθμούς; 2. Πως πολλαπλασιάζουμε δύο πραγματικούς αριθμούς; 3. Ποιες είναι οι ιδιότητες
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΡΧΗ ΤΗΣ ΜΑΘΗΜΑΤΙΚΗΣ ΕΠΑΓΩΓΗΣ
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ - 11 - ΚΕΦΑΛΑΙΟ 4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΡΧΗ ΤΗΣ ΜΑΘΗΜΑΤΙΚΗΣ ΕΠΑΓΩΓΗΣ Έστω Ρ(ν) ένας ισχυρισµός, ο οποίος αναφέρεται στους θετικούς ακέραιους Αν: i) o ισχυρισµός είναι αληθής για τον ακέραιο 1,
Διαβάστε περισσότερα2.2 ιαίρεση Πολυωνύμων
ιαίρεση Πολυωνύμων 1 Να γίνουν οι διαιρέσεις: α) (x 5 - x + x - 9) : (x - 1) β) (x 4-7x + x - 15) : (x + 5) γ) (x - 4αx + α ) : (x - α) δ) [7x - (9α + 7α ) x + 9α ] : (x - α) Με τη βοήθεια του σχήματος
Διαβάστε περισσότερα( ) Άρα το 1 είναι ρίζα του P, οπότε το x 1 είναι παράγοντάς του. Το πηλίκο της διαίρεσης ( x 3x + 5x 3) : ( x 1) είναι:
( x) Άρα το είναι ρίζα του P, οπότε το x είναι παράγοντάς του 4 Το πηλίκο της διαίρεσης ( x 3x + 5x 3) : ( x ) είναι: 3 π ( x) = x + x x + 3 Η ταυτότητα της προηγούμενης διαίρεσης είναι: 4 3 x 3x + 5x
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ
Διαιρετότητα Μαθαίνω Πολλαπλάσια ενός φυσικού αριθμού α είναι όλοι οι αριθμοί που προκύπτουν από τον πολλαπλασιασμό του με όλους τους φυσικούς αριθμούς, δηλαδή οι αριθμοί: 0, α, 2 α, 3 α, 4 α,... Το μηδέν
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : htt://users.uoi.gr/abeligia/numbertheory/nt.html Σάββατο 20 Απριλίου 2013 Ασκηση 1. 1) είξτε ότι η
Διαβάστε περισσότεραΠολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 1 0 / 1 2 /
Πολυώνυμα Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 66 99 77... 00 00... 88 88... 88 88 Kgllykos..gr 1 0 / 1 / 0 1 8 Άλγεβρα Κεφάλαιο 4 174 ασκήσεις και τεχνικές σε 1 σελίδες εκδόσεις Καλό πήξιμο
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου
Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται
Διαβάστε περισσότεραΕ Μέχρι 31 Μαρτίου 2015.
Ε Μέχρι 31 Μαρτίου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι
ΚΕΦΑΛΑΙΟ : Ημιαπλοί Δακτύλιοι Είδαμε στο κύριο θεώρημα του προηγούμενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισμα απλών προτύπων Εδώ θα χαρακτηρίσουμε όλους
Διαβάστε περισσότεραμε μ,ν ακέραιους και ν 0 και δημιουργήθηκε το σύνολο Q ( ρητοί). Το σύνολο Ζ επεκτάθηκε με την προσθήκη αριθμών της τύπου
ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΠΡΑΓΜΑΤΙΚΟΥΣ ΚΑΙ ΣΤΟ ΜΑΘΗΜΑΤΙΚΟ ΛΟΓΙΣΜΟ Η ΑΛΓΕΒΡΑ ασχολείται με τους αριθμούς και τις μεταξύ τους σχέσεις Οι φυσικοί αριθμοί (συμβολίζονται με το γράμμα Ν) Ν={ 1,,3 }επινοήθηκαν από τον
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις Επαναληψης
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις Επαναληψης ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 22 Μαΐου 2013 Ασκηση 1. (1) Να λυθεί η γραµµική
Διαβάστε περισσότερα7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει
8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y
Διαβάστε περισσότεραΑσκήσεις στα Μαθηματικά της Γ Γυμνασίου 4. Παραγοντοποίηση
Ασκήσεις στα Μαθηματικά της Γ Γυμνασίου 4. Παραγοντοποίηση 1 ΠΑΡΑΔΕΙΓΜΑΤΑ a. 15αχ 12χ + 3χ = 3 5αχ 3 4χ+3= 3 (5αχ 4χ+1) Όταν πάλι έχουμε ίδιες μεταβλητές θα βγάζουμε κοινό παράγοντα την κοινή μεταβλητή
Διαβάστε περισσότεραΕρωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα
Διαβάστε περισσότερα2.1 Διαιρετότητα, ισοϋπόλοιποι αριθμοί. q Z, a = b q + r.
Κεφάλαιο 2 Θεωρία Αριθμών Κύριες βιβλιογραφικές αναφορές για αυτό το Κεφάλαιο είναι οι Hardy and Wright 1979 και Graham, Knuth, and Patashnik 1994. 2.1 Διαιρετότητα, ισοϋπόλοιποι αριθμοί Θεώρημα 2.1 Αν
Διαβάστε περισσότεραΑ Δ Ι. Παρασκευή 29 Νοεμβρίου 2013 & K =
Α Δ Ι Α - Φ 5 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 29 Νοεμβρίου 2013 Ασκηση
Διαβάστε περισσότεραA N A B P Y T A ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ. 1 (α + β + γ) [(α-β) 2 +(α-γ) 2 +(β-γ) 2 ] και τις υποθέσεις
ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ ΑΣΚΗΣΗ η Αν α +β +γ = αβγ και α + β + γ, να δείξετε ότι το πολυώνυμο P()=(α β) +(β γ) + γ α είναι το μηδενικό πολυώνυμο. Από την ταυτότητα του Euler α +β +γ -αβγ = (α + β + γ)[(α-β)
Διαβάστε περισσότερα4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ
174 46 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ Εισαγωγή Ένα από τα αρχαιότερα προβλήματα της Θεωρίας Αριθμών είναι η αναζήτηση των ακέραιων αριθμών που ικανοποιούν κάποιες δεδομένες σχέσεις Με σύγχρονη ορολογία
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη Μαΐου 013 Ασκηση 1. Βρείτε τις τάξεις των
Διαβάστε περισσότεραKΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...
KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός
Διαβάστε περισσότερα2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ο ΓΕΛ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β ΛΥΚΕΙΟΥ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ -4 ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Επιμέλεια: ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
Διαβάστε περισσότερα(x) = δ(x) π(x) + υ(x)
Μάθηµα 12 Κεφάλαιο 4ο: Πολυώνυµα Πολυωνυµικές Εξισώσεις Θεµατικές Ενότητες: Α. ιαίρεση Πολυωνύµων Β. Σχήµα Horner Η ταυτότητα της Ευκλείδειας διαίρεσης Αν ( χ), δ ( χ) δύο πολυώνυµα µε δ ( χ) 0 και βαθµούς
Διαβάστε περισσότερα11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;
10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται
Διαβάστε περισσότεραΠολυώνυµα - Πολυωνυµικές εξισώσεις
4 ΚΕΦΑΛΑΙΟ Πολυώνυµα - Πολυωνυµικές εξισώσεις Ορισµός πολυωνύµου Ονοµάζoυµε ΠΟΛΥΩΝΥΜΟ του κάθε παράσταση της µορφής α ν ν +α ν- ν- + +α +α 0, ν ΙΝ και α 0, α,, α ν-, α ν ΙR. Παρατηρήσεις α. Τα α ν ν, α
Διαβάστε περισσότεραΟρισμένες σελίδες του βιβλίου
Ορισμένες σελίδες του βιβλίου 7. Θεωρούμε το σύνολο αναφοράς 0,,. Να οριστούν τα σύνολα: Α. των τριψηφίων αριθμών που σχηματίζουν τα στοιχεία του Ω. Β. των τριψηφίων αριθμών με διαφορετικά ψηφία Γ. των
Διαβάστε περισσότεραΕ Μέχρι 18 Μαΐου 2015.
Ε Μέχρι 18 Μαΐου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες άρα
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ
ΚΕΦΑΛΑΙΟ 1 Ο : ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Η ιδιότητα α+ β = β+ α λέγεται.. 2. Η ιδιότητα α ( β γ) ( ) + + = α+ β + γ λέγεται. 3. Ο αριθμός 0 είναι το..της πρόσθεσης φυσικών αριθμών αφού ισχύει:
Διαβάστε περισσότεραΒασική Άλγεβρα. Ασκήσεις (εκδοχή )
Βασική Άλγεβρα Ασκήσεις 0-4 (εκδοχή 5--04) Βασική Άλγεβρα Ασκήσεις Υποδείξεις/Απαντήσεις Περιεχόµενα σελίδα Ασκήσεις ιαιρετότητα στους ακέραιους, ισοτιµίες Ασκήσεις Ακέραιοι odulo, Θεώρηµα του Euler 7
Διαβάστε περισσότεραΓ Ε Ν Ι Κ Ο Δ Ι Α Γ Ω Ν Ι Σ Μ Α Ο Ι Κ Ο Ν Ο Μ Ι Α Σ - Θ Ε Τ Ι Κ Η Σ Γ Τ Α Ξ Η Β. Ρ.
Γ Ε Ν Ι Κ Ο Δ Ι Α Γ Ω Ν Ι Σ Μ Α Ο Ι Κ Ο Ν Ο Μ Ι Α Σ - Θ Ε Τ Ι Κ Η Σ 6 Γ Τ Α Ξ Η Β. Ρ. Θ Ε Μ Α ο Α. Έστω μια συνάρτηση f ορισμένη στο Δ. Αν η f είναι συνεχής στο Δ και f (χ)= για κάθε εσωτερικό σημείο του
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Προτεινοµενες Ασκησεις - Φυλλαδιο 9
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2015/nt2015.html Παρασκευή 29 Μαίου 2015 Ασκηση 1.
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΜΟΝΕΜΒΑΣΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΛΓΕΒΡΑΣ-λύσεις
ΓΥΜΝΑΣΙΟ ΜΟΝΕΜΒΑΣΙΑΣ 2016-17 Α ΓΥΜΝΑΣΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΛΓΕΒΡΑΣ-λύσεις Άσκηση 1. Να εξετάσετε ποιες από τις παρακάτω ισότητες παριστάνουν Ευκλείδειες διαιρέσεις α) 80 = 9 8 +8 β)
Διαβάστε περισσότεραΠεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη. Τσουκνίδας Ι.
Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη Τσουκνίδας Ι. 2 Περιεχόμενα 1 Εισαγωγή στα πεπερασμένα σώματα 5 1.1 Μάθημα 1..................................... 5 1.1.1
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις Επαναληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις Επαναληψης ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt015/nt015.html Τρίτη Ιουνίου 015 Ασκηση 1. (1) Να λυθεί η γραµµική
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 12+ 7 = 19 Οι αριθμοί 12 και 7 ονομάζονται ενώ το 19 ονομάζεται.. 3+5 =, 5+3 =...
Διαβάστε περισσότεραΜΕΘΟΔΟΙ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗΣ
ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ Ονομάζουμε την διαδικασία με την οποία μετατρέπουμε μια παράσταση σε γινόμενο παραγόντων Προσοχή: Οι όροι μιας παράστασης χωρίζονται μεταξύ τους με συν (+) ή πλην (-) ενώ οι παράγοντες
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Επανάληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις - Επανάληψης ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt015b/nt015b.html Πέµπτη 1 Ιανουαρίου 016 Ασκηση 1. (1) Να λυθεί
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14
Διαβάστε περισσότερα1. * Ο αριθμός, ν Ν, είναι ανάγωγο κλάσμα για κάθε ν Ν. Σ Λ 2. * Οι αριθμοί 2ν και 2ν + 2 είναι διαδοχικοί άρτιοι για κάθε ν Ν.
Κεφάλαιο 4ο: ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ερωτήσεις του τύπου «Σωστό-Λάθος» ν 1. * Ο αριθμός, ν Ν, είναι ανάγωγο κλάσμα για κάθε ν Ν. 3 Σ Λ. * Οι αριθμοί ν και ν + είναι διαδοχικοί άρτιοι για κάθε ν Ν. 3. * Αν ένας
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 12 Ιανουαρίου 2017 Ασκηση 1. Εστω
Διαβάστε περισσότεραΘεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή )
Θεωρία Galos Πρόχειρες σημειώσεις 0- (εκδοχή -7-0) Περιεχόμενα 0 Υπενθυμίσεις και συμπληρώματα Ανάγωγα πολυώνυμα Ανάγωγα πολυώνυμα και σώματα Χαρακτηριστική σώματος Απλές ρίζες πολυωνύμων Ασκήσεις 0 Επεκτάσεις
Διαβάστε περισσότεραΑναδρομικές ακολουθίες και Θεωρία Αριθμών
Αναδρομικές ακολουθίες και Θεωρία Αριθμών Εμμανουήλ Καπνόπουλος Επιβλέπων καθηγητής Ιωάννης Αντωνιάδης Μεταπτυχιακή Εργασία Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης Ηράκλειο Οκτώβριος
Διαβάστε περισσότερα4.4 ΜΕΓΙΣΤΟΣ ΚΟΙΝΟΣ ΔΙΑΙΡΕΤΗΣ - ΕΛΑΧΙΣΤΟ ΚΟΙΝΟ ΠΟΛΛΑΠΛΑΣΙΟ
158 44 ΜΕΓΙΣΤΟΣ ΚΟΙΝΟΣ ΔΙΑΙΡΕΤΗΣ - ΕΛΑΧΙΣΤΟ ΚΟΙΝΟ ΠΟΛΛΑΠΛΑΣΙΟ Μέγιστος Κοινός Διαιρέτης Έστω α, β δύο ακέραιοι Ένας ακέραιος δ λέγεται κοινός διαιρέτης των α και β, όταν είναι διαιρέτης και του α και του
Διαβάστε περισσότεραΑ Γυμνασίου, Μέρο Α, Άλγεβρα, Κεφάλαιο 7, Θετικοί και Αρνητικοί Αριθμοί, Α.7.8. Δυνάμει ρητών αριθμών με εκθέτη φυσικό, Α.7.9. Δυνάμει ρητών αριθμών
Α Γυμνασίου, Μέρο Α, Άλγεβρα, Κεφάλαιο, Θετικοί και Αρνητικοί Αριθμοί, Α..8. Δυνάμει ρητών αριθμών με εκθέτη φυσικό, Α..9. Δυνάμει ρητών αριθμών με εκθέτη ακέραιο Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uo.gr/abelga/numbertheory/nt2014/nt2014.html https://stes.google.com/ste/maths4edu/home/14
Διαβάστε περισσότεραΟι φυσικοί αριθμοί. Παράδειγμα
Οι φυσικοί αριθμοί Φυσικοί Αριθμοί Είναι οι αριθμοί με τους οποίους δηλώνουμε πλήθος ή σειρά. Για παράδειγμα, φυσικοί αριθμοί είναι οι: 0, 1,, 3,..., 99, 100,...,999, 1000, 0... Χωρίζουμε τους Φυσικούς
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΛΓΕΒΡΑΣ της Α ΛΥΚΕΙΟΥ
ΘΕΩΡΙΑ ΑΛΓΕΒΡΑΣ της Α ΛΥΚΕΙΟΥ ΚΕΦ. 1 ο (ΠΙΘΑΝΟΤΗΤΕΣ) Ο ρ ι σ µ ο ί Πείραµα τύχης (π.τ.) είναι το πείραµα για το οποίο δεν µπορούµε εκ των προτέρων να προβλέψουµε το αποτέλεσµά του αν και επαναλαµβάνεται
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι
Διαβάστε περισσότεραG 1 = G/H. I 3 = {f R : f(1) = 2f(2) ή f(1) = 3f(2)}. I 5 = {f R : f(1) = 0}.
Αλγεβρα ΙΙ, Εαρινο Εξαμηνο 2017 18 Ασκησεις που συζητηθηκαν στο φροντιστηριο Φροντιστήριο 1. 1. Δίνεται η ομάδα G = Z 4 Z 8, το στοιχείο a = (1, 2) της G, και η υποομάδα H =< a > της G. Εστω G 1 = G/H.
Διαβάστε περισσότερα> ln 1 + ln ln n = ln(1 2 3 n) = ln(n!).
η Διάλεξη: Άρρητοι αριθμοί Το σύνολο Q των ρητών αριθμών είναι το Q = { m n : m Z, n N}. αριθμός που δεν είναι ρητός λέγεται άρρητος. Ενας πραγματικός Ασκηση: Αποδείξτε ότι το άθροισμα και το γινόμενο
Διαβάστε περισσότεραΒασική Άλγεβρα. Ασκήσεις (εκδοχή )
Βασική Άλγεβρα Ασκήσεις 05-6 (εκδοχή 8--05) Βασική Άλγεβρα Ασκήσεις Υποδείξεις/Απαντήσεις Περιεχόμενα σελίδα Ασκήσεις Διαιρετότητα στους ακέραιους, ισοτιμίες Ασκήσεις Ακέραιοι odulo, Θεώρημα του Euler
Διαβάστε περισσότεραΠΟΛΥΩΝΥΜΑ. Λυμένα Παραδείγματα
ΠΟΛΥΩΝΥΜΑ Λυμένα Παραδείγματα. Να βρεθούν οι τιμές του λ R για τις οποίες το πολυώνυμο Ρ () = (4λ -9) +(λ -λ-) +λ- είναι το μηδενικό. Το Ρ () θα είναι το μηδενικό πολυώνυμο, για εκείνες τις τιμές του λ
Διαβάστε περισσότεραβ) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1
Κεφάλαιο 2: Στοιχεία Λογικής - Μέθοδοι Απόδειξης 1. Να αποδειχθεί ότι οι λογικοί τύποι: (p ( (( p) q))) (p q) και p είναι λογικά ισοδύναμοι. Θέλουμε να αποδείξουμε ότι: (p ( (( p) q))) (p q) p, ή με άλλα
Διαβάστε περισσότεραΜαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.
Διαβάστε περισσότεραa = a a Z n. a = a mod n.
Αλγεβρα Ι Χειμερινο Εξαμηνο 2017 18 Διάλεξη 1 Ενότητα 1. Πράξεις: Πράξεις στο σύνολο S, ο πίνακας της πράξης, αντιμεταθετικές πράξεις. Προσεταιριστικές πράξεις, το στοιχείο a 1 a 2 a n. Η πράξη «σύνθεση
Διαβάστε περισσότεραΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Β' ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΛΥΚΕΙΟΥ. «Ευκλείδης» Ημερομηνία: 4/03/2017 Ώρα εξέτασης: 10:00-14:30
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Β' ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΛΥΚΕΙΟΥ «Ευκλείδης» Ημερομηνία: 4/03/2017 Ώρα εξέτασης: 10:00-14:30 ΟΔΗΓΙΕΣ: 1. Να λύσετε όλα τα θέματα αιτιολογώντας πλήρως τις απαντήσεις σας. 2.
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt016/nt016.html Πέµπτη 7 Οκτωβρίου 016 Ασκηση 1. Βρείτε όλους
Διαβάστε περισσότεραΔακτύλιοι και Πρότυπα Ασκήσεις 2. όπου a (4 i) (1 2 i), b i. Στη συνέχεια βρείτε κάθε τέτοιο d. b. Δείξτε ότι [ i] (4 i)
6 Δακτύλιοι και Πρότυπα 016-17 Ασκήσεις Η ύλη των ασκήσεων αυτών είναι η Ενότητα, Περιοχές κυρίων ιδεωδών. 1. Θεωρούμε το δακτύλιο [ i]. a. Βρείτε ένα d [ i] με ( a, b) d, όπου a (4 i) (1 i), b 16 1 i.
Διαβάστε περισσότερα12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο
ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες
Διαβάστε περισσότεραΜ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ
Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ 1 ΜΕΡΟΣ Α ΚEΦΑΛΑΙΟ 1 Ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. ΕΡΩΤΗΣΗ Τι ονομάζουμε
Διαβάστε περισσότεραΑσκήσεις4 48. P AP τριγωνικό. Αφού δείξτε ότι ο A δεν είναι διαγωνίσιμος, βρείτε αντιστρέψιμο A 1 3 1
Ασκήσεις4 48 Ασκήσεις4 Τριγωνισιμότητα Βασικά σημεία Ορισμός τριγωνίσιμου πίνακα, ορισμός τριγωνίσιμης γραμμικής απεικόνισης Θεώρημα: είναι τριγωνίσιμος αν και μόνο αν ( x ) γινόμενο πρωτοβάθμιων παραγόντων
Διαβάστε περισσότερα2.2 ιαίρεση Πολυωνύμων
. ιαίρεση Πολυωνύμων 1. Να σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους παρακάτω ισχυρισμούς: 1. Η διαίρεση δύο πολυωνύμων στηρίζεται στο παρακάτω θεώρημα: «Για κάθε ζεύγος Δ ( x) και δ ( x) με δ ( x)
Διαβάστε περισσότεραΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος
Κεφάλαιο 2ο: ΠΟΛΥΩΝΥΜΑ Ερωτήσεις του τύπου Σωστό-Λάθος 1. * Οι πραγματικοί αριθμοί είναι σταθερά πολυώνυμα. Σ Λ 2. * Το σταθερό πολυώνυμο 0 λέγεται μηδενικό πολυώνυμο. Σ Λ 3. * Κάθε σταθερό και μη μηδενικό
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α' ΛΥΚΕΙΟΥ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ ΠΟΛΥΩΝΥΜΩΝ Παραγοντοποίηση μιας αλγεβρικής παράστασης είναι η μετατροπή αυτής σε γινόμενο παραγόντων
ΑΛΓΕΒΡΑ Α' ΛΥΚΕΙΟΥ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ ΠΟΛΥΩΝΥΜΩΝ Παραγοντοποίηση μιας αλγεβρικής παράστασης είναι η μετατροπή αυτής σε γινόμενο παραγόντων Μέθοδοι παραγοντοποίησης [ 1] Εξαγωγή κοινού παράγοντα Στηρίζεται
Διαβάστε περισσότεραΑσκήσεις1 Πολυώνυμα. x x c. με το. b. Να βρεθούν όλες οι τιμές των a, Να βρεθεί ο μκδ και το εκπ τους
Aσκήσεις1 1 Βασικά σημεία Ευκλείδεια διαίρεση πολυωνύμων Ορισμός και ιδιότητες μκδ και εκπ Ιδιότητες σχετικών πρώτων πολυωνύμων Τα ανάγωγα πολυώνυμα στο [ ] και [ ] Ασκήσεις1 Πολυώνυμα Ανάλυση πολυωνύμου
Διαβάστε περισσότεραΜαθηματικά. Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος
Κεφάλαιο ο: ΠΟΛΥΩΝΥΜΑ Ερωτήσεις του τύπου Σωστό-Λάθος 1. * Οι πραγματικοί αριθμοί είναι σταθερά πολυώνυμα. Σ Λ. * Το σταθερό πολυώνυμο 0 λέγεται μηδενικό πολυώνυμο. Σ Λ 3. * Κάθε σταθερό και μη μηδενικό
Διαβάστε περισσότεραΦ1: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ
Φ: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ 0-0 ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α - ΘΕΩΡΙΑ - ΣΩΣΤΟ-ΛΑΘΟΣ - ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ - ΑΝΤΙΣΤΟΙΧΗΣΗΣ - ΠΑΡΑΤΗΡΗΣΕΙΣ-ΜΕΘΟΔΟΛΟΓΙΑ ΘΕΜΑ Β - ΑΣΚΗΣΕΙΣ
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ - Πράξεις ρητών
1 ΑΣΚΗΣΕΙΣ - Πράξεις ρητών 1. Να υπολογιστούν τα παρακάτω αθροίσματα: i. 5 7 ii. 8 6 iii. 6 4 iv. 9 5 v. 15 15 vi. 17 0 vii. 0 15 viii. 13 14 ix. 12 16 2. Να υπολογιστούν τα παρακάτω αθροίσματα: i. 6,35
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 7
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 7 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uo.gr/abelga/numbertheory/nt2016/nt2016.html Πέµπτη 7 εκεµβρίου 2016 Ασκηση 1. Για κάθε
Διαβάστε περισσότερα