ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ.
|
|
- Ανδρόνικα Γαλάνης
- 10 χρόνια πριν
- Προβολές:
Transcript
1 ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. Ν. Ε. Ηλιού Επίκουρος Καθηγητής Τµήµατος Πολιτικών Μηχανικών Πανεπιστηµίου Θεσσαλίας Γ.. Καλιαµπέτσος Επιστηµονικός Συνεργάτης Τµήµατος Πολιτικών Μηχανικών Πανεπιστηµίου Θεσσαλίας Σχεδιασµός, Χάραξη, Καµπύλη Συναρµογής, Κλωθοειδής ΠΕΡΙΛΗΨΗ: Η κλωθοειδής είναι η καµπύλη που χρησιµοποιείται κατά τη µετάβαση από ευθυγραµµία σε κυκλικό τόξο και αντίστροφα αλλά και για τη συναρµογή δύο οµόρροπων κυκλικών τόξων διαφορετικών ακτίνων. Στη βιβλιογραφία δίνονται οι σχέσεις για τον υπολογισµό των συντεταγµένων Χ και Υ ενός σηµείου της κλωθοειδούς µε τη µορφή σειρών Taior. Σ αυτή την εργασία παρουσιάζεται ο υπολογισµός όσωνδήποτε όρων αυτών των σειρών µε αναδροµικές σχέσεις, που είναι κατάλληλες για χρήση από ένα πρόγραµµα ή ένα λογιστικό φύλλο ή ακόµη για πρόχειρους υπολογισµούς µε αριθµοµηχανή. Επίσης δίνονται πίνακες για διαφορετικούς λόγους /, ώστε ο µελετητής να γνωρίζει τα περιθώρια σφάλµατος των γρήγορων-πρόχειρων υπολογισµών στις διάφορες περιοχές χρησιµοποίησης της κλωθοειδούς, ιδιαίτερα δε στις περιπτώσεις που µελετώνται έργα µε σηµαντική διαφοροποίηση από τα θεωρούµενα ως τυπικά. ΕΙΣΑΓΩΓΗ Η κλωθοειδής είναι το τόξο συναρµογής που χρησιµοποιείται κυρίως στα έργα οδοποιίας τόσο στην Ελλάδα όσο και διεθνώς. Με τη χρήση της επιτυγχάνεται η µετάβαση από µία καµπυλότητα σε µία άλλη και πιο συγκεκριµένα η συνεχής γραµµική µεταβολή της φυγόκεντρης επιτάχυνσης. Κλωθοειδής χρησιµοποιείται κατά τη µετάβαση από ευθυγραµµία σε κυκλικό τόξο και αντίστροφα αλλά και για τη συναρµογή δύο οµόρροπων κυκλικών τόξων διαφορετικών ακτίνων. Στην Ελληνική και διεθνή βιβλιογραφία (Kasper 954, Γιώτης 99, amm 999) δίνονται οι σχέσεις για τον υπολογισµό των συντεταγµένων Χ και Υ ενός σηµείου της κλωθοειδούς µε τη µορφή σειρών Taior, των οποίων συνήθως αναφέρονται οι 3-4 πρώτοι όροι. Στις πρόσφατες Οδηγίες Μελετών Οδικών Έργων δίνονται οι αριθµητικές τιµές των συντελεστών των λόγων + / για τους 5 πρώτους όρους των σειρών. Θεωρούµε ότι είναι ιδιαίτερα χρήσιµο για τον Έλληνα µηχανικό να γνωρίζει την µεθοδολογία που προκύπτουν αυτές οι σχέσεις καθώς και έναν απλό τρόπο να υπολογίζει αυτούς τους όρους. Σ αυτή την εργασία παρουσιάζεται ο υπολογισµός όσωνδήποτε όρων αυτών των σειρών µε αναδροµικές σχέσεις. Αυτές οι σχέσεις είναι κατάλληλες να εισαχθούν σε ένα πρόγραµµα ή σε ένα λογιστικό φύλλο ή ακόµη να χρησιµοποιηθούν για πρόχειρους υπολογισµούς µε αριθµοµηχανή. Τέλος δίνονται πίνακες που παρουσιάζουν την συµβολή των διάφορων όρων για διαφορετικούς λόγους /, ώστε ο µελετητής να γνωρίζει τα περιθώρια σφάλµατος των υπολογισµών στις διάφορες περιοχές χρησιµοποίησης της κλωθοειδούς και να µπορεί να εκτιµήσει πότε ένας o Πανελλήνιο Συνέδριο Οδοποιίας, Βόλος, 8- Μαΐου 5
2 γρήγορος-πρόχειρος υπολογισµός είναι και ακριβής, ιδιαίτερα στις περιπτώσεις σχεδιασµού έργων µε σηµαντική διαφοροποίηση από τα θεωρούµενα ως τυπικά. ΜΑΘΗΜΑΤΙΚΗ ΕΙΣΑΓΩΓΗ ΤΗΣ ΚΛΩΘΟΕΙ ΟΥΣ Για λόγους πληρότητας της παρουσίασης θα προηγηθεί της επίλυσης της κλωθοειδούς η µαθηµατική εισαγωγή της (Γιώτης 99) και η σύνδεσή της µε την κίνηση του οχήµατος. Αν υποθέσουµε ότι ένα όχηµα εισέρχεται σε µία στροφή διατηρώντας την ταχύτητά του υ σταθερή τότε αυτή θα δίνεται από τη σχέση: d υ = = C () dt όπου η σταθερά C έχει διαστάσεις (m/s). Αν στο τόξο συναρµογής (Σχ. ) ο οδηγός στρέφει το τιµόνι µε σταθερή γωνιακή ταχύτητα, τότε η γωνιακή επιτάχυνση του οχήµατος θα είναι σταθερή ή η γωνιακή ταχύτητά του θα µεταβάλλεται γραµµικά µε το χρόνο και θα δίνεται από τη σχέση: όπου η σταθερά dτ ω = = Ct () dt θα έχει διαστάσεις (/s²). C Σχήµα : Τόξο Συναρµογής (Κλωθοειδής) o Πανελλήνιο Συνέδριο Οδοποιίας, Βόλος, 8- Μαΐου 5
3 Χρησιµοποιώντας τη σχέση t = / υ η () γίνεται: dτ dt υ = C τ Αντικαθιστώντας βάσει των σχέσεων (4) d = C dt (3) υ υ = C, d dt = (4) C όπως αυτές προκύπτουν από την (), η σχέση (3) γίνεται: d d C dτ = τ = (5) d C C C C ή οποία µε την αντικατάσταση της (6) C C καταλήγει στην: = (6) d τ = (7) d Αλλά από το Σχήµα προκύπτει η σχέση: d = Rdτ (8) ή οποία χρησιµοποιώντας και την (7) γράφεται: d τ = = (9) d R και προκύπτει τελικά η σχέση: R = () που είναι η εξίσωση της κλωθοειδούς. Το µέγεθος Α ονοµάζεται παράµετρος της κλωθοειδούς και οι διαστάσεις του είναι σε µέτρα όπως προκύπτει από τη σχέση () αλλά και από τον αρχικό ορισµό του µε την σχέση (6). Η εξίσωση της κλωθοειδούς δείχνει ότι σε οποιοδήποτε σηµείο της, το γινόµενο της απόστασής της από την αρχή () επί την ακτίνα καµπυλότητας σε εκείνη τη θέση (R) είναι σταθερό και ίσο µε το τετράγωνο της παραµέτρου () που την χαρακτηρίζει. Για να εξεταστεί η κλωθοειδής από την σκοπιά της καµπυλότητας, η σχέση (9) διατυπώνεται µε την παρακάτω µορφή: o Πανελλήνιο Συνέδριο Οδοποιίας, Βόλος, 8- Μαΐου 5 3
4 u ( ) = R ( ) = () Από τη σχέση () προκύπτει ότι µέσα στο τόξο συναρµογής η καµπυλότητα µεταβάλλεται γραµµικά µε το µήκος. Αυτό είναι και το βασικό χαρακτηριστικό της κλωθοειδούς που την κάνει κατάλληλη να παρεµβληθεί ώστε να συναρµόσει την µηδενική καµπυλότητα της ευθυγραµµίας µε την σταθερή καµπυλότητα /R του κυκλικού τόξου. 3 ΕΠΙΛΥΣΗ ΤΗΣ ΚΛΩΘΟΕΙ ΟΥΣ Η διαδικασία επίλυσης της κλωθοειδούς, η οποία περιγράφεται στη βιβλιογραφία (Kasper 954, Γιώτης 99, amm 999), αναλύεται διεξοδικά παρακάτω και στη συνέχεια δίνονται αναδροµικές σχέσεις για τον απλοποίηση των τελικών υπολογισµών. Από τις σχέσεις (8) και () προκύπτει η παρακάτω: d = d τ d = dτ () της οποίας ολοκληρώνοντας και τα δύο µέλη έχουµε: d = dτ + C ' = dτ + C ' = τ + C' (3) και επειδή για τ= είναι και =, θα ισχύει C = δηλαδή για τη γωνία τ (σε rad) θα ισχύει: τ = (4) Από το Σχήµα προκύπτουν οι σχέσεις: dx = dcosτ, dy = dsiτ (5) οι οποίες µε βάση τη (4) γίνονται: dx = dcos, dy = dsi (6) Ολοκληρώνοντας τις παραπάνω θα έχουµε: x = cos d, y = si d (7) Οι συναρτήσεις cos και si αναπτύσσονται σε σειρές Taior όπως παρακάτω: 4 6 a a a cos a = - + +,! 4! 6! a a a si a= a- + + (8) 3! 5! 7! o Πανελλήνιο Συνέδριο Οδοποιίας, Βόλος, 8- Μαΐου 5 4
5 Από τις σχέσεις (8), που σε συµβολική µορφή γράφονται: ( ) ( )!, ( ) si a = ( ) + cos a = προκύπτουν οι παρακάτω: a + a (9)! 4 4 = = 4 ( ) ( ) ( ) ( ) ( ) = = cos!! () si = = +! ( ) ( ) ( ) ( + ) ( ) + + = = +! () 4 Αντικαθιστώντας τις σχέσεις (), () στις (7) έχουµε: x = =! 4 ( ) ( ) 4 d () y = = +! 4+ ( ) ( ) και ολοκληρώνοντας θα έχουµε: + 4+ d (3) x = = y = = 4+ 4! ( ) ( + )( ) ( ) ( + )( + ) ! + 4+ (4) (5) οι οποίες µας δίνουν τις συντεταγµένες οποιουδήποτε σηµείου της κλωθοειδούς. Για τον απλούστερο υπολογισµό οσωνδήποτε όρων των παραπάνω σειρών θα χρησιµοποιήσουµε συντελεστές που µπορούν να προκύψουν από αναδροµικές σχέσεις. Οι σειρές των σχέσεων (4), (5) γράφονται διαφορετικά: = ( ) x = 4+ 4 a a = 4+!, a = (6), ( )( ) = ( ) y = b +, b ( )( ) = !, b = 6 (7) όπου οι συντελεστές a, b για =.. προκύπτουν και από αναδροµικές σχέσεις όπως παρακάτω: a = ( 4+ ) p, p 8( ) p =, p = (8) o Πανελλήνιο Συνέδριο Οδοποιίας, Βόλος, 8- Μαΐου 5 5
6 b ( 4 3) = + q = 8 + q, q = (9), q ( ) Στον Πίνακα φαίνονται αναλυτικά οι υπολογισµοί των πρώτων 6 συντελεστών p και a µε βάση τις σχέσεις (8). Εύκολα θα µπορούσε ο υπολογισµός να επεκταθεί σε περισσότερους συντελεστές αλλά αυτό δεν θα είχε πρακτικό αποτέλεσµα. Πίνακας. Αναλυτικοί υπολογισµοί συντελεστών α p α , ,8 599, ,3,9 75,47, ,75,89, 78,33,75, Στον Πίνακα φαίνονται αναλυτικά οι υπολογισµοί των πρώτων 6 συντελεστών q και b µε βάση τις σχέσεις (9). Ο τελευταίος όρος οδηγεί σε υπερβολικά µεγάλο παρανοµαστή, απλώς υπάρχει για λόγους οµοιοµορφίας και σύγκρισης µε τον προηγούµενο πίνακα. Πίνακας. Αναλυτικοί υπολογισµοί συντελεστών b q b ,84 4, , 9,676, ,794,56 3,53,96, ,749,66,4,88,4,947, Χρησιµοποιώντας τα αποτελέσµατα των πινάκων µπορούµε να γράψουµε τους πρώτους όρους των σχέσεων (6), (7) όπως παρακάτω: x = + + (3) y = + + (3) Στις συνηθισµένες περιπτώσεις, όπου επιλέγεται παράµετρος κλωθοειδούς Α µεγαλύτερη από R/3 και αρκετά µικρότερη από R και το µήκος κλωθοειδούς δεν υπερβαίνει το, αρκούν για ικανοποιητική ακρίβεια οι δύο πρώτοι όροι της σειράς (3) και µόνο ο πρώτος της σειράς (3), οι οποίοι οδηγούν και σε πολύ απλούς υπολογισµούς. Υπάρχουν όµως περιπτώσεις που για τον ακριβή υπολογισµό των συντεταγµένων των σηµείων της κλωθοειδούς επιβάλλεται να χρησιµοποιηθούν περισσότεροι όροι. o Πανελλήνιο Συνέδριο Οδοποιίας, Βόλος, 8- Μαΐου 5 6
7 Σχήµα. Παράδειγµα µη τυπικής χάραξης 4 ΙΕΡΕΥΝΗΣΗ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ Όταν η κλωθοειδής χρησιµοποιείται µε τη µορφή της ωοειδούς, σαν καµπύλη συναρµογής µεταξύ δύο οµόρροπων κυκλικών τόξων, υπάρχουν περιπτώσεις που η παράµετρος της ωοειδούς Α είναι µεγαλύτερη από την ακτίνα του ενός κυκλικού τόξου άρα το συνολικό µήκος κλωθοειδούς είναι µεγαλύτερο από την παράµετρο. Θα διερευνηθεί µια τέτοια περίπτωση µέσα από ένα παράδειγµα χάραξης µε τη χρήση ωοειδούς. Στο Σχήµα φαίνονται δύο διαδοχικά κυκλικά τόξα ακτίνων R=m και R=3m µεταξύ των οποίων µεσολαβεί µία ωοειδής καµπύλη µε παράµετρο Α=97.78m. Η τιµή αυτή αντιστοιχεί στη µοναδική λύση τόξου συναρµογής µεταξύ των δύο κυκλικών τόξων αν θεωρήσουµε δεδοµένη την πολυγωνική της χάραξης. Πριν το πρώτο κυκλικό τόξο έχουµε κλωθοειδή εισόδου µε παράµετρο Α=m και µετά το δεύτερο κυκλικό τόξο κλωθοειδή εξόδου µε παράµετρο Α=65m. Οι τιµές της παραµέτρου που επιλέχθηκαν για τις εκατέρωθεν κλωθοειδείς είναι τέτοιες ώστε να προκύπτουν µικρά σχετικά µήκη κλωθοειδούς και στους σχετικούς πίνακες να είναι εµφανής η διαφορά, ανάµεσα σε τυπικές και µη τυπικές εφαρµογές, όσον αφορά στην ακρίβεια των υπολογισµών µε τη χρήση των δύο πρώτων όρων. Έχουν επιλεγεί µερικά χαρακτηριστικά σηµεία πάνω στον άξονα, αυτά που σηµειώνονται µε τους αριθµούς -4, για τα οποία θα υπολογιστούν τα x, y της κλωθοειδούς. Στον Πίνακα 3 φαίνονται αναλυτικά οι τιµές των όρων, των οποίων το αλγεβρικό άθροισµα είναι η τιµή της τετµηµένης x. Σε κάθε στήλη φαίνονται οι όροι που αντιστοιχούν στο κάθε χαρακτηριστικό σηµείο του άξονα. o Πανελλήνιο Συνέδριο Οδοποιίας, Βόλος, 8- Μαΐου 5 7
8 Πίνακας 3. Υπολογισµός επιµέρους όρων τετµηµένης x Όρος() Σηµείο Σηµείο Σηµείο 3 Σηµείο Βλέπουµε ότι για τα σηµεία και 4, εκατέρωθεν κλωθοειδείς µε µικρά σχετικά µήκη, αρκούν οι δύο πρώτοι όροι για τον υπολογισµό της προβολής τους x πάνω στην πολυγωνική. Για το σηµείο είναι υπολογίσιµος και ο τρίτος όρος ενώ για το σηµείο 3 αυτός είναι πολύ σηµαντικός και είναι υπολογίσιµος και ο τέταρτος. Στον Πίνακα 4 φαίνονται αναλυτικά οι τιµές των όρων των οποίων το αλγεβρικό άθροισµα είναι η τιµή της τεταγµένης y. Σε κάθε στήλη φαίνονται οι όροι που αντιστοιχούν στο κάθε χαρακτηριστικό σηµείο, από τα -4, του άξονα. Πίνακας 4. Υπολογισµός επιµέρους όρων τεταγµένης y Όρος() Σηµείο Σηµείο Σηµείο 3 Σηµείο Βλέπουµε ότι για τα σηµεία και 4, εκατέρωθεν κλωθοειδείς µε µικρά σχετικά µήκη, αρκεί ίσως και ο πρώτος µόνο όρος για τον υπολογισµό της απόστασής τους y από την πολυγωνική. Για το σηµείο αρκούν οι δύο πρώτοι όροι και είναι οριακά αµελητέος ο τρίτος όρος ενώ για το σηµείο 3 αυτός είναι πολύ σηµαντικός και είναι σχετικά υπολογίσιµος και ο τέταρτος. 5 ΣΥΜΠΕΡΑΣΜΑΤΑ Η κλωθοειδής είναι το τόξο συναρµογής στο οποίο η καµπυλότητα µεταβάλλεται γραµµικά µε το µήκος. Αυτό το βασικό χαρακτηριστικό της την κάνει κατάλληλη για τη συναρµογή της µηδενικής καµπυλότητας της ευθυγραµµίας µε τη σταθερή καµπυλότητα του κυκλικού τόξου ή ακόµη για τη συναρµογή δύο οµόρροπων κυκλικών τόξων διαφορετικών ακτίνων. Η επίλυση της εξίσωσης της κλωθοειδούς οδηγεί σε δύο σειρές που δίνουν τις τιµές της τετµηµένης και της τεταγµένης συναρτήσει του µήκους. Οι σχετικοί πίνακες και οι αναδροµικές σχέσεις βοηθούν στον εύκολο υπολογισµό οσωνδήποτε όρων αυτών των σειρών. Στις συνηθισµένες περιπτώσεις, όπου επιλέγεται παράµετρος κλωθοειδούς αρκετά µικρότερη από την ακτίνα του κυκλικού τόξου, αρκούν για ικανοποιητική ακρίβεια µόνο οι δύο πρώτοι όροι της σειράς για την τετµηµένη και µόνο ο πρώτος της αντίστοιχης σειράς για την τεταγµένη. o Πανελλήνιο Συνέδριο Οδοποιίας, Βόλος, 8- Μαΐου 5 8
9 Υπάρχουν περιπτώσεις που για τον ακριβή υπολογισµό των συντεταγµένων των σηµείων της κλωθοειδούς επιβάλλεται να χρησιµοποιηθούν περισσότεροι όροι. Όταν τµήµα της κλωθοειδούς χρησιµοποιείται σαν καµπύλη συναρµογής µεταξύ δύο οµόρροπων κυκλικών τόξων, µε τη µορφή της ωοειδούς, υπάρχουν περιπτώσεις που η παράµετρος της ωοειδούς πλησιάζει ή είναι και µεγαλύτερη από την ακτίνα του ενός κυκλικού τόξου. Τότε απαιτείται η χρήση περισσοτέρων όρων για τον ακριβή υπολογισµό των συντεταγµένων, όπως υποδεικνύουν και οι σχετικοί πίνακες. 6 ΑΝΑΦΟΡΕΣ Kasper, H., Schuerba, W., ad orez, H. (954). The Cothoid as a Eemet of Horizota igmet, F. Dummers, Pubishig House, Bo, Germay amm, R., Psariaos, B., ad Maiaeder, T. (999). Highway Desig ad Traffic Safety Egieerig Hadboo. McGraw-Hi, New Yor. Γιώτης, Α., Κανελλαϊδης, Γ., Μαλέρδος, Γ. (99). Γεωµετρικός Σχεδιασµός των Οδών. Αθήνα: Συµεών. o Πανελλήνιο Συνέδριο Οδοποιίας, Βόλος, 8- Μαΐου 5 9
ΑΞΙΟΛΟΓΗΣΗ ΚΑΜΠΥΛΩΝ ΣΥΝΑΡΜΟΓΗΣ ΓΙΑ ΧΡΗΣΗ ΣΤΗΝ Ο ΟΠΟΙΙΑ ΚΑΙ ΣΤΗ ΣΙ ΗΡΟ ΡΟΜΙΚΗ
ΑΞΙΟΛΟΓΗΣΗ ΚΑΜΠΥΛΩΝ ΣΥΝΑΡΜΟΓΗΣ ΓΙΑ ΧΡΗΣΗ ΣΤΗΝ Ο ΟΠΟΙΙΑ ΚΑΙ ΣΤΗ ΣΙ ΗΡΟ ΡΟΜΙΚΗ Ν. Ε. Ηλιού Επίκουρος Καθηγητής Τµήµατος Πολιτικών Μηχανικών Πανεπιστηµίου Θεσσαλίας Γ.. Καλιαµπέτσος Επιστηµονικός Συνεργάτης
ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΤΗΣ ΑΠΟΡΡΟΗΣ ΤΩΝ ΟΜΒΡΙΩΝ ΣΕ ΚΡΙΣΙΜΕΣ ΓΙΑ ΤΗΝ ΑΣΦΑΛΕΙΑ ΠΕΡΙΟΧΕΣ ΤΩΝ ΟΔΙΚΩΝ ΧΑΡΑΞΕΩΝ
ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΤΗΣ ΑΠΟΡΡΟΗΣ ΤΩΝ ΟΜΒΡΙΩΝ ΣΕ ΚΡΙΣΙΜΕΣ ΓΙΑ ΤΗΝ ΑΣΦΑΛΕΙΑ ΠΕΡΙΟΧΕΣ ΤΩΝ ΟΔΙΚΩΝ ΧΑΡΑΞΕΩΝ Ν. Ε. Ηλιού Αναπληρωτής Καθηγητής Τμήματος Πολιτικών Μηχανικών Πανεπιστημίου Θεσσαλίας Γ. Δ.
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΓΕΝΙΚΕΣ ΑΡΧΕΣ ΧΑΡΑΞΕΩΝ 3
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΓΕΝΙΚΕΣ ΑΡΧΕΣ ΧΑΡΑΞΕΩΝ 3 Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Αναπληρωτής Καθηγητής Πανεπιστημίου Δυτικής Αττικής 3ο εξάμηνο http://eclass.uniwa.gr Αποτυπώσεις
ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ
ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ Άξονας Έστω η ευθεία x x (σχ. 21) και τα σηµεία Ο, Ι πάνω σ αυτή, ώστε ΟΙ= i όπου i το µοναδιαίο διάνυσµα, δηλαδή ένα διάνυσµα που θεωρούµε ότι η φορά του είναι θετική και το µέτρο
4.5.6 ΡΗΤΑ ΠΟΛΥΩΝΥΜΙΚΑ ΤΜΗΜΑΤΑ 4.5.6.1 Η ΑΠΕΙΚΟΝΙΣΗ ΣΗΜΕΙΟΥ ΜΕ ΒΑΡΟΣ 4.5.6.2 ΤΟ ΚΥΚΛΙΚΟ ΤΜΗΜΑ
4.5.6 ΡΗΤΑ ΠΟΛΥΩΝΥΜΙΚΑ ΤΜΗΜΑΤΑ Ευθείες γραµµές και παραβολικά τµήµατα µπορούν να µοντελοποιηθούν µε τη χρήση κυβικών πολυωνυµικών τµηµάτων. Τα κυκλικά ελλειπτικά ή υπερβολικά τµήµατα όµως προσεγγίζονται
( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η
Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν
ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ
ΕΝΝΟΙ ΤΟΥ ΙΝΥΣΜΤΟΣ Όπως είναι γνωστό από τη φυσική, τα διάφορα µεγέθη διακρίνονται σε βαθµωτά και διανυσµατικά. αθµωτά είναι τα µεγέθη τα οποία χαρακτηρίζονται µόνο από το µέτρο τους. Τέτοια µεγέθη είναι
ΟΔΟΠΟΙΪΑ Ι - ΧΑΡΑΞΕΙΣ & ΥΠΟΛΟΓΙΣΜΟΣ ΧΩΜΑΤΙΣΜΩΝ : ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΚΤΙΚΗ
ΠΕΡΙΕΧΟΜΕΝΑ 1. ΕΙΣΑΓΩΓΗ 1.1. Περιεχόμενο της Οδοποιΐας 1 1.2. Κανονισμοί 2 1.2.1. Ιστορικό 2 1.2.2. Ισχύοντες Κανονισμοί στην Ελλάδα 5 1.2.3. Διαδικασία Εκπόνησης Μελετών Οδοποιΐας 6 1.3. Ανάπτυξη του
Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης
Η Εξίσωση Euler-Lagrange Σφαίρα σε ράγες: Η συνάρτηση Lagrange Ν. Παναγιωτίδης Έστω σύστημα δυο συγκλινόντων ραγών σε σχήμα Χ που πάνω τους κυλίεται σφαίρα ακτίνας. Θεωρούμε σύστημα συντεταγμένων με οριζόντιους
Σ 1 γράφεται ως. διάνυσµα στο Σ 2 γράφεται ως. Σ 2 y Σ 1
Στη συνέχεια θεωρούµε ένα τυχαίο διάνυσµα Σ 1 γράφεται ως, το οποίο στο σύστηµα Το ίδιο διάνυσµα µπορεί να γραφεί στο Σ 1 ως ένας άλλος συνδυασµός τριών γραµµικώς ανεξαρτήτων διανυσµάτων (τα οποία αποτελούν
ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;
ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται
Καµπύλες στον R. σ τελικό σηµείο της σ. Το σ. σ =. Η σ λέγεται διαφορίσιµη ( αντιστοίχως
Καµπύλες στον R 9. Ορισµός Μια καµπύλη στον R είναι µια συνεχής συνάρτηση σ : Ι R R όπου Ι διάστηµα ( συνήθως κλειστό και φραγµένο ) στον R. Συνήθως φανταζόµαστε την µεταβλητή t Ι ως τον χρόνο και την
Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου
Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών
Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων
Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης
αx αx αx αx 2 αx = α e } 2 x x x dx καλείται η παραβολική συνάρτηση η οποία στο x
A3. ΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ. εύτερη παράγωγος.παραβολική προσέγγιση ή επέκταση 3.Κυρτή 4.Κοίλη 5.Ιδιότητες κυρτών/κοίλων συναρτήσεων 6.Σηµεία καµπής ΠΑΡΑΡΤΗΜΑ 7. εύτερη πλεγµένη παραγώγιση 8.Χαρακτηρισµός
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών
i) Σε κάθε πλήρη περιστροφή το κινητό Α διαγράφει τόξο ίσου µήκους µε το τόξο που διαγράφει το κινητό Β
Φύλλο Εργασίας: ΚΙΝΗΜΑΤΙΚΗ ΟΜΑΛΗΣ ΚΥΚΛΙΚΗΣ ΚΙΝΗΣΗΣ Λίγη γεωµετρία πριν ξεκινήσουµε: Σε κύκλο ακτίνας, η επίκεντρη γωνία Δθ µετρηµένη σε ακτίνια (rad) και το µήκος του τόξου Δs στο οποίο βαίνει, συνδέονται
ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΤΟΠΟΓΡΑΦΙΚΟΥ ΑΡΧΕΙΟΥ ΩΣ ΥΠΟΒΑΘΡΟ ΓΙΑ ΤΟΝ ΕΛΕΓΧΟ ΟΔΙΚΗΣ ΑΣΦΑΛΕΙΑΣ
ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΤΟΠΟΓΡΑΦΙΚΟΥ ΑΡΧΕΙΟΥ ΩΣ ΥΠΟΒΑΘΡΟ ΓΙΑ ΤΟΝ ΕΛΕΓΧΟ ΟΔΙΚΗΣ ΑΣΦΑΛΕΙΑΣ Άγγελος Βασιλάς, Σπουδαστής ΕΜΠ Κωνσταντίνος Αποστολέρης, Πολιτικός Μηχανικός, MSc Σοφία Βαρδάκη, Δρ. Αγρονόμος Τοπογράφος
Σχεδίαση τροχιάς. (α) (β) (γ) (δ) Σχήµα 2.5
Σχεδίαση τροχιάς Η πιο απλή κίνηση ενός βραχίονα είναι από σηµείο σε σηµείο. Με την µέθοδο αυτή το ροµπότ κινείται από µία αρχική θέση σε µία τελική θέση χωρίς να µας ενδιαφέρει η ενδιάµεση διαδροµή που
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΘΕΣΣΑΛΙΑΣ - Τμήμα πολιτικών μηχανικών ΥΠΟΛΟΓΙΣΜΟΣ ΧΩΜΑΤΙΣΜΩΝ σύγκριση μεθόδων 17/11/2011. Πανεπιστήμιο Θεσσαλίας
Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΣΥΓΚΡΙΣΗ ΜΕΘΟΔΩΝ ΥΠΟΛΟΓΙΣΜΟΥ ΧΩΜΑΤΙΣΜΩΝ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ ΗΛΙΟΥ ΝΙΚΟΛΑΟΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΣΥΝΕΡΓΑΤΗΣ ΚΑΛΙΑΜΠΕΤΣΟΣ ΓΕΩΡΓΙΟΣ
0 είναι η παράγωγος v ( t 0
ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΟΡΙΣΜΟΣ Τι λέμε ρυθμό μεταβολής του μεγέθους y ως προς το μέγεθος για, αν y f( είναι παραγωγίσιμη συνάρτηση ; Απάντηση : Αν δύο μεταβλητά μεγέθη, y συνδέονται με τη σχέση y f(, όταν f
ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)
6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,
ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:
ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται
Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange
64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να
Κεφάλαιο 0 Μιγαδικοί Αριθμοί
Κεφάλαιο 0 Μιγαδικοί Αριθμοί 0 Βασικοί ορισμοί και πράξεις Είναι γνωστό ότι δεν υπάρχει πραγματικός αριθμός που επαληθεύει την εξίσωση x Η ανάγκη επίλυσης τέτοιων εξισώσεων οδηγεί στο σύνολο των μιγαδικών
Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14
Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες
Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ
Κοίταξε τις µεθόδους, τις λυµένες ασκήσεις και τις ασκήσεις προς λύση των ενοτήτων 6, 7 του βοηθήµατος Μεθοδολογία Άλγεβρας και Στοιχείων Πιθανοτήτων Α Γενικού Λυκείου των Ευσταθίου Μ. και Πρωτοπαπά Ελ.
Φυσική για Μηχανικούς
Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να ιδωθεί ως κίνηση σε δυο (αντί
ΣΥΝΑΡΤΗΣΕΩΝ. f3 x = και
7 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση
11 Το ολοκλήρωµα Riemann
Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την
Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης
Σφαίρα σε ράγες: Η συνάρτηση Lagrange Ν. Παναγιωτίδης Έστω σύστημα δυο συγκλινόντων ραγών σε σχήμα Χ που πάνω τους κυλίεται σφαίρα ακτίνας. Θεωρούμε σύστημα συντεταγμένων με οριζόντιους τους άξονες και.
ΠΕΤΕΠ 07-01-01-10 ΠΡΟΣΩΡΙΝΕΣ ΕΘΝΙΚΕΣ ΤΕΧΝΙΚΕΣ ΠΡΟ ΙΑΓΡΑΦΕΣ Υ.ΠΕ.ΧΩ..Ε. 07 Σιδηροδροµικά έργα 01 Γενικά θέµατα και χαρακτηριστικά επιδοµής
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Υ.ΠΕ.ΧΩ..Ε. ΠΡΟΣΩΡΙΝΕΣ ΕΘΝΙΚΕΣ ΤΕΧΝΙΚΕΣ ΠΡΟ ΙΑΓΡΑΦΕΣ ΠΕΤΕΠ 07-01-01-10 07 Σιδηροδροµικά έργα 01 Γενικά θέµατα και χαρακτηριστικά επιδοµής 01 Γενικά θέµατα και χαρακτηριστικά επιδοµής
ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα
Φίλη μαθήτρια, φίλε μαθητή,
Φίλη μαθήτρια φίλε μαθητή Η εργασία αυτή έγινε με σκοπό να συμβάλει στην κατανόηση στην εμπέδωση και στην εμβάθυνση των μαθηματικών εννοιών που αναπτύσσονται στην Άλγεβρα της Β Λυκείου. Η ύλη είναι γραμμένη
Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς
Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς 2.1 Η έννοια του διανύσματος Ο τρόπος που παριστάνομε τα διανυσματικά μεγέθη είναι με τη μαθηματική έννοια του διανύσματος. Διάνυσμα δεν είναι τίποτε
( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η
Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν
ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΣΑΝΑΤΛΙΣΜΥ Β ΛΥΚΕΙΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΥ Να δώσετε τους ορισμούς: διάνυσμα, μηδενικό διάνυσμα, μέτρο διανύσματος, μοναδιαίο διάνυσμα Διάνυσμα AB ονομάζεται ένα ευθύγραμμο
Α. Ροπή δύναµης ως προς άξονα περιστροφής
Μηχανική στερεού σώµατος, Ροπή ΡΟΠΗ ΔΥΝΑΜΗΣ Α. Ροπή δύναµης ως προς άξονα περιστροφής Έστω ένα στερεό που δέχεται στο άκρο F Α δύναµη F όπως στο σχήµα. Στο Ο διέρχεται άξονας περιστροφής κάθετος στο στερεό
Παρεµβολή και Προσέγγιση Συναρτήσεων
Κεφάλαιο 4 Παρεµβολή και Προσέγγιση Συναρτήσεων 41 Παρεµβολή µε πολυώνυµο Lagrage Εστω ότι γνωρίζουµε τις τιµές µιας συνάρτησης f (x), f 0, f 1,, f ν σε σηµεία x 0, x 1,, x ν, και Ϲητάµε να υπολογίσουµε
Μαθηματική Εισαγωγή Συναρτήσεις
Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας Διανύσματα Καστοριά,
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι
Ηλεκτρική και Μηχανική ταλάντωση στο ίδιο φαινόμενο
Ηλεκτρική και Μηχανική ταλάντωση στο ίδιο φαινόμενο Στο σχήμα φαίνεται μια γνώριμη διάταξη δύο παράλληλων αγωγών σε απόσταση, που ορίζουν οριζόντιο επίπεδο, κάθετο σε ομογενές μαγνητικό πεδίο έντασης.
Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace 1. Επίλυση Γραμμικών
https://youtu.be/mw-0bzwogwq?t=12.
Το παράδοξο του τροχού του Αριστοτέλη ρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Εισαγωγή Το παράδοξο του τροχού του Αριστοτέλη διατυπώνεται ως εξής: Αν στερεώσουµε
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Καμπυλόγραμμες Κινήσεις Επιμέλεια: Αγκανάκης Α. Παναγιώτης, Φυσικός http://phyiccore.wordpre.com/ Βασικές Έννοιες Μέχρι στιγμής έχουμε μάθει να μελετάμε απλές κινήσεις,
Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 25/9/2017 Διδάσκων: Ι. Λυχναρόπουλος
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 5/9/07 Διδάσκων: Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) Να δειχθεί ότι το πεδίο F( x, y) = y cos x + y,sin x
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ
1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..
ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ
5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση
Μαθηματική Εισαγωγή Συναρτήσεις
Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς Καστοριά, Ιούλιος 14 A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας
ΚΕΦΑΛΑΙΟ 10. Μελέτη ηλεκτρικών δικτύων στην Ηµιτονική Μόνιµη Κατάσταση
26 ΚΕΦΑΛΑΙΟ 0 Μελέτη ηλεκτρικών δικτύων στην Ηµιτονική Μόνιµη Κατάσταση 0. ) Γενικά για την Ηµιτονική Μόνιµη Κατάσταση ( Η.Μ.Κ.) Η µελέτη ενός ηλεκτρικού δικτύου γίνεται πρώτιστα στο στο πεδίο του χρόνου.
HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ
HY3. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ Π. ΤΣΟΜΠΑΝΟΠΟΥΛΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μέθοδος ελαχίστων τετραγώνων Τα σφάλματα
3.2 Η ΠΑΡΑΒΟΛΗ. Ορισμός Παραβολής. Εξίσωση Παραβολής
9 3 Η ΠΑΡΑΒΟΛΗ Ορισμός Παραβολής Έστω μια ευθεία δ και ένα σημείο Ε εκτός της δ Ονομάζεται παραβολή με εστία το σημείο Ε και διευθετούσα την ευθεία δ ο γεωμετρικός τόπος C των σημείων του επιπέδου τα οποία
p& i m p mi i m Με τη ίδια λογική όπως αυτή που αναπτύχθηκε προηγουµένως καταλήγουµε στην έκφραση της κινητικής ενέργειας του ρότορα i,
Κινητική Ενέργεια Κινητήρων Περνάµε τώρα στη συνεισφορά κινητικής ενέργειας λόγω της κίνησης & ϑ m του κινητήρα που κινεί την άρθρωση µε q& και, προφανώς όπως φαίνεται στο παρακάτω σχήµα, ευρίσκεται στον
ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ
ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 4 o Κεφάλαιο ΑΝΑΛΥΣΗ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 0. Σ 9. Λ. Λ. Σ 40. Σ. Σ. Σ 4. Λ 4. Λ. Σ 4. Σ 5. Σ 4. Σ 4. Λ 6. Σ 5. Λ 44.
ΚΕΦΑΛΑΙΟ 1 Ο ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ
Σχολικό Έτος 016-017 1 ΚΕΦΑΛΑΙΟ 1 Ο ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ Α. ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ Οριζόντια βολή, ονομάζουμε την εκτόξευση ενός σώματος από ύψος h από το έδαφος, με οριζόντια ταχύτητα u o, όταν στο σώμα επιδρά
Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις
Κεφάλαιο M4 Κίνηση σε δύο διαστάσεις Κινηµατική σε δύο διαστάσεις Θα περιγράψουµε τη διανυσµατική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης µε περισσότερες λεπτοµέρειες. Θα µελετήσουµε την κίνηση
14 Εφαρµογές των ολοκληρωµάτων
14 Εφαρµογές των ολοκληρωµάτων 14.1 Υπολογισµός εµβαδών µε την µέθοδο των παράλληλων διατοµών Θεωρούµε µια ϕραγµένη επίπεδη επιφάνεια A µε οµαλό σύνορο, δηλαδή που περιγράφεται από µια συνεχή συνάρτηση.
Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville
Κεφάλαιο : Προβλήµατα τύπου Stur-Liouvie. Ορισµός προβλήµατος Stur-Liouvie Πολλές τεχνικές επίλυσης µερικών διαφορικών εξισώσεων βασίζονται στην αναγωγή της µερικής διαφορικής εξίσωσης σε συνήθεις διαφορικές
Σηµειώσεις στις σειρές
. ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά
Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Ορίζουσα Gram και οι Εφαρµογές της Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 65 11 Η Ορίζουσα Gram και
Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου
Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο
Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων. Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης
Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης Εισαγωγή Παραμορφώσεις Ισοστατικών Δοκών και Πλαισίων: Δ22-2 Οι κατασκευές, όταν υπόκεινται σε εξωτερική φόρτιση, αναπτύσσουν
Κίνηση στερεών σωμάτων - περιστροφική
Κίνηση στερεών σωμάτων - περιστροφική ΦΥΣ 211 - Διαλ.29 1 q Ενδιαφέρουσα κίνηση: Ø Αρκετά περίπλοκη Ø Δεν καταλήγει σε κίνηση ενός βαθµού ελευθερίας q Τι είναι το στερεό σώµα: Ø Συλλογή υλικών σηµείων
Β Λυκείου - Ασκήσεις Συστήματα. x = 38 3y x = 38 3y x = x = = 11
Να λυθεί το σύστημα: Β Λυκείου - Ασκήσεις Συστήματα x+ 3y= 38 3x y = 2 Θα λύσουμε το σύστημα με τη μέθοδο της αντικατάστασης: x+ 3y= 38 x = 38 3y x = 38 3y x = 38 3y 3x y = 2 338 ( 3y) y= 2 3 38 9y y =
Η επιτάχυνση και ο ρόλος της.
Η επιτάχυνση και ο ρόλος της. Το μέγεθος «επιτάχυνση» το συναντήσαμε κατά τη διδασκαλία στην Α Λυκείου, όπου και ορίσθηκε με βάση την εξίσωση: t Όπου η παραπάνω μαθηματική εξίσωση μας λέει ότι η επιτάχυνση:
Κεφάλαιο Η2. Ο νόµος του Gauss
Κεφάλαιο Η2 Ο νόµος του Gauss Ο νόµος του Gauss Ο νόµος του Gauss µπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού του ηλεκτρικού πεδίου. Ο νόµος του Gauss βασίζεται στο γεγονός ότι η ηλεκτρική
Μεθοδολογία Έλλειψης
Μεθοδολογία Έλλειψης Έλλειψη ονομάζεται ο γεωμετρικός τόπος των σημείων, των οποίων το άθροισμα των αποστάσεων από δύο σταθερά σημεία Ε και Ε είναι σταθερό και μεγαλύτερο από την απόσταση (ΕΕ ). Στη Φύση
5 ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ
SECTIN 1 5 ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ 5.1 Σε δύο ιαστάσεις Συστήµατα συντεταγµένων Για να καθοριστεί η θέση, το σχήµα και η κίνηση των σωµάτων στο χώρο (που θεωρείται Ευκλείδειος, δηλαδή µε θετική απόσταση µεταξύ
, όταν f είναι μια συνάρτηση παραγωγίσιμη στο x. 0, τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το x στο σημείο x. 0 την παράγωγο f ( x 0
ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΟΡΙΣΜΟΣ : Αν δυο μεταβλητά μεγέθη, y συνδέονται με τη σχέση y f (, όταν f είναι μια συνάρτηση παραγωγίσιμη στο, τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το στο σημείο την παράγωγο
ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. 5 Μαίου 2012
ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική 5 Μαίου 2012 Συµπληρώστε τα στοιχεία σας στο παρακάτω πίνακα τώρα Ονοµατεπώνυµο Αρ. Ταυτότητας Username Password Δηµιουργήστε ένα φάκελο στο home directory σας µε
12-13 Μαρτίου 2015 Αθήνα. Εντοπισμός δυνητικών θέσεων τροχαίων ατυχημάτων σε υφιστάμενο οδικό δίκτυο αναφορικά με τη γεωμετρία της οδού
12-13 Μαρτίου 2015 Αθήνα Εντοπισμός δυνητικών θέσεων τροχαίων ατυχημάτων σε υφιστάμενο οδικό δίκτυο αναφορικά με τη γεωμετρία της οδού Κωνσταντίνος Αποστολέρης Πολιτικός Μηχανικός, MSc Φώτης Μερτζάνης
4. Σειρές Τέηλορ και Μακλώριν
Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής Σειρές Τέηλορ και Μακλώριν Το θεώρηµα του Τέηλορ Το θεώρηµα του Τέηλορ (Tayl) µάς δίνει τη δυνατότητα να αναπτύσσουµε συναρτήσεις
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να ιδωθεί
Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ. και η συνάρτηση f είναι παραγωγίσιμη στο x. την παράγωγο f' ( x. 0 ) (ή και στιγμιαίο ρυθμό μεταβολής).
Ρυθμός μεταβολής Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ i Αν δύο μεταβλητά μεγέθη x, y συνδέονται με τη σχέση y = f( x) και η συνάρτηση f είναι παραγωγίσιμη στο x τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το
Ένα εκκρεμές σε επιταχυνόμενο αμαξίδιο
Ένα εκκρεμές σε επιταχυνόμενο αμαξίδιο Το πρόβλημά μας είναι να προσδιορίσουμε την περίοδο των ταλαντώσεων του εκκρεμούς στο πρόβλημα που απεικονίζεται στο παραπάνω σχήμα υπό την προϋπόθεση ότι η δύναμη
5 Παράγωγος συνάρτησης
5 Παράγωγος συνάρτησης Ας ϑεωρήσουµε µια συνάρτηση f µε πεδίο ορισµού το [a, b]. Για κάθε 0 [a, b] ορίζουµε µια νέα συνάρτηση µε τύπο µε πεδίο ορισµού D(Π 0 ) = D(f ) { 0 }. Την συνάρτηση Π 0 Π 0 () =
Κυκλώματα με ημιτονοειδή διέγερση
Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση ονομάζονται εκείνα στα οποία επιβάλλεται τάση της μορφής: = ( ω ϕ ) vt V sin t όπου: V το πλάτος (στιγμιαία μέγιστη τιμή) της τάσης ω
. Αυτό σηµαίνει ότι το κέντρο µάζας κινείται ευθύγραµµα µε σταθερή επιτάχυνση a! = F!
Οµογενής κυκλικός δίσκος µάζας m και ακτίνας, βρίσκεται πάνω σε λείο οριζόντιο έδαφος µε τον άξονα συµµετρίας του κατα κόρυφο. Εάν σ ένα σηµείο της περιφέρειας του δίσκου εξασκείται συνεχώς µια σταθερή
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ ÅÐÉËÏÃÇ
ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΘΕΜΑ Α Ηµεροµηνία: Σάββατο 8 Απριλίου 2017 ιάρκεια Εξέτασης: 3 ώρες Α1. Θεωρία. Σχολικό βιβλίο σελίδα 83 Α2. α) Σωστό β) Λάθος γ) Σωστό
ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας
ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής Διδάσκων: Γιάννης Χουλιάρας Ισοστατικά πλαίσια με συνδέσμους (α) (β) Στατική επίλυση ισοστατικών πλαισίων
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΕΙΓΜΑΤΙΚΗ Ι ΑΣΚΑΛΙΑ «ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΕ ΤΗ ΜΕΘΟ Ο ΤΩΝ ΟΡΙΖΟΥΣΩΝ ΚΑΙ ΠΑΡΑΜΕΤΡΙΚΕΣ ΕΥΘΕΙΕΣ» 1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΟΡΙΣΜΟΣ 1 : Γραµµική εξίσωση λέγεται κάθε
ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Α
ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ Ερώτηση θεωρίας 1 ΘΕΜΑ Α Τι ονομάζουμε πραγματική συνάρτηση
1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ
. ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ : ΓΡΑΜΜΙΚΗ ΕΞΙΣΩΣΗ Η εξίσωση με και 0 ή 0 λέγεται γραμμική εξίσωση. Οι μεταβλητές είναι οι άγνωστοι της εξίσωσης αυτής. Οι αριθμοί λέγονται συντελεστές των αγνώστων
ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 93
ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 93 ΚΕΦΑΛΑΙΟ 5 ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 5.. Εισαγωγή Η παρουσία εξωτερικών διεγέρσεων σε ένα σύστηµα πολλών Β.Ε. δηµιουργεί σ'
Παρεμβολή πραγματικού χρόνου σε συστήματα CNC
Παρεμβολή πραγματικού χρόνου σε συστήματα CNC Γραμμική Κυκλική Spline Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Παρεμβολή πραγματικού χρόνου σε συστήματα CNC Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative
Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς
Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Ατοµο του Υδρογόνου 1.1.1 Κατάστρωση του προβλήµατος Ας ϑεωρήσουµε πυρήνα ατοµικού αριθµού Z
Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0.
ΜΕΡΟΣ Α. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ,α 0 337. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ ME α 0 Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής = α + β + γ με α 0. Η συνάρτηση = α +β+γ με α > 0 Η γραφική παράσταση της συνάρτησης
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 7 Από τα κάτωθι Θέµατα καλείστε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη
Αριθµητική Παραγώγιση και Ολοκλήρωση
Ιαν. 9 Αριθµητική Παραγώγιση και Ολοκλήρωση Είδαµε στο κεφάλαιο της παρεµβολής συναρτήσεων πώς να προσεγγίζουµε µια (συνεχή) συνάρτηση f από ένα πολυώνυµο, όταν γνωρίζουµε + σηµεία του γραφήµατος της συνάρτησης:
Οδοποιία Ι. Ενότητα 7: Στοιχεία μελέτης χάραξης οδού Οριζοντιογραφία σύμφωνα με το τεύχος Χαράξεις των ΟΜΟΕ (ΟΜΟΕ Χ)
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Οδοποιία Ι Ενότητα 7: Στοιχεία μελέτης χάραξης οδού Οριζοντιογραφία σύμφωνα με το τεύχος Χαράξεις των ΟΜΟΕ (ΟΜΟΕ Χ) Γεώργιος Μίντσης Τμήμα
Κεφάλαιο 1. Κίνηση σε μία διάσταση
Κεφάλαιο 1 Κίνηση σε μία διάσταση Κινηματική Περιγράφει την κίνηση, αγνοώντας τις αλληλεπιδράσεις με εξωτερικούς παράγοντες που ενδέχεται να προκαλούν ή να μεταβάλλουν την κίνηση. Προς το παρόν, θα μελετήσουμε
1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ
34 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι ώστε το διάνυσμα OI να έχει μέτρο και να βρίσκεται στην ημιευθεία O Λέμε τότε ότι έχουμε έναν άξονα με αρχή
5 Γενική µορφή εξίσωσης ευθείας
5 Γενική µορφή εξίσωσης ευθείας Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρηµα Κάθε ευθεία έχει εξίσωση της µορφής: Ax + By +Γ= 0, µε Α 0 ηβ 0 () και αντιστρόφως κάθε εξίσωση της µορφής () παριστάνει ευθεία γραµµή.
I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr
I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο
ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα
ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ 4. Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα Εστω R είναι ο γνωστός -διάστατος πραγµατικός διανυσµατικός χώρος. Μία απεικόνιση L :
ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 1/2012
ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /0 Στον Ευκλείδειο χώρο ορίζουμε τις νόρμες: : : : ma 3 για κάθε Να αποδείξετε ότι για κάθε ισχύει: 3 3 Τι συμπεραίνετε για τις παραπάνω νόρμες του Αν θεωρήσουμε
(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα
Πανεπιστηµιο Ιωαννινων σχολη θετικων επιστηµων τµηµα µαθηµατικων τοµεας αλγεβρας και γεωµετριας αναλυτικη γεωµετρια διδασκων : χρηστος κ. τατακης υποδειξεις λυσεων των θεµατων της 7.06.016 ΘΕΜΑ 1. µονάδες