Οι τύποι της εκτίμησης, οι οποίοι παρουσιάζονται στον Πίνακα 1.1, προσδιορίζονται από τη σχέση των χρονικών στιγμών και k :

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Οι τύποι της εκτίμησης, οι οποίοι παρουσιάζονται στον Πίνακα 1.1, προσδιορίζονται από τη σχέση των χρονικών στιγμών και k :"

Transcript

1 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ ΘΕΩΡΙΑ ΕΚΤΙΜΗΣΗΣ 1.1. ΤΟ ΠΡΟΒΛΗΜΑ ΤΗΣ ΘΕΩΡΙΑΣ ΕΚΤΙΜΗΣΗΣ Η θεωρία εκτίμησης (estimation theory) έχει ως αντικείμενο τον υπολογισμό της βέλτιστης εκτίμησης μίας κατάστασης δεδομένου ενός συνόλου μετρήσεων. Η κατάσταση (state) είναι η τιμή xk ( ) της στοχαστικής διαδικασίας { xk ( )} τη χρονική στιγμή k (ο χρόνος θεωρείται διακριτός). Η μέτρηση (measurement) είναι η τιμή zk ( ) της στοχαστικής διαδικασίας { zk ( )} τη χρονική στιγμή k. Το πρόβλημα της θεωρίας εκτίμησης είναι να υπολογιστεί η εκτίμηση (estimation) x( / k ) της κατάστασης τη χρονική στιγμή δεδομένου του συνόλου των μετρήσεων Z { z(1), z(2),..., z( k)} μέχρι και τη k χρονική στιγμή k, χρησιμοποιώντας ένα προκαθορισμένο βέλτιστο κριτήριο. Οι τύποι της εκτίμησης, οι οποίοι παρουσιάζονται στον Πίνακα 1.1, προσδιορίζονται από τη σχέση των χρονικών στιγμών και k : πρόβλεψη (prediction), όταν η εκτίμηση της κατάστασης αφορά σε κάποια χρονική στιγμή μετά από αυτήν της τελευταίας μέτρησης,

2 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 12 φιλτράρισμα (filtering) όταν η εκτίμηση της κατάστασης αφορά σε κάποια χρονική στιγμή που ταυτίζεται με αυτήν της τελευταίας μέτρησης, λείανση (smoothing) όταν η εκτίμηση της κατάστασης αφορά σε κάποια χρονική στιγμή πριν από αυτήν της τελευταίας μέτρησης. Πίνακας 1.1. Τύποι εκτίμησης. Εκτίμηση x( / k ) Πρόβλεψη k μέλλον Φιλτράρισμα k παρόν Λείανση k παρελθόν Για την επίλυση του προβλήματος της θεωρίας εκτίμησης είναι αναγκαίο να προσδιοριστεί ένα μαθηματικό μοντέλο που αποτελείται από: - το δυναμικό μοντέλο, που εκφράζει τη σχέση κατάστασης και μέτρησης - το στατιστικό μοντέλο, που εκφράζει τη φύση της κατάστασης και των μετρήσεων. Επίσης, πρέπει να προσδιοριστεί ένα κριτήριο βέλτιστης εκτίμησης. Η διαφορά της εκτίμησης από την πραγματική κατάσταση είναι το λάθος εκτίμησης (estimation error). Όσο μικρότερο είναι το λάθος εκτίμησης, τόσο καλύτερη είναι η εκτίμηση της πραγματικής κατάστασης. Επομένως, το κριτήριο βέλτιστης εκτίμησης είναι η ελαχιστοποίηση της μέσης τιμής κάποιας συνάρτησης του λάθους

3 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 13 εκτίμησης, που πρέπει να προσδιοριστεί. Η επιλογή του τετραγώνου του λάθους εκτίμησης ως συνάρτησης λάθους εκτίμησης, έχει φυσική σημασία, γιατί η μέση τιμή του τετραγώνου του λάθους εκτίμησης είναι η διασπορά λάθους εκτίμησης ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ Το γραμμικό μοντέλο διακριτού χρόνου αποτελείται από το δυναμικό και το στατιστικό μοντέλο. Δυναμικό μοντέλο Το δυναμικό μοντέλο εκφράζει τη σχέση κατάστασης και μέτρησης και περιγράφεται από τις εξισώσεις χώρου κατάστασης (state space equations) που είναι: x( k 1) F( k 1, k) x( k) w( k) (1.1) z( k 1) H( k 1) x( k 1) v( k 1) (1.2) για k 0, όπου xk ( ) είναι το διάνυσμα κατάστασης διαστάσεων n x1 τη χρονική στιγμή k zk ( ) είναι το διάνυσμα μετρήσεων διαστάσεων στιγμή k m x1 τη χρονική

4 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 14 F( k 1, k) είναι η μήτρα μεταφοράς διαστάσεων nn, x που εξαρτάται από δύο διαδοχικές χρονικές στιγμές k και k 1 Hk ( ) είναι η μήτρα εξόδου διαστάσεων k mn x τη χρονική στιγμή y( k) H( k) x( k) είναι η έξοδος του συστήματος τη χρονική στιγμή k wk ( ) είναι ο θόρυβος στην κατάσταση τη χρονική στιγμή k και είναι η είσοδος του συστήματος vk ( ) είναι ο θόρυβος στις μετρήσεις τη χρονική στιγμή k Στατιστικό μοντέλο Το στατιστικό μοντέλο εκφράζει τη φύση της κατάστασης και των μετρήσεων. Βασική προϋπόθεση είναι ο θόρυβος στην κατάσταση και ο θόρυβος στις μετρήσεις να είναι λευκός θόρυβος (white noise). Λευκός θόρυβος είναι μία λευκή διαδικασία (white process), δηλαδή μία στοχαστική διαδικασία με τιμές ασυσχέτιστες από χρονική στιγμή σε χρονική στιγμή. Η στοχαστική διαδικασία λευκού θορύβου έχει σταθερή μέση τιμή (συνήθως μηδενική μέση τιμή). Ισχύουν οι υποθέσεις (assumptions):

5 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ Η στοχαστική διαδικασία { wk ( )} ακολουθεί την κανονική κατανομή (Gaussian distribution), έχει μηδενική μέση τιμή και είναι λευκή διαδικασία (white process) με διασπορά Qk ( ) διαστάσεων nn, x οπότε 0, k E[ w( k) w ( )] Q( k), k δηλαδή { w( k)} N(0, Q( k )) όπου Q( k) E[ w( k) w ( k)] (1.3) Με A συμβολίζεται η ανάστροφη μήτρα της μήτρας A. 2. Η στοχαστική διαδικασία { vk ( )} ακολουθεί την κανονική κατανομή (Gaussian distribution), έχει μηδενική μέση τιμή και είναι λευκή (white process) με διασπορά Rk ( ) διαστάσεων mm, x οπότε 0, k E[ v( k) v ( )] R( k), k δηλαδή { v( k)} N(0, R( k )) όπου R( k) E[ v( k) v ( )] (1.4)

6 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ Η αρχική τιμή της κατάστασης x (0) είναι τυχαία μεταβλητή που ακολουθεί την κανονική κατανομή (Gaussian distribution), έχει μέση τιμή x 0 και διασπορά P 0 δηλαδή x(0) N( x0, P 0) όπου x0 E[ x(0)] (1.5) P E[[ x(0) x ][ x(0) x ] ] (1.6) Οι στοχαστικές διαδικασίες { wk ( )}, { vk ( )} και η τυχαία μεταβλητή x (0) είναι ανεξάρτητες μεταξύ τους ΒΕΛΤΙΣΤΗ ΕΚΤΙΜΗΣΗ Το πρόβλημα της εκτίμησης είναι να υπολογιστεί η εκτίμηση x( / k) της κατάστασης τη χρονική στιγμή δεδομένου του συνόλου των μετρήσεων Z { z(1), z(2),..., z( k)} μέχρι και τη χρονική στιγμή k k, δηλαδή η δεσμευμένη μέση τιμή του διανύσματος κατάστασης: x( / k) E[ x( )/ Z k ] (1.7) Το λάθος εκτίμησης (estimation error) ορίζεται ως η διαφορά της εκτίμησης από την πραγματική κατάσταση: x ( / ) ( ) ( / ) e k x x k (1.8)

7 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 17 Είναι προφανές ότι όσο μικρότερο είναι το λάθος εκτίμησης, τόσο καλύτερη είναι η εκτίμηση της πραγματικής κατάστασης. Επομένως, το κριτήριο βέλτιστης εκτίμησης αφορά στο λάθος εκτίμησης και είναι η ελαχιστοποίηση του τετραγώνου του λάθους εκτίμησης, δηλαδή της διασποράς λάθους εκτίμησης: E[[ x ( / k)][ x ( / k)]/ Z ] (1.9) e e k 1.4. ΑΛΓΟΡΙΘΜΟΙ ΕΚΤΙΜΗΣΗΣ Ανάλογα με τον τύπο της εκτίμησης υπάρχουν διάφοροι αλγόριθμοι εκτίμησης: αλγόριθμοι για εκτίμηση (φίλτρα), αλγόριθμοι για πρόβλεψη και αλγόριθμοι για λείανση. Αλγόριθμοι για εκτίμηση (φίλτρα) Το πρόβλημα του φιλτραρίσματος είναι να υπολογιστεί η βέλτιστη εκτίμηση (φιλτράρισμα) x( k / k ) της κατάστασης τη χρονική στιγμή δεδομένου του συνόλου των μετρήσεων Z { z(1), z(2),..., z( k)} μέχρι και τη χρονική στιγμή k. k Ο πρώτος ολοκληρωμένος αλγόριθμος εκτίμησης (φίλτρο) προτάθηκε από τον Rudolf E. Kalman στις αρχές της δεκαετίας του 60 και είναι γνωστός ως φίλτρο Kalman (Kalman filter) [Kalman (1960)]. Στα μέσα της δεκαετίας του 70 o Δημήτριος Γ. Λαϊνιώτης πρότεινε τον αλγόριθμο διαμερισμού (partitioning algorithm), που

8 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 18 είναι γνωστός ως φίλτρο Λαϊνιώτη (Lainiotis filter) [Lainiotis (1975)]. Τα φίλτρα Kalman και Λαϊνιώτη υπολογίζουν αναδρομικά την εκτίμηση x( k / k ) διαστάσεων εκτίμησης P( k / k ) διαστάσεων nn. x n x1 και τη διασπορά λάθους Αλγόριθμοι για πρόβλεψη Το πρόβλημα της πρόβλεψης είναι να υπολογιστεί η βέλτιστη πρόβλεψη x( / k ) της κατάστασης τη χρονική στιγμή δεδομένου του συνόλου των μετρήσεων Z { z(1), z(2),..., z( k)} μέχρι και τη χρονική στιγμή k, όπου k. k Η βέλτιστη πρόβλεψη διαστάσεων n x1 είναι: x( / k) F(, k) x( k / k) (1.10) και η αντίστοιχη διασπορά λάθους πρόβλεψης διαστάσεων nnείναι: x P( / k) F(, 1) P( 1, k) F (, 1) Q( 1) (1.11) όπου F(, k) F(, 1) F( 1, 2) F( k 1, k) (1.12) βήμα: Όταν k 1 προκύπτει ο αλγόριθμος πρόβλεψης κατά ένα

9 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 19 x( k 1/ k) F( k 1, k) x( k / k) (1.13) P( k 1/ k) F( k 1, k) P( k / k) F ( k 1, k) Q( k) (1.14) για k 0,1,... με αρχικές συνθήκες x(0/0) x 0 P(0/0) P 0 Για τον υπολογισμό της πρόβλεψης και της διασποράς λάθους πρόβλεψης απαιτείται ο υπολογισμός της εκτίμησης x( k / k ) και της διασποράς λάθους εκτίμησης P( k / k ). Είναι προφανές ότι η πρόβλεψη απαιτεί φιλτράρισμα, το οποίο μπορεί να γίνει με το φίλτρο Kalman ή με το φίλτρο Λαϊνιώτη. Αλγόριθμοι για λείανση Το πρόβλημα της λείανσης είναι να υπολογιστεί η βέλτιστη εκτίμηση x( / k ) της κατάστασης τη χρονική στιγμή δεδομένου του συνόλου των μετρήσεων Z { z(1), z(2),..., z( k)} μέχρι και τη χρονική στιγμή k, όπου k. k Οι πλέον γνωστοί αλγόριθμοι λείανσης είναι ο αλγόριθμος Meditch και ο αλγόριθμος λείανσης Λαϊνιώτη.

10 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 20 Ο αλγόριθμος Meditch υπολογίζει αναδρομικά τη βέλτιστη λείανση διαστάσεων n x1: x( / k) x( / k 1) B( k)[ x( k / k) x( k / k 1)] (1.15) και την αντίστοιχη διασπορά λάθους λείανσης διαστάσεων nn: x P( / k) P( / k 1) B( k)[ P( k / k) P( k / k 1)] B ( k) (1.16) όπου B( k) B( k 1) A( k 1) (1.17) 1 A( 1) P( 1/ 1) F ( / 1) P ( / 1) (1.18) με αρχική τιμή B( 1) A( ) για k 1, 2,... Για τον υπολογισμό της λείανσης και της διασποράς λάθους λείανσης απαιτείται ο υπολογισμός της εκτίμησης x( k / k ) και της διασποράς λάθους εκτίμησης P( k / k ) καθώς και ο υπολογισμός της πρόβλεψης x( k / k 1) και της διασποράς λάθους πρόβλεψης P( k / k 1). Είναι προφανές ότι η λείανση απαιτεί φιλτράρισμα, το οποίο μπορεί να γίνει με το φίλτρο Kalman ή με το φίλτρο Λαϊνιώτη.

11 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 21 Είναι σαφές ότι όλοι οι αλγόριθμοι εκτίμησης (πρόβλεψης, φιλτραρίσματος, λείανσης) απαιτούν φιλτράρισμα, το οποίο μπορεί να γίνει με το φίλτρο Kalman ή με το φίλτρο Λαϊνιώτη. Το Φίλτρο Kalman Οι ρίζες του φίλτρου Kalman [Sorenson (1970)] βρίσκονται στη χρήση της μεθόδου των ελαχίστων τετραγώνων κατά τη μελέτη των πλανητικών τροχιών από τον Gauss τον 19 ο αιώνα [Gauss (1963)]. Η στάσιμη θεωρία εκτίμησης Wiener-Kolmogorov (stationary filtering theory) οφείλεται στον Kolmogorov [Kolmogorov (1941)] και στον Wiener [Wiener (1949)] και σχετίζεται με στάσιμες διαδικασίες (δηλαδή διαδικασίες των οποίων οι στατιστικές ιδιότητες είναι χρονικά αμετάβλητες). Η ιδέα της χρήσης μεταβλητής κατάστασης στην περιγραφή γραμμικών συστημάτων προτάθηκε από τον Swerling [Swerling (1959)] και τον Kalman [Kalman (1960)]. Η μη στάσιμη θεωρία εκτίμησης (nonstationary filtering theory), η οποία αντιμετωπίζει προβλήματα και με μη στάσιμες διαδικασίες, οφείλεται στον Kalman και στον Bucy [Kalman (1960), Kalman and Bucy (1961), Kalman (1963)]. Το 1960 ο Kalman πρότεινε [Kalman (1960)] το φίλτρο Kalman, έναν αναδρομικό αλγόριθμο επίλυσης του γραμμικού προβλήματος φιλτραρίσματος διακριτού χρόνου. Από τότε μέχρι σήμερα το φίλτρο Kalman έχει γίνει αντικείμενο επιστημονικής έρευνας. Επίσης, το φίλτρο Kalman έχει χρησιμοποιηθεί με επιτυχία σε ένα ευρύτατο

12 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 22 φάσμα εφαρμογών [Anderson and Moore (1979), Anderson and Moore (2005), Grewal, Weill, Andrews (2007), Jones, MacGregor, Murphy (1989), Newland, Gray (2005), Nishi (2001), Ristic, Arulampalam and Gordon (2004), Sorenson (1985)]: στην αεροναυπηγική (από τις πρώτες εφαρμογές, στις διαστημικές αποστολές Apollo) στον έλεγχο χημικών διεργασιών στη σχεδίαση τηλεπικοινωνιακών συστημάτων στην πρόβλεψη ρύπανσης σε ενεργειακά συστήματα στην παρακολούθηση στόχου στην επεξεργασία εικόνας στην επεξεργασία ήχου σε GPS στην οικονομετρία στην παρακολούθηση δορυφόρων στην πλοήγηση πλοίων.

13 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ ΦΙΛΤΡΟ KALMAN 2.1.ΧΡΟΝΙΚΑ ΜΕΤΑΒΑΛΛΟΜΕΝΟ ΦΙΛΤΡΟ KALMAN Το πρόβλημα του φιλτραρίσματος είναι να υπολογιστεί η βέλτιστη εκτίμηση (φιλτράρισμα) x( k / k ) της κατάστασης τη χρονική στιγμή δεδομένου του συνόλου των μετρήσεων Z { z(1), z(2),..., z( k)} μέχρι και τη χρονική στιγμή k. Η εκτίμηση είναι: k x( k / k) E[ x( k)/ Z k ] (2.1) και η αντίστοιχη διασπορά λάθους εκτίμησης είναι: P( k / k) E[[ x( k) x( k / k)][ x( k) x( k / k)] / Z k ] (2.2) Επίσης, η πρόβλεψη (κατά ένα βήμα) διαστάσεων nx1είναι: x( k 1/ k) E[ x( k 1)/ Z k ] (2.3) και η αντίστοιχη διασπορά λάθους πρόβλεψης διαστάσεων nnείναι: x P( k 1/ k) E[[ x( k 1) x( k 1/ k)][ x( k 1) x( k 1/ k)] / Z ] k (2.4)

14 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 24 Για το χρονικά μεταβαλλόμενο μοντέλο, όπου οι μήτρες F( k 1, k), Hk ( 1), Qk ( ) και Rk ( 1) είναι χρονικά μεταβαλλόμενες, προκύπτει το χρονικά μεταβαλλόμενο φίλτρο Kalman (ime Varying Kalman Filter): Χρονικά μεταβαλλόμενο φίλτρο Kalman ime Varying Kalman Filter (VKF) x( k 1/ k) F( k 1, k) x( k / k) (2.5) P( k 1/ k) F( k 1, k) P( k / k) F ( k 1, k) Q( k) (2.6) K( k 1) = P( k 1 /k) H ( k 1) [ H( k 1) P( k 1 /k) H ( k 1) + R( k 1)] x( k 1/ k 1) [ I K( k 1) H( k 1)] x( k 1/ k) K( k 1) z( k 1) 1 (2.7) (2.8) P( k 1/ k 1) [ I K( k 1) H( k 1)] P( k 1/ k) (2.9) για k 0,1,... με αρχικές συνθήκες x(0/ 0) x 0 P(0/0) P 0

15 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 25 Οι μήτρες Qk ( ), Rk ( 1), P( k 1/ k) και P( k / k ) είναι συμμετρικές (symmetric) και θετικά ημιορισμένες (nonnegative definite), ως μήτρες διασπορών. Η ύπαρξη των αντίστροφων μητρών που εμφανίζονται στην εξίσωση (2.7) εξασφαλίζεται στην περίπτωση που οι μήτρες Rk ( 1) είναι θετικά ορισμένες (positive definite), γεγονός που συμβαίνει στην περίπτωση που καμμία μέτρηση δεν είναι ακριβής. Σε διαφορετική περίπτωση μπορεί να γίνει χρήση της ψευδοαντίστροφης μήτρας (pseudo-inverse). Από τη θεωρία μητρών είναι γνωστοί οι παρακάτω ορισμοί: - Μία μήτρα A διαστάσεων nnορίζεται x ως συμμετρική (symmetric), αν ισχύει η σχέση A A. Μία συμμετρική μήτρα έχει πραγματικές ιδιοτιμές. - Μία συμμετρική μήτρα A διαστάσεων nnορίζεται x ως θετικά ορισμένη (positive definite), αν ισχύει η σχέση x Ax 0 για κάθε διάνυσμα x 0. Μία θετικά ορισμένη μήτρα έχει όλες τις ιδιοτιμές της θετικές. - Μία συμμετρική μήτρα A διαστάσεων nnορίζεται x ως θετικά ημιορισμένη (nonnegative definite), αν ισχύει η σχέση x Ax 0 για κάθε διάνυσμα x 0. Μία θετικά ημιορισμένη μήτρα έχει μη αρνητικές ιδιοτιμές.

16 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 26 Η μήτρα Kk ( ) διαστάσεων nm x καλείται κέρδος (gain) του φίλτρου Kalman. Η διασπορά λάθους εκτίμησης, η διασπορά λάθους πρόβλεψης και το κέρδος δεν εξαρτώνται από τις μετρήσεις. Επομένως, μπορούν είτε να υπολογιστούν σε πραγματικό χρόνο (real time) είτε να υπολογιστούν εκ των προτέρων (off-line) χρησιμοποιώντας τις εξισώσεις (2.6), (2.7) και (2.9). Από τις εξισώσεις (2.7) και (2.8) προκύπτει ότι: - Όσο ο θόρυβος των μετρήσεων τείνει στο μηδέν, τόσο η εκτίμηση βασίζεται περισσότερο στη μέτρηση και λιγότερο στην πρόβλεψη. Όταν ο θόρυβος των μετρήσεων είναι μηδέν: Rk ( 1) 0, τότε είναι: I K( k 1) H( k 1) 0, οπότε: x( k 1/ k 1) K( k 1) z( k 1) - Όσο η διασπορά λάθους πρόβλεψης τείνει στο μηδέν, τόσο η εκτίμηση βασίζεται λιγότερο στη μέτρηση και περισσότερο στην πρόβλεψη. Όταν η διασπορά λάθους πρόβλεψης είναι μηδέν P( k 1/ k ) 0, τότε είναι : Kk ( 1) 0, οπότε: x( k 1/ k 1) x( k 1/ k )

17 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ ΧΡΟΝΙΚΑ ΑΜΕΤΑΒΛΗΤΟ ΦΙΛΤΡΟ KALMAN Για το χρονικά αμετάβλητο μοντέλο, όπου οι μήτρες F( k 1, k) F, H( k 1) H, Q( k) Q και R( k 1) R είναι σταθερές (χρονικά αμετάβλητες), προκύπτει το χρονικά αμετάβλητο φίλτρο Kalman (ime Invariant Kalman Filter): Χρονικά αμετάβλητο φίλτρο Kalman ime Invariant Kalman Filter (IKF) x( k 1/ k) Fx( k / k) (2.10) P( k 1/ k) FP( k / k) F Q (2.11) K( k 1) = P( k 1 /k) H [ HP( k 1 /k) H + R] 1 (2.12) x( k 1/ k 1) [ I K( k 1) H] x( k 1/ k) K( k 1) z( k 1) (2.13) P( k 1/ k 1) [ I K( k 1) H] P( k 1/ k) (2.14) για k 0,1,... με αρχικές συνθήκες x(0/ 0) x 0 P(0/0) P 0

18 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 28 Το φίλτρο Kalman είναι ένα αναδρομικό φίλτρο ακόμη και στην περίπτωση του χρονικά αμετάβλητου μοντέλου, γιατί το κέρδος είναι χρονικά μεταβαλλόμενο. Παρατήρηση. Η περίπτωση του άπειρου θορύβου μετρήσεων. Εξετάζοντας την περίπτωση του άπειρου θορύβου μετρήσεων, μπορούμε να θεωρήσουμε ότι η διασπορά θορύβου μετρήσεων είναι άπειρη, δηλαδή R. Τότε προκύπτουν τα ακόλουθα: - από την εξίσωση (2.12) το κέρδος είναι μηδέν: Kk ( 1) 0 - από την εξίσωση (2.13) η εκτίμηση είναι ίση με την πρόβλεψη: x( k 1/ k 1) x( k 1/ k) - από την εξίσωση (2.14) η διασπορά λάθους εκτίμησης είναι ίση με τη διασπορά λάθους πρόβλεψης: P( k 1/ k 1) P( k 1/ k) Οπότε η εκτίμηση είναι: x( k 1/ k 1) Fx( k / k) (2.15) και η αντίστοιχη διασπορά λάθους εκτίμησης είναι: P( k 1/ k 1) FP( k / k) F Q (2.16)

19 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ ΦΙΛΤΡΟ KALMAN ΣΤΗ ΜΟΝΙΜΗ ΚΑΤΑΣΤΑΣΗ Για το χρονικά αμετάβλητο μοντέλο, όπου οι μήτρες F( k 1, k) F, H( k 1) H, Q( k) Q και R( k 1) R είναι σταθερές (χρονικά αμετάβλητες), είναι γνωστό [Anderson and Moore, 1979] ότι: αν για κάθε G με GG Q το ζεύγος [ FG, ] είναι πλήρως σταθεροποιήσιμο (completely stabilizable) και αν το ζεύγος [ FH, ] είναι πλήρως ανιχνεύσιμο (completely detectable), τότε το φίλτρο τείνει σε μόνιμη κατάσταση (steady state), δηλαδή η διασπορά λάθους πρόβλεψης τείνει σε μία σταθερή τιμή P p, η οποία είναι μοναδική (unique) και καλείται διασπορά λάθους πρόβλεψης στη μόνιμη κατάσταση. Σημειώνεται ότι: - το ζεύγος [ FG, ] είναι πλήρως σταθεροποιήσιμο (completely stabilizable), αν ισχύει η πρόταση: αν wg 0 και w F λ w για κάποια σταθερά λ, τότε λ 1 ή w 0 - το ζεύγος [ FH, ] είναι πλήρως ανιχνεύσιμο (completely detectable), αν το ζεύγος [ F, H ] είναι πλήρως σταθεροποιήσιμο (completely stabilizable).

20 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 30 Επίσης, αν το μοντέλο είναι ασυμπτωτικά ευσταθές (asymptotically stable), που σημαίνει ότι οι ιδιοτιμές (eigenvalues) της μήτρας F βρίσκονται εντός του μοναδιαίου κύκλου, τότε οπωσδήποτε το μοντέλο είναι πλήρως ανιχνεύσιμο και πλήρως σταθεροποιήσιμο. Επομένως, αν το μοντέλο είναι ασυμπτωτικά ευσταθές, τότε το φίλτρο τείνει σε μόνιμη κατάσταση. Το φίλτρο μπορεί να τείνει σε μόνιμη κατάσταση ακόμη και όταν το μοντέλο δεν είναι ασυμπτωτικά ευσταθές. Από τις εξισώσεις (2.11), (2.12) και (2.14) προκύπτει η εξίσωση Riccati για το φίλτρο Kalman: P( k 1/ k) FP( k / k 1) F Q FP k k H HP k k H R HP k k F 1 ( / 1) [ ( / 1) ] ( / 1) (2.17) Η εξίσωση Riccati είναι μία μη γραμμική αναδρομική εξίσωση. Η διασπορά λάθους πρόβλεψης τείνει στη διασπορά λάθους πρόβλεψης στη μόνιμη κατάσταση όταν P( k 1/ k ) P( k / k 1) (2.18) ss ss ss ss όπου είναι ένας μικρός θετικός αριθμός και μόνιμης κατάστασης (steady state time). k ss είναι ο χρόνος Με A συμβολίζεται η φασματική νόρμα (norm) της μήτρας A, δηλαδή η τετραγωνική ρίζα της μέγιστης ιδιοτιμής της μήτρας AA.

21 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 31 Έτσι, προκύπτει η εξίσωση Riccati μόνιμης κατάστασης: P FP F Q FP H [ HP H R] HP F (2.19) 1 p p p p p η μοναδική λύση (unique solution) της οποίας είναι η διασπορά λάθους πρόβλεψης στη μόνιμη κατάσταση. Από τις εξισώσεις (2.11), (2.12) και (2.14) είναι φανερό ότι το κέρδος τείνει σε μία σταθερή τιμή K που καλείται κέρδος στη μόνιμη κατάσταση και υπολογίζεται ως συνάρτηση της διασποράς λάθους πρόβλεψης στη μόνιμη κατάσταση: K P H HP H R 1 p [ p ] (2.20) Επίσης, είναι φανερό ότι η διασπορά λάθους εκτίμησης τείνει σε μία σταθερή τιμή P e, η οποία καλείται διασπορά λάθους πρόβλεψης στη μόνιμη κατάσταση και υπολογίζεται ως συνάρτηση της διασποράς λάθους πρόβλεψης στη μόνιμη κατάσταση: P I P H HP H R H P (2.21) 1 e [ p [ p ] ] p Στη μόνιμη κατάσταση, προκύπτει το φίλτρο Kalman μόνιμης κατάστασης (Steady State Kalman Filter):

22 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 32 Φίλτρο Kalman μόνιμης κατάστασης Steady State Kalman Filter (SSKF) x( k 1/ k 1) A x( k / k) B z( k 1) (2.22) KF KF A [ I KH ] F (2.23) KF BKF K (2.24) για k k, k 1,... ss ss Η υλοποίηση του φίλτρου Kalman μόνιμης κατάστασης απαιτεί τη γνώση: - της εκτίμησης x( k / k ) για την εφαρμογή της αναδρομής και ss ss - της διασποράς λάθους εκτίμησης P( k / k ) για τον υπολογισμό των μητρών A KF και B KF. ss ss Επομένως, η υλοποίηση του φίλτρου Kalman μόνιμης κατάστασης προϋποθέτει την υλοποίηση του χρονικά αμετάβλητου φίλτρου Kalman για k 0,1,..., kss με αρχικές συνθήκες x(0/ 0) x0 και P(0/0) P0. Οι μήτρες A KF και B KF μπορούν να υπολογιστούν εκ των προτέρων (off-line) χρησιμοποιώντας τις εξισώσεις (2.19), (2.20), (2.23) και (2.24).

23 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 33 Παρατήρηση. Η περίπτωση του άπειρου θορύβου μετρήσεων. Εξετάζοντας την περίπτωση του άπειρου θορύβου μετρήσεων, μπορούμε να θεωρήσουμε ότι η διασπορά θορύβου μετρήσεων είναι άπειρη, δηλαδή R. Τότε για το χρονικά αμετάβλητο μοντέλο είναι γνωστό [Anderson and Moore, 1979] ότι: αν για κάθε G με GG Q το ζεύγος [ FG, ] είναι πλήρως προσβάσιμο (completely reachable) και αν οι ιδιοτιμές (eigenvalues) της μήτρας βρίσκονται εντός του μοναδιαίου κύκλου, τότε το φίλτρο τείνει σε μόνιμη κατάσταση (steady state), δηλαδή η διασπορά λάθους πρόβλεψης τείνει σε μία σταθερή τιμή F P p, η οποία είναι μοναδική (unique) και καλείται διασπορά λάθους πρόβλεψης στη μόνιμη κατάσταση. Σημειώνεται ότι: - το ζεύγος [ FG, ] είναι πλήρως προσβάσιμο (completely reachable), αν ισχύει η πρόταση: αν wg 0 και w F λ w για κάποια σταθερά λ, τότε w 0. Επίσης, το κέρδος στη μόνιμη κατάσταση είναι μηδέν: K 0. Οπότε η διασπορά λάθους εκτίμησης στη μόνιμη κατάσταση είναι ίση με τη διασποράς λάθους πρόβλεψης στη μόνιμη κατάσταση: Pe Pp. Στην περίπτωση αυτή από τις εξισώσεις του φίλτρου Kalman προκύπτει η

24 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 34 εξίσωση Lyapunov (Lyapunov equation) ως ειδική μορφή της εξίσωσης Riccati (για R ): P( k 1/ k) FP( k / k 1) F Q (2.25) Έτσι, προκύπτει η εξίσωση Lyapunov μόνιμης κατάστασης: Pp FPpF Q (2.26) η μοναδική λύση (unique solution) της οποίας είναι η διασπορά λάθους πρόβλεψης στη μόνιμη κατάσταση ΠΑΡΑΔΕΙΓΜΑΤΑ ΦΙΛΤΡΟΥ KALMAN Παράδειγμα 2.1. Μη αναδρομική μορφή φίλτρου Kalman. Στο παράδειγμα αυτό θεωρείται ένα βαθμωτό ( n 1 και m 1) χρονικά αμετάβλητο μοντέλο, όπου ισχύουν όλες οι υποθέσεις, με παραμέτρους: F 1 H 1 Q 0 R 1

25 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 35 Οι εξισώσεις του χρονικά αμετάβλητου φίλτρου Kalman (2.10)-(2.14) γράφονται: x( k 1/ k) x( k / k) P( k 1/ k) P( k / k) P( k 1/ k) Kk ( 1) P( k 1/ k) 1 P( k 1/ k) x( k 1/ k 1) 1 x( k 1/ k) P( k 1/ k) 1 P( k 1/ k) zk ( 1) P( k 1/ k) 1 P( k 1/ k) P( k 1/ k 1) 1 P( k 1/ k) P( k 1/ k) 1 Επομένως, υπολογίζονται αναδρομικά η εκτίμηση και η διασπορά λάθους εκτίμησης: 1 P( k / k) x( k 1/ k 1) x( k / k) z( k 1) P( k / k) 1 P( k / k) 1 P( k / k) P( k 1/ k 1) P( k / k) 1

26 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 36 Με χρήση των αναδρομικών εξισώσεων του φίλτρου Kalman, η εκτίμηση και η διασπορά λάθους εκτίμησης υπολογίζονται ως συναρτήσεις των αρχικών συνθηκών x 0 και P 0 (μη αναδρομική μορφή του φίλτρου Kalman): P0 P( k 1/ k 1) ( k 1) P P x k k x z i k 1 0 ( 1/ 1) 0 ( ) ( k 1) P0 1 ( k 1) P0 1 i 1 Παρατήρηση 1. Όταν η αρχική αβεβαιότητα είναι πολύ μικρή ( P 0 0 ) τότε x( k 1/ k 1) x0 δηλαδή το φίλτρο βασίζεται στην αρχική συνθήκη x 0 (λόγω της μικρής αρχικής αβεβαιότητας) και ουσιαστικά αγνοούνται οι μετρήσεις. Παρατήρηση 2. Όταν η αρχική αβεβαιότητα είναι πολύ μεγάλη ( P 0 )

27 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 37 τότε k 1 1 x( k 1/ k 1) z( i) 1 k i 1 δηλαδή το φίλτρο αγνοεί την αρχική συνθήκη x 0 (λόγω της μεγάλης αρχικής αβεβαιότητας) και η εκτίμηση είναι η μέση τιμή των μετρήσεων. Παράδειγμα 2.2. Χρονικά αμετάβλητο φίλτρο Kalman. Στο παράδειγμα αυτό θεωρείται ένα βαθμωτό ( n 1 και m 1) χρονικά αμετάβλητο μοντέλο, όπου ισχύουν όλες οι υποθέσεις, με παραμέτρους: F 0.8 H 1 Q 2 R 5 και αρχικές συνθήκες x0 0 P0 1

28 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 38 Στο Σχήμα 2.1 παρουσιάζονται η κατάσταση, η πρόβλεψη και η εκτίμηση. Σχήμα 2.1. Χρονικά αμετάβλητο φίλτρο Kalman. Κατάσταση, πρόβλεψη και εκτίμηση για το Παράδειγμα 2.2. Στο Σχήμα 2.2 παρουσιάζονται η διασπορά λάθους πρόβλεψης και η διασπορά λάθους εκτίμησης. Η διασπορά λάθους εκτίμησης είναι μικρότερη από τη διασπορά λάθους πρόβλεψης. Αυτό σημαίνει ότι η

29 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 39 εκτίμηση είναι πιο κοντά στην πραγματική κατάσταση από ότι είναι η πρόβλεψη. Σχήμα 2.2. Χρονικά αμετάβλητο φίλτρο Kalman. Διασπορά λάθους πρόβλεψης και διασπορά λάθους εκτίμησης για το Παράδειγμα 2.2. Παράδειγμα 2.3. Άπειρος θόρυβος μετρήσεων στο φίλτρο Kalman.

30 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 40 Στο παράδειγμα αυτό θεωρείται ένα βαθμωτό χρονικά αμετάβλητο μοντέλο, με παραμέτρους: F 0.5 H 1 Q 30 R Στην περίπτωση αυτή ο θόρυβος μετρήσεων είναι άπειρος ( R ) και η εξίσωση Lyapunov μόνιμης κατάστασης (2.26) παίρνει τη μορφή: P 1 p Pp 4 30 Οπότε η λύση της εξίσωσης Lyapunov δίνει τη διασπορά λάθους εκτίμησης στη μόνιμη κατάσταση, που είναι: P P 40 e p Στο Σχήμα 2.3 παρουσιάζεται η διασπορά λάθους εκτίμησης για μικρή αρχική αβεβαιότητα ( P 0 10 ) και για μεγάλη αρχική αβεβαιότητα ( P ).

31 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 41 Σχήμα 2.3. Άπειρος θόρυβος μετρήσεων στο φίλτρο Kalman. Διασπορά λάθους εκτίμησης για μικρή και μεγάλη αρχική αβεβαιότητα για το Παράδειγμα 2.3. Παρατήρηση 1. Η διασπορά λάθους εκτίμησης τείνει στη διασπορά λάθους εκτίμησης στη μόνιμη κατάσταση ανεξάρτητα από την αρχική αβεβαιότητα. Παρατήρηση 2. Όταν η αρχική αβεβαιότητα είναι μικρή ( P 0 0 ), τότε η εκτίμηση της κατάστασης γίνεται χειρότερη όσο περνάει ο χρόνος και μέχρι το χρόνο μόνιμης κατάστασης.

32 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 42 Όταν η αρχική αβεβαιότητα είναι μεγάλη ( P ), τότε η εκτίμηση της κατάστασης γίνεται καλύτερη όσο περνάει ο χρόνος και μέχρι το χρόνο μόνιμης κατάστασης. Παράδειγμα 2.4. Φίλτρο Kalman μόνιμης κατάστασης. Στο παράδειγμα αυτό θεωρείται ένα βαθμωτό χρονικά αμετάβλητο μοντέλο, με παραμέτρους: F 0.5 H 1 Q 1 R 2 Στο Σχήμα 2.4 παρουσιάζονται η κατάσταση και η εκτίμηση. Ο χρόνος μόνιμης κατάστασης είναι kss 8 για εξισώσεις (2.19)-(2.21) υπολογίζονται τα ακόλουθα: Από τις - η διασπορά λάθους πρόβλεψης στη μόνιμη κατάσταση είναι P p - το κέρδος στη μόνιμη κατάσταση είναι K

33 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 43 - η διασπορά λάθους εκτίμησης στη μόνιμη κατάσταση είναι P Από τις εξισώσεις (2.23)-(2.24) υπολογίζονται οι e συντελεστές του φίλτρου Kalman μόνιμης κατάστασης: AKF και BKF Σχήμα 2.4. Φίλτρο Kalman μόνιμης κατάστασης. Κατάσταση και εκτίμηση για το Παράδειγμα 2.4. Παράδειγμα 2.5. Ευαισθησία φίλτρου Kalman. Στο παράδειγμα αυτό θεωρείται ένα βαθμωτό χρονικά αμετάβλητο μοντέλο, με παραμέτρους:

34 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 44 F 0.75 H 1 Q 2 R 1 και αρχικές συνθήκες x0 0 P0 0 Θεωρείται επίσης μία μεταβολή της τάξης του 10% στη μήτρα εξόδου H, δηλαδή H 1.1. Θα εξεταστεί η ευαισθησία του φίλτρου Kalman στη μεταβολή αυτή. Η διασπορά λάθους εκτίμησης εκφράζει την απόδοση του φίλτρου. Επομένως, η διαφορά των διασπορών λάθους εκτίμησης, που οφείλεται σε μεταβολή παραμέτρων, εκφράζει την ευαισθησία του φίλτρου στις μεταβολές αυτές. Στο Σχήμα 2.5 παρουσιάζεται η διασπορά λάθους εκτίμησης για H 1 και H 1.1. Η διαφορά των διασπορών λάθους εκτίμησης διατηρείται σταθερή και σε σημαντικά επίπεδα όσο περνάει ο χρόνος.

35 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 45 Το φίλτρο Kalman είναι αρκετά ευαίσθητο στη μεταβολή της μήτρας εξόδου. Σχήμα 2.5. Ευαισθησία φίλτρου Kalman. Διασπορά λάθους εκτίμησης για μεταβολή της μήτρας εξόδου για το Παράδειγμα 2.5. Παράδειγμα 2.6. Φίλτρο Kalman για περιοδικό μοντέλο.

36 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 46 Στο παράδειγμα αυτό θεωρείται ένα βαθμωτό ( n 1 και m 1) χρονικά μεταβαλλόμενο περιοδικό μοντέλο, όπου ισχύουν όλες οι υποθέσεις και οι μήτρες F( k 1, k) F, H( k 1) H, Q( k) και R( k 1) R είναι περιοδικές. Q Το μοντέλο είναι περιοδικό με περίοδο p 2, με παραμέτρους: F(1,0) 0.8, H(1) 1, Q(0) 2, R(1) 1, F(2,1) 0.6, H(2) 2, Q(1) 5, R(2) 2 και αρχικές συνθήκες x0 0 P0 0 Στο περιοδικό μοντέλο μπορεί να εφαρμοστεί το χρονικά μεταβαλλόμενο φίλτρο Kalman. Στο Σχήμα 2.6 παρουσιάζονται η κατάσταση και η εκτίμηση.

37 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 47 Σχήμα 2.6. Φίλτρο Kalman για περιοδικό μοντέλο. Κατάσταση και εκτίμηση για το Παράδειγμα 2.6. Παράδειγμα 2.7. Χρονικά μεταβαλλόμενο φίλτρο Kalman. Στο παράδειγμα αυτό θεωρείται ένα βαθμωτό ( n 1 και m 1) χρονικά μεταβαλλόμενο περιοδικό μοντέλο με παραμέτρους: F( k 1, k) 0.9 k /100 Hk ( 1) 2 Qk ( ) 1

38 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 48 Rk ( 1) 1 και αρχικές συνθήκες x0 0 P0 0 Στο Σχήμα 2.7 παρουσιάζονται η κατάσταση και η εκτίμηση. Σχήμα 2.7. Χρονικά μεταβαλλόμενο φίλτρο Kalman. Κατάσταση και εκτίμηση για το Παράδειγμα 2.7.

39 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 49 Παράδειγμα 2.8. Φίλτρο Kalman με ακριβείς μετρήσεις. Στο παράδειγμα αυτό θεωρείται ένα βαθμωτό χρονικά αμετάβλητο μοντέλο, με παραμέτρους: F 0.9 H 2 Q 1 R 0 και αρχικές συνθήκες x0 0 P0 0 Στην περίπτωση αυτή ο θόρυβος μετρήσεων είναι μηδέν ( R 0 ), γεγονός που σημάινει ότι όλες οι μετρήσεις είναι ακριβείς. Από τις εξισώσεις του φίλτρου Kalman προκύπτει ότι η διασπορά λάθους εκτίμησης είναι P( k 1/ k 1) 0. Στο Σχήμα 2.8 παρουσιάζονται η κατάσταση και η εκτίμηση, που είναι ίσες μεταξύ τους.

40 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 50 Σχήμα 2.8. Φίλτρο Kalman με ακριβείς μετρήσεις. Κατάσταση και εκτίμηση για το Παράδειγμα 2.8.

41 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 51 function [x,z,tk]=model(f,h,q,r,x0,kmax) % LINEAR MODEL % IME INVARIAN [n,m]=size(h'); w=[]; v=[]; for i=1:n W=sqrt(q(i,i))*randn(1,kmax+1); w=[w W]; end; for i=1:m V=sqrt(r(i,i))*randn(1,kmax+1); v=[v V]; end; X=f*x0+w(:,1:1); Z=h*X+v(:,1:1); x=[x]; z=[z]; for k=2:kmax X=f*X+w(:,k:k); Z=h*X+v(:,k:k); x=[x X]; z=[z Z]; end; Z=h*X+v(:,kmax+1:kmax+1); z=[z Z]; x=[x0 x]; tk=[0:kmax];

42 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 52 function [xest,pest,xpred,ppred,gain] =kalmanfilter(f,h,q,r,x0,p0,kmax,z) % KALMAN FILER % IME INVARIAN [n,m]=size(h'); xe=x0; pe=p0; xest=[xe]; pest=[pe]; xpred=zeros(n,1); ppred=zeros(n,n); gain=zeros(n,m); for k=2:kmax+1 xp=f*xe; pp=q+f*pe*f'; g=pp*h'*inv(h*pp*h'+r); xe=(eye(n)-g*h)*xp+g*z(:,k-1:k-1); pe=(eye(n)-g*h)*pp; xest=[xest xe]; pest=[pest pe]; xpred=[xpred xp]; ppred=[ppred pp]; gain=[gain g]; end;

43 ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 53 RUDOLF KALMAN O Rudolf Kalman γεννήθηκε στη Βουδαπέστη της Ουγγαρίας το Έλαβε δίπλωμα Ηλεκτρολόγου Μηχανικού από το Massachusetts Institute of echnology το 1953 και μεταπτυχιακό δίπλωμα Ηλεκτρολόγου Μηχανικού από το Massachusetts Institute of echnology το Έλαβε διδακτορικό δίπλωμα από το Columbia University το Διατέλεσε Ερευνητής Μαθηματικός στο Research Institute for Advanced Study στη Baltimore ( ), Καθηγητής στο Stanford University ( ), Διευθυντής στο Center for Mathematical System heory του University of Florida ( ) και κατέχει (από το 1973) την έδρα Mathematical System heory στο Swiss Federal Institute of echnology. Βραβεύτηκε με το IEEE Medal of Honor (1974), το IEEE Centennial Medal (1984), το Kyoto Prize in High echnology (1985), το Steele Prize (1987), το Bellman Prize (1997) και το NAE Charles Stark Draper Prize (2008). Είναι μέλος της Ακαδημίας Επιστημών των Η.Π.Α, της Ουγγαρίας, της Γαλλίας και της Ρωσίας.

Το πρόβλημα του φιλτραρίσματος είναι να υπολογιστεί η βέλτιστη εκτίμηση. μέχρι και τη χρονική στιγμή k. Η εκτίμηση είναι:

Το πρόβλημα του φιλτραρίσματος είναι να υπολογιστεί η βέλτιστη εκτίμηση. μέχρι και τη χρονική στιγμή k. Η εκτίμηση είναι: 1 2. ΦΙΛΤΡΟ KALMAN 2.1.ΧΡΟΝΙΚΑ ΜΕΤΑΒΑΛΛΟΜΕΝΟ ΦΙΛΤΡΟ KALMAN Το πρόβλημα του φιλτραρίσματος είναι να υπολογιστεί η βέλτιστη εκτίμηση (φιλτράρισμα) x( k / k ) της κατάστασης τη χρονική στιγμή δεδομένου του

Διαβάστε περισσότερα

Μια εισαγωγή στο φίλτρο Kalman

Μια εισαγωγή στο φίλτρο Kalman 1 Μια εισαγωγή στο φίλτρο Kalman Το 1960, R.E. Kalman δημόσιευσε το διάσημο έγγραφό του περιγράφοντας μια επαναλαμβανόμενη λύση στο γραμμικό πρόβλημα φιλτραρίσματος διακριτών δεδομένων. Από εκείνη τη στιγμή,

Διαβάστε περισσότερα

, και. είναι σταθερές (χρονικά αμετάβλητες), προκύπτει το χρονικά αμετάβλητο φίλτρο Kalman (Time Invariant Kalman Filter):

, και. είναι σταθερές (χρονικά αμετάβλητες), προκύπτει το χρονικά αμετάβλητο φίλτρο Kalman (Time Invariant Kalman Filter): 1 ΧΡΟΝΙΚΑ ΑΜΕΤΑΒΛΗΤΟ ΦΙΛΤΡΟ KALMAN Για το χρονικά αμετάβλητο μοντέλο, όπου οι μήτρες F( k 1, k) F, H( k 1) H, Q( k) Q και R( k 1) R είναι σταθερές (χρονικά αμετάβλητες), προκύπτει το χρονικά αμετάβλητο

Διαβάστε περισσότερα

E[ (x- ) ]= trace[(x-x)(x- ) ]

E[ (x- ) ]= trace[(x-x)(x- ) ] 1 ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτό το μέρος της πτυχιακής θα ασχοληθούμε λεπτομερώς με το φίλτρο kalman και θα δούμε μια καινούρια έκδοση του φίλτρου πάνω στην εφαρμογή της γραμμικής εκτίμησης διακριτού

Διαβάστε περισσότερα

ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ

ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ 1 ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτό το μέρος της πτυχιακής θα ασχοληθούμε λεπτομερώς με το φίλτρο kalman και θα δούμε μια καινούρια έκδοση του φίλτρου πάνω στην εφαρμογή της γραμμικής εκτίμησης διακριτού

Διαβάστε περισσότερα

E [ -x ^2 z] = E[x z]

E [ -x ^2 z] = E[x z] 1 1.ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτήν την διάλεξη θα πάμε στο φίλτρο με περισσότερες λεπτομέρειες, και θα παράσχουμε μια νέα παραγωγή για το φίλτρο Kalman, αυτή τη φορά βασισμένο στην ιδέα της γραμμικής

Διαβάστε περισσότερα

Kalman Filter Γιατί ο όρος φίλτρο;

Kalman Filter Γιατί ο όρος φίλτρο; Kalman Filter Γιατί ο όρος φίλτρο; Συνήθως ο όρος φίλτρο υποδηλώνει µια διαδικασία αποµάκρυνσης µη επιθυµητών στοιχείων Απότολατινικόόροfelt : το υλικό για το φιλτράρισµα υγρών Στη εποχή των ραδιολυχνίων:

Διαβάστε περισσότερα

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη 7 Nicolas sapatsoulis Βιβλιογραφία Ενότητας Benvenuto []: Κεφάλαιo Wirow

Διαβάστε περισσότερα

Φίλτρο Λαϊνιώτη, Fibonacci ακολουθία και χρυσή τομή ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ. Ειρήνη Καρβουντζή Κοντακιώτου

Φίλτρο Λαϊνιώτη, Fibonacci ακολουθία και χρυσή τομή ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ. Ειρήνη Καρβουντζή Κοντακιώτου ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΒΙΟΙΑΤΡΙΚΉ Φίλτρο Λαϊνιώτη, Fibonacci ακολουθία και χρυσή τομή Ειρήνη Καρβουντζή Κοντακιώτου ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Υπεύθυνη

Διαβάστε περισσότερα

Φίλτρα Kalman. Αναλυτικές μέθοδοι στη Γεωπληροφορική. ιατύπωση του βασικού προβλήματος. προβλήματος. μοντέλο. Πρωτεύων μοντέλο

Φίλτρα Kalman. Αναλυτικές μέθοδοι στη Γεωπληροφορική. ιατύπωση του βασικού προβλήματος. προβλήματος. μοντέλο. Πρωτεύων μοντέλο Φίλτρα Kalman Εξαγωγή των εξισώσεων τους με βάση το κριτήριο ελαχιστοποίησης της Μεθόδου των Ελαχίστων Τετραγώνων. Αναλυτικές Μέθοδοι στη Γεωπληροφορική Μεταπτυχιακό Πρόγραμμα ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ ιατύπωση του

Διαβάστε περισσότερα

Παρεμβολή & πρόγνωση άγνωστης συνάρτησης μέσω σημειακής προσαρμογής

Παρεμβολή & πρόγνωση άγνωστης συνάρτησης μέσω σημειακής προσαρμογής Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2018-2019 Παρεμβολή & πρόγνωση άγνωστης συνάρτησης μέσω σημειακής προσαρμογής (Least squares collocation) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων

Διαβάστε περισσότερα

Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής

Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2016-2017 Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής (Least squares collocation) Χριστόφορος

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 6: Το γραμμικό τετραγωνικό πρόβλημα βέλτιστης Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης

Διαβάστε περισσότερα

προβλήµατος Το φίλτρο Kalman διαφέρει από τα συνηθισµένα προβλήµατα ΜΕΤ σε δύο χαρακτηριστικά: παραµέτρων αγνώστων

προβλήµατος Το φίλτρο Kalman διαφέρει από τα συνηθισµένα προβλήµατα ΜΕΤ σε δύο χαρακτηριστικά: παραµέτρων αγνώστων Φίλτρα Kalman Εξαγωγή των εξισώσεων τους µε βάση το κριτήριο ελαχιστοποίησης της Μεθόδου των Ελαχίστων Τετραγώνων. Αναλυτικές Μέθοδοι στη Γεωπληροφορική Μεταπτυχιακό Πρόγραµµα ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ ιατύπωση του

Διαβάστε περισσότερα

Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αναδροµικός αλγόριθµος ελάχιστων τετραγώνων (RLS Recursive Least Squares)

Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αναδροµικός αλγόριθµος ελάχιστων τετραγώνων (RLS Recursive Least Squares) ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αναδροµικός αλγόριθµος ελάχιστων τετραγώνων RLS Rcrsiv Last Sqars 27 iclas sapatslis

Διαβάστε περισσότερα

Ιδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα

Ιδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα Ιδιάζουσες τιμές πίνακα Επειδή οι πίνακες που παρουσιάζονται στις εφαρμογές είναι μη τετραγωνικοί, υπάρχει ανάγκη να βρεθεί μία μέθοδος που να «μελετά» τους μη τετραγωνικούς με «μεθόδους και ποσά» που

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 11: Στοχαστικός βέλτιστος έλεγχος γραμμικών συστημάτων με χρήση τετραγωνικών κριτηρίων (LQG Problem) Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι: Άσκηση 1: Δύο τυχαίες μεταβλητές Χ και Υ έχουν στατιστικές μέσες τιμές 0 και διασπορές 25 και 36 αντίστοιχα. Ο συντελεστής συσχέτισης των 2 τυχαίων μεταβλητών είναι 0.4. Να υπολογισθούν η διασπορά του

Διαβάστε περισσότερα

Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ

Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή,

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη του Ηλεκτρολόγου Μηχανικού (και στην Τεχνολογία Υπολογιστών;)

Εισαγωγή στην Επιστήμη του Ηλεκτρολόγου Μηχανικού (και στην Τεχνολογία Υπολογιστών;) Εισαγωγή στην Επιστήμη του Ηλεκτρολόγου Μηχανικού (και στην Τεχνολογία Υπολογιστών;) Τι είναι αυτό; 1. Διαλέξεις; 2. Σεμινάριο; 3. Μάθημα; 4. Αλλο; Θεωρία Συστημάτων, Θεωρία Αποφάσεων και (αυτόματος) Έλεγχος

Διαβάστε περισσότερα

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων

Διαβάστε περισσότερα

Συνόρθωση κατά στάδια και αναδρομικοί αλγόριθμοι βέλτιστης εκτίμησης

Συνόρθωση κατά στάδια και αναδρομικοί αλγόριθμοι βέλτιστης εκτίμησης Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2017-2018 Συνόρθωση κατά στάδια και αναδρομικοί αλγόριθμοι βέλτιστης εκτίμησης Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ

Αναγνώριση Προτύπων. Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ Αναγνώριση Προτύπων Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ Χριστόδουλος Χαμζάς Τα περιεχόμενο της παρουσίασης βασίζεται στο βιβλίο: Introduction to Pattern Recognition A Matlab Approach, S. Theodoridis,

Διαβάστε περισσότερα

Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων)

Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων) Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων) Στην πράξη, για πολύ σημαντικές εφαρμογές, γίνονται μετρήσεις τιμών μιας ποσότητας σε μια κλινική, για μια σφυγμομέτρηση,

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 5: Το γραμμικό τετραγωνικό πρόβλημα ρύθμισης (LQ Regulators) Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

Ψηφιακός Έλεγχος. 6 η διάλεξη Σχεδίαση στο χώρο κατάστασης. Ψηφιακός Έλεγχος 1

Ψηφιακός Έλεγχος. 6 η διάλεξη Σχεδίαση στο χώρο κατάστασης. Ψηφιακός Έλεγχος 1 Ψηφιακός Έλεγχος 6 η διάλεξη Σχεδίαση στο χώρο κατάστασης Ψηφιακός Έλεγχος Μέθοδος μετατόπισης ιδιοτιμών Έστω γραμμικό χρονικά αμετάβλητο σύστημα διακριτού χρόνου: ( + ) = + x k Ax k Bu k Εφαρμόζουμε γραμμικό

Διαβάστε περισσότερα

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής Υποθέσεις του Απλού γραμμικού υποδείγματος της Παλινδρόμησης Η μεταβλητή ε t (διαταρακτικός όρος) είναι τυχαία μεταβλητή με μέσο όρο

Διαβάστε περισσότερα

Παρουσίαση 2 η : Αρχές εκτίμησης παραμέτρων Μέρος 1 ο

Παρουσίαση 2 η : Αρχές εκτίμησης παραμέτρων Μέρος 1 ο Εφαρμογές Ανάλυσης Σήματος στη Γεωδαισία Παρουσίαση η : Αρχές εκτίμησης παραμέτρων Μέρος ο Βασίλειος Δ. Ανδριτσάνος Αναπληρωτής Καθηγητής Γεώργιος Χλούπης Επίκουρος Καθηγητής Τμήμα Μηχανικών Τοπογραφίας

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, T ( ) μεταξύ τους ανεξάρτητα. Τότε

Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, T ( ) μεταξύ τους ανεξάρτητα. Τότε Η πολυδιάστατη κανονική κατανομή Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, διανύσματος =, όπου ~ N ( 0, και όλα τα μεταξύ τους ανεξάρτητα Τότε = (,, = ( 0, ( 0, f x f

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

Βιομηχανικοί Ελεγκτές

Βιομηχανικοί Ελεγκτές ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Βιομηχανικοί Ελεγκτές Ενότητα #10: Μοντέρνες Μέθοδοι Αναλογικού Ελέγχου Κωνσταντίνος Αλαφοδήμος Τμήματος Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Προϋποθέσεις Εφαρμογής

Διαβάστε περισσότερα

Θέμα Α Α1. Θεωρία (απόδειξη), σελίδα 253 σχολικού βιβλίου. Έστω x1,

Θέμα Α Α1. Θεωρία (απόδειξη), σελίδα 253 σχολικού βιβλίου. Έστω x1, Πανελληνίων Θέμα Α Α. Θεωρία (απόδειξη), σελίδα 53 σχολικού βιβλίου. Έστω, με. Θα δείξουμε ότι. Πράγματι, στο διάστημα, ικανοποιεί τις προϋποθέσεις του Θ.Μ.Τ. Επομένως, υπάρχει, Επειδή, οπότε έχουμε και,

Διαβάστε περισσότερα

Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2)

Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2) Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2) Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα,

Διαβάστε περισσότερα

Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, T ( ) μεταξύ τους ανεξάρτητα. Τότε

Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, T ( ) μεταξύ τους ανεξάρτητα. Τότε Η πολυδιάστατη κανονική κατανομή Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, διανύσματος X X X ), όπου X ~ N (,) και όλα τα X μεταξύ τους ανεξάρτητα Τότε ( ) (,, ) (, )

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Stochastic Signals Class Estimation Theory. Andreas Polydoros University of Athens Dept. of Physics Electronics Laboratory

Stochastic Signals Class Estimation Theory. Andreas Polydoros University of Athens Dept. of Physics Electronics Laboratory Stochastic Signals Class Estimation Theory Andreas Polydoros University of Athens Dept. of Physics Electronics Laboratory 1 Τι ειναι «Εκτιμηση» (Estimation)? Γενικο Πλαισιο: Θεωρια και Πραξη Συμπερασματων

Διαβάστε περισσότερα

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΒΕΣ 6: ΠΡΟΣΑΡΜΟΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Ακαδηµαϊκό Έτος 26 27, Εαρινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Το

Διαβάστε περισσότερα

Χρήση του φίλτρου Kalman. σε ασύρματο δίκτυο επικοινωνιών

Χρήση του φίλτρου Kalman. σε ασύρματο δίκτυο επικοινωνιών ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΒΙΟΙΑΤΡΙΚΗ Χρήση του φίλτρου Kalman για τον εντοπισμό της θέσης συνδρομητή σε ασύρματο δίκτυο επικοινωνιών Αφροδίτη-Γρηγορία

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου ΙΙ. Άσκηση. γραμμάτων του επιθέτου σας (π.χ. για το επίθετο Κοσματόπουλος, οι αριθμοί α ι θα είναι a

Συστήματα Αυτομάτου Ελέγχου ΙΙ. Άσκηση. γραμμάτων του επιθέτου σας (π.χ. για το επίθετο Κοσματόπουλος, οι αριθμοί α ι θα είναι a Συστήματα Αυτομάτου Ελέγχου ΙΙ Άσκηση Θεωρείστε το σύστημα με συνάρτηση μεταφοράς: Y ( s) a s 4 3 a3s a U ( s) s a όπου οι αριθμοί α ι αντιστοιχούν στους αντίστοιχους αριθμούς των 4 πρώτων γραμμάτων του

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ. Συσχέτιση (Correlation) - Copulas

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ. Συσχέτιση (Correlation) - Copulas ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ Συσχέτιση (Correlation) - Copulas Σημασία της μέτρησης της συσχέτισης Έστω μία εταιρεία που είναι εκτεθειμένη σε δύο μεταβλητές της αγοράς. Πιθανή αύξηση των 2 μεταβλητών

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 9: Γεωμετρία του Χώρου των Μεταβλητών, Υπολογισμός Αντιστρόφου Μήτρας Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις 1. Εισαγωγή Δίνεται η συνάρτηση μεταφοράς = = 1 + 6 + 11 + 6 = + 6 + 11 + 6 =. 2 Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις L = 0 # και L $ % &'

Διαβάστε περισσότερα

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Παρεμβολή και Παρεκβολή Εισαγωγή Ορισμός 6.1 Αν έχουμε στη διάθεσή μας τιμές μιας συνάρτησης

Διαβάστε περισσότερα

Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης

Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης Πιθανότητες & Τυχαία Σήματα Διγαλάκης Βασίλης Τυχαία Σήματα Γενίκευση τυχαίων διανυσμάτων Άπειρο σύνολο πιθανά αριθμήσιμο από τυχαίες μεταβλητές Παραδείγματα τυχαίων σημάτων: Τηλεπικοινωνίες: Σήμα πληροφορίας

Διαβάστε περισσότερα

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1 Τετραγωνικό μοντέλο συνάρτησης Τετραγωνικά μοντέλα Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo Για συνάρτηση μιας

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100 Ποσοτικές Μέθοδοι Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR 50100 Απλή Παλινδρόμηση Η διερεύνηση του τρόπου συμπεριφοράς

Διαβάστε περισσότερα

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Παράδειγμα 1 Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με _ + Σχήμα 1 στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Α) Γράψτε το σύστημα ευθέως κλάδου σε κανονική παρατηρήσιμη μορφή στο χώρο

Διαβάστε περισσότερα

Χρονοσειρές - Μάθημα 8. Μη-γραμμική ανάλυση χρονοσειρών

Χρονοσειρές - Μάθημα 8. Μη-γραμμική ανάλυση χρονοσειρών Χρονοσειρές - Μάθημα 8 Μη-γραμμική ανάλυση χρονοσειρών Γραμμική ανάλυση / Γραμμικά μοντέλα αυτοσυσχέτιση AR μοντέλο ARMA(,q) μοντέλο x x x z z z q q Πλεονεκτήματα:. Απλά. Κανονική διαδικασία, ανεπτυγμένη

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Μοντέλα Στατιστικής Μηχανικής, Κινητικότητα & Ισορροπία Αλυσίδες Markov: Καταστάσεις, Εξισώσεις Μεταβάσεων καθ. Βασίλης Μάγκλαρης

Διαβάστε περισσότερα

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1 Τετραγωνικό μοντέλο συνάρτησης Τετραγωνικά μοντέλα Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Για συνάρτηση μιας

Διαβάστε περισσότερα

Αριθμητική Ανάλυση 4.5 Ιδιοτιμές και ιδιοδιανύσματα πινάκων. Γ. Παπαευαγγέλου, ΕΔΙΠ, ΤΑΤΜ/ΑΠΘ

Αριθμητική Ανάλυση 4.5 Ιδιοτιμές και ιδιοδιανύσματα πινάκων. Γ. Παπαευαγγέλου, ΕΔΙΠ, ΤΑΤΜ/ΑΠΘ Αριθμητική Ανάλυση 4.5 Ιδιοτιμές και ιδιοδιανύσματα πινάκων Γ. Παπαευαγγέλου, ΕΔΙΠ, ΤΑΤΜ/ΑΠΘ 1. Υπενθύμιση έννοιας νόρμας και βασικών ιδιοτήτων της 2. Σπουδαιότητα των ιδιοτιμών και ιδιοδιανυσμάτων πινάκων

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ ΔΕΥΤΕΡΟ - Διανύσματα - Πράξεις με πίνακες - Διαφορικός λογισμός (1D) ΜΑΘΗΜΑΤΙΚΟ ΥΠΟΒΑΘΡΟ

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πίνακες Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Πίνακες Μητρώα Πίνακας: Ορθογώνια διάταξη αριθμών σε γραμμές και στήλες

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα.

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα. Ασκήσεις 0 Ασκήσεις Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα o H -στήλη του P P είναι E αν και μόνο αν η -στήλη του P είναι ιδιοδιάνυσμα του που αντιστοιχεί στην ιδιοτιμή

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Bέλτιστος σχεδιασμός με αντικειμενική συνάρτηση και περιορισμούς

Διαβάστε περισσότερα

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis) Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει

Διαβάστε περισσότερα

Συνόρθωση κατά στάδια και αναδρομικοί αλγόριθμοι βέλτιστης εκτίμησης

Συνόρθωση κατά στάδια και αναδρομικοί αλγόριθμοι βέλτιστης εκτίμησης Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2018-2019 Συνόρθωση κατά στάδια και αναδρομικοί αλγόριθμοι βέλτιστης εκτίμησης Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

Τοπογραφικά Δίκτυα & Υπολογισμοί

Τοπογραφικά Δίκτυα & Υπολογισμοί ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 2: Ανασκόπηση θεωρίας εκτίμησης παραμέτρων και συνόρθωσης παρατηρήσεων Χριστόφορος Κωτσάκης Άδειες

Διαβάστε περισσότερα

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού

Διαβάστε περισσότερα

Συνόρθωση κατά στάδια και αναδρομικοί αλγόριθμοι βέλτιστης εκτίμησης

Συνόρθωση κατά στάδια και αναδρομικοί αλγόριθμοι βέλτιστης εκτίμησης Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2016-2017 Συνόρθωση κατά στάδια και αναδρομικοί αλγόριθμοι βέλτιστης εκτίμησης Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

Πίνακες Ορίζουσες. Πίνακας: ορθογώνια διάταξη αριθμών που αποτελείται από γραμμές και στήλες.

Πίνακες Ορίζουσες. Πίνακας: ορθογώνια διάταξη αριθμών που αποτελείται από γραμμές και στήλες. 1 Πίνακες Ορίζουσες Πίνακας: ορθογώνια διάταξη αριθμών που αποτελείται από γραμμές και στήλες. Παράδειγμα (χορήγηση Βαλασικλοβιρης (αντιυπερτασικό) σε νήπια) Ηλικία (μήνες) Μέσο Cmax (μg/ml) Μέσο βάρος

Διαβάστε περισσότερα

x k Ax k Bu k y k Cx k Du k «άνυσµα καταστάσεων» «άνυσµα εισόδων»

x k Ax k Bu k y k Cx k Du k «άνυσµα καταστάσεων» «άνυσµα εισόδων» ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ ΣΤΟΝ ΧΩΡΟ ΤΩΝ ΚΑΤΑΣΤΑΣΕΩΝ Μία άλλη περιγραφή συστηµάτων διακριτού χρόνου είναι η περιγραφή µέσω των εξισώσεων του «χώρου των καταστάσεων» (state space represetatios)

Διαβάστε περισσότερα

Στοχαστικά Σήματα και Τηλεπικοινωνιές

Στοχαστικά Σήματα και Τηλεπικοινωνιές Στοχαστικά Σήματα και Τηλεπικοινωνιές Ενότητα 5: Προσαρμοστική Επεξεργασία Καθηγητής Κώστας Μπερμπερίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ και Πληροφορικής Σκοποί ενότητας Παρουσίαση των βασικών εννοιών

Διαβάστε περισσότερα

1. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ

1. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ . ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ. Μέγιστα και Ελάχιστα Συναρτήσεων Χωρίς Περιορισμούς Συναρτήσεις μιας Μεταβλητής Εστω f ( x) είναι συνάρτηση μιας μόνο μεταβλητής. Εστω επίσης ότι x είναι ένα σημείο στο πεδίο ορισμού

Διαβάστε περισσότερα

D = / Επιλέξτε, π.χ, το ακόλουθο απλό παράδειγμα: =[IA 1 ].

D = / Επιλέξτε, π.χ, το ακόλουθο απλό παράδειγμα: =[IA 1 ]. 4. Φυλλάδιο Ασκήσεων IV σύντομες λύσεις, ενδεικτικές απαντήσεις πολλαπλής επιλογής 4.. Άσκηση. Χρησιμοποιήστε τη διαδικασία Gauss-Jordan γιά να βρείτε τους αντιστρόφους των παρακάτω πινάκων, αν υπάρχουν.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΧΩΡΟ ΚΑΤΑΣΤΑΣΗΣ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το

Διαβάστε περισσότερα

Δυναμική Μηχανών Ι. Διδάσκων: Αντωνιάδης Ιωάννης. Απόκριση Συστημάτων 1 ου Βαθμού Ελευθερίας, που περιγράφονται από Σ.Δ.Ε.

Δυναμική Μηχανών Ι. Διδάσκων: Αντωνιάδης Ιωάννης. Απόκριση Συστημάτων 1 ου Βαθμού Ελευθερίας, που περιγράφονται από Σ.Δ.Ε. Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Απόκριση Συστημάτων 1 ου Βαθμού Ελευθερίας, που περιγράφονται από Σ.Δ.Ε. 1 ης τάξης Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Απόκριση Συστημάτων

Διαβάστε περισσότερα

HMY 799 1: Αναγνώριση Συστημάτων

HMY 799 1: Αναγνώριση Συστημάτων HMY 799 : Αναγνώριση Συστημάτων Διάλεξη Γραμμική παλινδρόμηση (Linear regression) Εμπειρική συνάρτηση μεταφοράς Ομαλοποίηση (smoothing) Y ( ) ( ) ω G ω = U ( ω) ω +Δ ω γ ω Δω = ω +Δω W ( ξ ω ) U ( ξ) G(

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΑΥΤΟΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ AR(p) Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου ιαφάνεια

Διαβάστε περισσότερα

Απλή Παλινδρόμηση και Συσχέτιση

Απλή Παλινδρόμηση και Συσχέτιση Απλή Παλινδρόμηση και Συσχέτιση Πωλήσεις, Δαπάνες Διαφήμισης και Αριθμός Πωλητών Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) 98 050 6 3 989

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι Επιμέλεια: Ι. Λυχναρόπουλος. Δείξτε ότι ο V R εφοδιασμένος με τις ακόλουθες πράξεις (, a b) + (, d) ( a+, b+ d) και k ( ab, ) ( kakb,

Διαβάστε περισσότερα

3.6 Μεικτά ορισμένα προβλήματα. 2. Γράφοµε τις ανωτέρω σχέσεις για q= 1,... Mσε διανυσµατική µορφή : G λ (3.30)

3.6 Μεικτά ορισμένα προβλήματα. 2. Γράφοµε τις ανωτέρω σχέσεις για q= 1,... Mσε διανυσµατική µορφή : G λ (3.30) . Γράφοµε τις ανωτέρω σχέσεις για q=,... Mσε διανυσµατική µορφή : = G λ (3.30) 3. Επειδή ισχύει παράλληλα και d = G, αντικαθιστώντας το από την 3.30 στην αρχική εξίσωση παίρνοµε : d= G G λ / (3.3) 4. Εάν

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σημάτων

Ψηφιακή Επεξεργασία Σημάτων Ψηφιακή Επεξεργασία Σημάτων Ενότητα 3: Συστήματα Διακριτού Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Συστήματα Διακριτού Χρόνου Εισαγωγή στα Συστήματα Διακριτού Χρόνου Ταξινόμηση Συστημάτων ΔΧ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: Ιανουαρίου 6 Ηµεροµηνία Παράδοσης της Εργασίας από

Διαβάστε περισσότερα

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Γραμμικά Συστήματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Γραμμικό Σύστημα a11x1 + a12x2 + + a1 nxn = b1 a x + a x + +

Διαβάστε περισσότερα

Ενότητα 2: Εισαγωγή στη Θεωρία Βέλτιστου Ελέγχου. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Ενότητα 2: Εισαγωγή στη Θεωρία Βέλτιστου Ελέγχου. Νίκος Καραμπετάκης Τμήμα Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Εισαγωγή στη Θεωρία Βέλτιστου Ελέγχου Νίκος Καραμπετάκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Παναγιώτης Ψαρράκος Αν. Καθηγητής

Παναγιώτης Ψαρράκος Αν. Καθηγητής Ανάλυση Πινάκων Κεφάλαιο 3: Παραγοντοποίηση QR Παναγιώτης Ψαρράκος Αν Καθηγητής ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Εθνικό Μετσόβιο

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 13 ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15 ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 17 1. Εισαγωγή 17 2. Πραγματικές συναρτήσεις διανυσματικής μεταβλητής

Διαβάστε περισσότερα

Σύγχρονος Αυτόματος Έλεγχος. είναι το διάνυσμα ιδιοτιμών του πίνακα Α (Π2)

Σύγχρονος Αυτόματος Έλεγχος. είναι το διάνυσμα ιδιοτιμών του πίνακα Α (Π2) Σύγχρονος Αυτόματος Έλεγχος.Ορισμοί και Χρήσιμες Ιδιότητες (Π) (A) είναι το διάνυσμα ιδιοτιμών του πίνακα Α (Π) x x x... xn (Π3) Η «ιδιότητα του τριγώνου»: για οποιαδήποτε διανύσματα ισχύει x, y ότι x

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 3: Στοχαστικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

Το μοντέλο Perceptron

Το μοντέλο Perceptron Το μοντέλο Perceptron Αποτελείται από έναν μόνο νευρώνα McCulloch-Pitts w j x x 1, x2,..., w x T 1 1 x 2 w 2 Σ u x n f(u) Άνυσμα Εισόδου s i x j x n w n -θ w w 1, w2,..., w n T Άνυσμα Βαρών 1 Το μοντέλο

Διαβάστε περισσότερα

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 5 : Θόρυβος Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Είδη θορύβου Περιγραφή θορύβου Θεώρημα Shannon Hartley Απόδοση ισχύος και εύρους

Διαβάστε περισσότερα

Προσαρμογή καμπύλης με τη μέθοδο των ελαχίστων τετραγώνων

Προσαρμογή καμπύλης με τη μέθοδο των ελαχίστων τετραγώνων Σχολή Χημικών Μηχανικών ΕΜΠ Εισαγωγή στην Χημική Μηχανική, ο εξάμηνο Προσαρμογή καμπύλης με τη μέθοδο των ελαχίστων τετραγώνων Εισαγωγή Με βάση κάποιο δείγμα (Χ,Υ) ζητούμε να εξάγουμε συμπεράσματα για

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 07, 2 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Συμμετρικοί και θετικά ορισμένοι πίνακες. Η ανάλυση Cholesky 2. Νόρμες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY)

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) 3.1 ΘΕΩΡΙΑ-ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση, ή απεικόνιση όπως ονομάζεται διαφορετικά, είναι μια αντιστοίχιση μεταξύ δύο συνόλων,

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 4

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 4 Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Συστημάτων και Αυτομάτου Ελέγχου ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ Διάλεξη 4 Πάτρα 2008 Ντετερμινιστικά Moving Average Μοντέλα Ισχύει:

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Α: Γραμμικά Συστήματα Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες

Διαβάστε περισσότερα