Γενικά Μαθηματικά ΙΙ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Γενικά Μαθηματικά ΙΙ"

Transcript

1 ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 4 η : Όρια και Συνζχεια Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ

2 Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για εκπαιδευτικό υλικό, όπωσ εικόνεσ, που υπόκειται ςε άλλου τφπου άδειασ χριςθσ, θ άδεια χριςθσ αναφζρεται ρθτϊσ. 2

3 Χρηματοδότηςη Το παρόν εκπαιδευτικό υλικό ζχει αναπτυχκεί ςτα πλαίςια του εκπαιδευτικοφ ζργου του διδάςκοντα. Το ζργο «Ανοικτά Ακαδθμαϊκά Μακιματα ςτο Αριςτοτζλειο Πανεπιςτιμιο Θεςςαλονίκθσ» ζχει χρθματοδοτιςει μόνο τθ αναδιαμόρφωςθ του εκπαιδευτικοφ υλικοφ. Το ζργο υλοποιείται ςτο πλαίςιο του Επιχειρθςιακοφ Προγράμματοσ «Εκπαίδευςθ και Δια Βίου Μάκθςθ» και ςυγχρθματοδοτείται από τθν Ευρωπαϊκι Ζνωςθ (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εκνικοφσ πόρουσ. 3

4 κοποί ενότητασ Η επζκταςθ των εννοιϊν των ορίων και τθσ ςυνζχειασ που είναι γνωςτζσ από τα Γενικά μακθματικά 1 επιχειρείται ςτθν ενότθτα αυτι και δίνουμε και πολλά παραδείγματα. Είναι φανερό ότι το κζμα αυτό παρουςιάηει πολλζσ δυςκολίεσ και χρειάηεται προςεκτικι μελζτθ και άςκθςθ από τουσ φοιτθτζσ/τριεσ. 4

5 Περιεχόμενα ενότητασ 1. Όρια 2. Επαναλαμβανόμενα Όρια 3. Συνζχεια 5

6 ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ Όρια

7 Παράδειγμα 1 Ασ υποκζςουμε ότι κζλουμε να υπολογίςουμε το όριο τθσ ςυνάρτθςθσ f(x, y) = 9 x 2 y 2 κοντά ςτθν αρχι των αξόνων. Μποροφμε να ξεκινιςουμε με τον οριςμό ενόσ κφκλου με ακτίνα δ και κζντρο τθν αρχι των αξόνων. Είναι φανερό ότι, θ τιμι τθσ ςυνάρτθςθσ κα πλθςιάηει το 3 (το όριο) με όλο και μεγαλφτερθ ακρίβεια, όςο το δ πλθςιάηει το μθδζν. 7

8 υνζχεια Παρ. 1 Συμβολικά μποροφμε να παραςτιςουμε το παραπάνω αποτζλεςμα με τθ ςχζςθ lim f(x, y) = 3 (x,y) (0,0) Διότι ςφμφωνα με τον οριςμό του ορίου ιςχφει ότι: ΟΡΙΜΟ : Η ςυνάρτθςθ f(x, y) ζχει όριο τον αρικμό k, όταν πλθςιάηουμε το ςθμείο M 0 (x 0, y 0 ) του πεδίου οριςμοφ τθσ D, όταν για κάκε κετικό αρικμό ε, υπάρχει κετικόσ αρικμόσ δ τζτοιοσ ϊςτε για κάκε ςθμείο M(x, y) του πεδίου οριςμοφ τθσ f(x, y) για το οποίο 0 *(x x 0 ) 2 + (y y 0 ) 2 ] 1/2 δ (ι x x 0 δ και y y 0 δ) να ιςχφει θ ανιςότθτα f(x, y) k < ε. lim f(x, y) = k (x,y) (0,0) 8

9 Παράδειγμα 2 Δίνεται θ ςυνάρτθςθ f(x,y)= x2 y 2 x 2 +y 2 Δείξτε ότι το όριο τθσ ςυνάρτθςθσ ςτθν αρχι των αξόνων είναι το μθδζν. 9

10 Επειδι x 2 x 2 + y 2 και y 2 y 2 + x 2 ζχουμε f(x, y) 0 = x2 y 2 (x2 +y 2 ) 2 x 2 +y 2 x 2 +y 2 =(x 2 + y 2 ) και επειδι x 2 + y 2 δ 2 ζχουμε ότι για κάκε ε > 0 υπάρχει δ = ε ζτςι ϊςτε Απόδειξη f(x, y) 0 < δ 2 κζτοντασ δ 2 = ε και εφαρμόηοντασ τον οριςμό του ορίου είναι φανερό ότι lim f(x, y) = 0 (x,y) (0,0) άρα το όριο τθσ f(x, y) όταν (x, y) (0, 0) είναι το μθδζν. 10

11 Σο όριο τησ ςυνάρτηςησ f όταν υπάρχει είναι μοναδικό 1/2 Αν lim (x,y) (x 0,y 0 ) f(x, y) = k 1 και lim (x,y) (x 0,y 0 ) f(x, y) = k 2 ςφμφωνα με τον οριςμό ζχουμε ότι για κάκε ε > 0 υπάρχει περιοχι με ακτίνα δ ϊςτε f 1 k 1 ε 1 και f 2 k 2 ε 2. Από τισ ανιςότθτεσ αυτζσ προκφπτει k 1 k 2 = k 1 f + f k 2 f k 1 + f k 2 2ε. 11

12 Σο όριο τησ ςυνάρτηςησ f όταν υπάρχει είναι μοναδικό 2/2 Γνωρίηουμε από τον οριςμό ότι το ε πρζπει να μπορεί να γίνει οςοδιποτε μικρό, ενϊ θ διαφορά k 1 k 2 ζχει μια ςυγκεκριμζνθ τιμι. Συμπεραίνουμε λοιπόν ότι για να υπάρχουν τα όρια κα πρζπει το k 1 και k 2 να είναι ίςα μεταξφ τουσ. 12

13 χόλιο Η παραπάνω ιδιότθτα του ορίου είναι πολφ χριςιμθ ςτον υπολογιςμό των ορίων μιασ ςυνάρτθςθσ δφο μεταβλθτϊν, επειδι αν καταλιγουν ςε διαφορετικά όρια, τότε το όριο τθσ ςυνάρτθςθσ δεν υπάρχει. Τα διαφορετικά όρια μποροφν να προκφψουν από δφο διαφορετικοφσ τρόπουσ προςζγγιςθσ του ςθμείου (x 0, y 0 ). 13

14 Παράδειγμα 3 Να μελετθκεί το όριο τθσ ςυνάρτθςθσ ςτθν αρχι των αξόνων. f(x,y) = x2 y 2 x 2 +y 2 Απάντηςη: Εάν αντικαταςτιςουμε το y = mx, τότε θ ςυνάρτθςθ οπότε και το f(x,y)= m x2 x 2 +(mx) 2 = m 1+m 2 lim f(x, y) = m (x,y) (0,0) 1+m 2 Άρα το όριο τθσ ςυνάρτθςθσ f δεν υπάρχει γιατί εξαρτάται από τθν καμπφλθ (τθν κλίςθ m) που προςεγγίηουμε το ςθμείο (0, 0) 14

15 Γραφική παράςταςη παρ. 3 15

16 Παράδειγμα 4 Υπάρχει το όριο τθσ ςυνάρτθςθσ ςτθν αρχι των αξόνων; f(x,y)= x y2 x 2 +y 4 Απάντηςη: Αν προςεγγίςουμε τθν αρχι των αξόνων κατά μικοσ τθσ ευκείασ y = x βρίςκουμε ότι το όριο είναι μθδζν, αλλά αν πλθςιάςουμε τθν αρχι κατά μικοσ τθσ καμπφλθσ x = y 2 το όριο είναι 1/2. ϋαρα το όριο τθσ ςυνάρτθςθσ f(x, y) ςτο ςθμείο (0, 0) δεν υπάρχει. 16

17 Ιδιότητεσ των ορίων 1/2 Aν lim (x,y) (x 0,y 0 ) f(x, y) = k 1 και (x,y) (x lim 0,y 0 ) g(x, y) = k 2 τότε, 1) lim [ f(x, y) + g(x, y)] = (x,y) (x 0,y 0 ) lim f(x, y) + (x,y) (x 0,y 0 ) lim 2) οταν k 2 0, lim (x,y) (x 0,y 0 ) (x,y) (x 0,y 0 ) g(x, y) = k 1+ k 2 f(x,y) g(x,y) = 3) lim [ f(x, y) g(x, y)] = (x,y) (x 0,y 0 ) lim (x,y) (x 0,y 0 ) f x, y lim (x,y) (x 0,y 0 ) f(x,y) k1 = lim g(x,y) k 2 (x,y) (x 0,y 0 ) (x,y) (x lim 0,y 0 ) g(x, y) = k 1 k τότε 2, 17

18 Ιδιότητεσ των ορίων 2/2 4) lim (x,y) (x 0,y 0 ) m f(x, y) m = k 1, m N 5) lim (x,y) (x 0,y 0 ) f x, y a = k 1 α, α R 6) όταν f(x, y) 0 lim (x,y) (x 0,y 0 ) f(x, y = k 1 18

19 Οριςμόσ για το όριο ςτο άπειρο 1/2 Αν θ ςυνάρτθςθ f ζχει όριο το μθδζν, τότε θ ςυνάρτθςθ 1/f κα ζχει όριο το άπειρο ±. ΟΡΙΜΟ: Το όριο τθσ ςυνάρτθςθσ f είναι το k όταν πλθςιάηουμε το άπειρο, αν για κάκε οςοδιποτε μικρό ε > 0 υπάρχει δ > 0 τζτοιο ϊςτε για όλα τα ςθμεία M(x, y) του πεδίου οριςμοφ τθσ f, για τα οποία OM > δ, όπου O ζνα ςτακερό ςθμείο, να είναι f(m) k ε. 19

20 Οριςμόσ για το όριο ςτο άπειρο 2/2 Θα λζμε ότι το όριο τθσ ςυνάρτθςθσ f(x, y) ςτο ςθμείο M 0 (x 0, y 0 ) είναι το άπειρο (ι το ) αν lim f(x, y) (ι - ) όταν για (x,y) (x 0,y 0 ) κάκε ζναν οςοδιποτε μεγάλο κετικό αρικμό K, υπάρχει περιοχι π(m 0, δ) του ςθμείου M 0 του πεδίου οριςμοφ τθσ ςυνάρτθςθσ. Ιςχφει επίςθσ ότι το f(m) > K (ι f(m) < K για ) lim f(x, y)= (x,y) (, ) lim f(1/w, 1/z) (w,z) (0,0) 20

21 Παράδειγμα 5 Να βρεκεί το όριο τθσ ςυνάρτθςθσ όταν (x, y) (, ) f(x,y)= x2 + y 2 +2 x 2 +y 2 Απάντηςη: Η ςυνάρτθςθ μπορεί να μεταςχθματιςκεί ςτθν τότε f 1 w, 1 z lim f 1, 1 (x,y) (, ) w z = w2 z 2 w 2 +z 2 =1+2 lim w,z (0,0) w 2 z 2 w 2 +z 2 21

22 υνζχεια Παρ. 5 επειδι το lim w,z (0,0) w 2 z 2 w 2 +z 2 = 0 όπωσ δείξαμε ςε προθγοφμενο παράδειγμα. Επομζνωσ, lim f(x, y) = (x,y) (, ) lim w,z (0,0) f 1, 1 w z = 1 22

23 Προτάςεισ 1/2 Θα διατυπϊςουμε ςτθ ςυνζχεια πζντε προτάςεισ, χωρίσ απόδειξθ. Πρόταςη 1: Εάν ιςχφει f(x, y) < g(x, y) για κάκε (x, y) εντόσ του πεδίου οριςμοφ των ςυναρτιςεων f και g και lim g (x, y) =0 (x,y) (x 0,y 0 ) τότε και lim f(x, y) = 0. (x,y) (x 0,y 0 ) Πρόταςη 2: Αν θ ςυνάρτθςθ f(x, y) μπορεί να γραφεί ωσ f(x, y) = g(x, y)h(x, y) όπου g(x, y) M για κάκε ηεφγοσ τιμϊν (x, y) εντόσ του πεδίου οριςμοφ τθσ g και lim h (x, y) = 0 0, τότε θ f κα τείνει (x,y) (x 0,y 0 ) ςτο μθδζν lim f(x, y) = 0. (x,y) (x 0,y 0 ) 23

24 Προτάςεισ 2/2 Πρόταςη 3: Αν υπάρχει περιοχι π του (x 0, y 0 ) τζτοια ϊςτε για κάκε ςθμείο M(x, y) τθσ π να ιςχφει f(x, y) g(x, y) h(x, y), τότε αν lim f= lim h = l ιςχφει και lim g = l. (x,y) (x 0,y 0 ) (x,y) (x 0,y 0 ) (x,y) (x 0,y 0 ) Πρόταςη 4: Αν θ ςυνάρτθςθ f(x, y) μπορεί, με το μεταςχθματιςμό t = φ(x, y), να μετατραπεί ςε ςυνάρτθςθ μιασ μεταβλθτισ f(t) και αν lim φ(x, y) = t o, τότε ιςχφει θ ςχζςθ (x,y) (x 0,y 0 ) lim f(x, y) = lim f(t) (x,y) (x 0,y 0 ) t t 0 Πρόταςη 5: Αν δεν υπάρχει περιοχι π((x 0, y 0 ), δ) ςτθν οποία θ ςυνάρτθςθ να είναι φραγμζνθ, τότε το όριο τθσ ςυνάρτθςθσ f(x, y) δεν υπάρχει ςτο ςθμείο M 0 (x 0, y 0 ). 24

25 Παρατήρηςη Αξίηει επίςθσ να προςκζςουμε και μια πολφ χριςιμθ παρατιρθςθ. Εαν το όριο μιασ ςυνάρτθςθσ f(x, y) ςτο ςθμείο (x 0, y 0 ) του πεδίου οριςμοφ τθσ είναι lim (x,y) (x 0,y 0 ) f(x, y)= 0 0 ι lim (x,y) (x 0,y 0 ) f(x, y) = δεν μποροφμε να χρθςιμοποιιςουμε για τθν περαιτζρω ανάλυςθ τθσ ςυνάρτθςθσ και τον προςδιοριςμό του ορίου τθσ τον κανόνα L Hopital, όπωσ ςτθν ανάλυςθ των ςυναρτιςεων μιασ μεταβλθτισ 25

26 ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ Επαναλαμβανόμενα Όρια

27 Οριςμόσ Μια ςυνάρτθςθ πολλϊν μεταβλθτϊν μπορεί να προςεγγίςει μια ςυγκεκριμζνθ τιμι, όταν το ςθμείο (x, y) προςεγγίηει το (x 0, y 0 ) διαδοχικά, δθλ. όταν πρϊτα το x x 0 και ςτθ ςυνζχεια το y y 0 ι και αντιςτρόφωσ. Εάν το όριο τθσ f(x, y) υπάρχει όταν το x x 0, τότε ορίηουμε μια νζα ςυνάρτθςθ ϕ(y) = lim x x0 f(x, y). Στθ ςυνζχεια μποροφμε να βροφμε το όριο τθσ ϕ(y) όταν το y y 0 δθλαδι, lim f(x, y) = k 1 y y0 lim x x 0 ι αντίςτροφα μποροφμε πρϊτα να υπολογίςουμε το όριο τθσ ςυνάρτθςθσ f(x, y) όταν το y y 0 και ςτθ ςυνζχεια όταν το x x 0, lim y y 0 lim x x0 f(x, y) = k 2 27

28 Επαναλαμβανόμενα ή διαδοχικά ή πλευρικά όρια Τα όρια αυτά ονομάηονται επαναλαμβανόμενα ι διαδοχικά ι πλευρικά όρια. Με βάςθ όςα ζχουμε αναφζρει μεχρι τϊρα μποροφμε να καταλιξουμε ςε μερικζσ ενδιαφζρουςεσ παρατθριςεισ. 28

29 Παρατηρήςεισ Αν το όριο μιασ ςυνάρτθςθσ υπάρχει και είναι το k, τότε k 1 = k 2 = k, επειδι τα επαναλαμβανόμενα όρια ορίηουν δφο διαφορετικοφσ τρόπουσ προςζγγιςθσ του ςθμείου (x 0, y 0 ). Αν τα διαδοχικά όρια υπάρχουν και είναι ίςα μεταξφ τουσ (k 1 = k 2 ) ι δεν υπάρχουν, τότε το όριο τθσ ςυνάρτθςθσ δεν είναι ςίγουρο ότι υπάρχει, τα διαδοχικά όρια καλφπτουν μόνο δφο από τουσ άπειρουσ τρόπουσ προςζγγιςθσ του ςθμείου (x 0, y 0 ). ϋοταν τα διαδοχικά όρια υπάρχουν και είναι διαφορετικά, το όριο τθσ ςυνάρτθςθσ δεν υπάρχει. 29

30 Παράδειγμα 6 Να βρεκεί το όριο τθσ ςυνάρτθςθσ f(x,y)= x2 y 2 ςτο (x,y) (0,0), x 2 +y 2 αφοφ πρϊτα μεταςχθματιςκεί ςε πολικζσ ςυντεταγμζνεσ. Απαντηςη: Η ςυνάρτθςθ ςε πολικζσ ςυντεταγμζνεσ γίνεται Αφοφ x=rcosκ και y=rsinκ. f(r,κ)= rcosθsinθ 2 Άρα το όριο τθσ f ςε πολικζσ ςυντεταγμζνεσ είναι (ανεξάρτθτα από τθν τιμι τθσ κ) lim r,θ (0,θ) f r, θ 0 30

31 Παράδειγμα 7 Να βρεκεί το όριο τθσ ςυνάρτθςθσ f(x,y)= x y ςτο (x,y) (0,0) x 2 +y 2 αφοφ πρϊτα μεταςχθματιςκεί ςε πολικζσ ςυντεταγμζνεσ. Απαντηςη: Η ςυνάρτθςθ ςε πολικζσ ςυντεταγμζνεσ γίνεται Αφοφ x=rcosκ και y=rsinκ. f(r,κ)= cosθsinθ Άρα το όριο τθσ f δεν υπάρχει γιατί θ τιμι τθσ αλλάηει ανάλογα με τθν τιμι που παίρνει το κ 31

32 Παράδειγμα 8 Να βρεκεί το όριο τθσ ςυνάρτθςθσ f(x,y)= x y ςτο (x,y) (0,0) κάνοντασ x 2 +y 2 χριςθ του οριςμοφ των επαναλαμβανόμενων ορίων και του οριςμοφ του ορίου. Απαντηςη: Από τον οριςμό του ορίου προκφπτει, f x, y 0 = x y x y 0 x 2 + y2 x 2 + y x2 + y 2 2 x 2 + y = 1 2 Αφοφ, x x 2 + y 2 και y x 2 + y 2. Αντίςτοιχα, ο οριςμόσ των επαναλαμβανόμενων ορίων δίνει f(x, y) = 0 lim x 0 lim y 0 Άρα το όριο τθσ f δεν υπάρχει. lim y 0 lim f(x, y) = 0 x 0 32

33 Παράδειγμα 9 Να υπολογιςκοφν τα όρια. x Α) lim 2 y 2 +x 3 +y 3 x,y (0,0) x 2 +y 2 Β) lim x,y (0,0) x + ysin 1 x Απαντηςη: x Α) lim 2 y 2 +x 3 +y 3 (1 n)x = lim 2 +x 3 (1+n) x,y (0,0) x 2 +y 2 x 0 x 2 (1+n 2 ) (1 n)+x(1+n) = lim x 0 (1+n 2 ) = = 1 n 1+n 2 Υποκζτωντασ οτι y=nx. Βλζπουμε ότι το όριο εξαρτάται από το n άρα το όριο δεν υπάρχει. 33

34 υνζχεια Παρ. 9 1/2 Αντίςτοιχο αποτζλεςμα βγάηουμε και αν εκφράςουμε τό όριο Α ςε πολικζσ ςυντεταγμζνεσ. x 2 y 2 + x 3 + y 3 lim x,y (0,0) = lim ρ,θ (0,θ) x 2 + y 2 ρ 2 (cos 2 θ sin 2 θ) + ρ 3 (cos 3 θ + sin 3 θ) = lim ρ,θ (0,θ) [ cos2 θ sin 2 θ + ρ cos 3 θ + sin 3 θ ] Άρα το όριο και πάλι δεν υπάρχει αφοφ εξαρτάται από τθν τιμι του κ. Το ίδιο αποτζλεςμα προκφπτει αν κάνουμε χριςθ του οριςμοφ των επαναλαμβανομζνων ορίων. ρ 2 34

35 υνζχεια Παρ. 9 2/2 Β) Υποκζτωντασ μια εξάρτθςθ y=mx το όριο γίνεται lim x,y (0,0) x + ysin 1 x = lim x 0 x + mxsin 1 x Για να επαλθκεφςουμε τθν ορκότθτα του αποτελζςματοσ, εφαρμόηουμε τον οριςμό του ορίου. = 0 x + ysin 1 x x + y = 2 x 2 + y 2 2δ Αφοφ, x x 2 + y 2 και y x 2 + y 2. Άρα το όριο υπάρχει. 35

36 ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ υνζχεια

37 Οριςμόσ υνζχειασ ΟΡΙΜΟ: Αν (x 0, y 0 ) είναι ζνα ςημείο του πεδίου οριςμοφ D R 2 μιάσ ςυνάρτηςησ f(x, y), θα λζμε ότι η f(x, y) είναι ςυνεχήσ ςτο ςημείο (x 0, y 0 ) αν lim f(x, y)= f(x (x,y) (0,0) 0, y 0 ). Ο οριςμόσ αυτόσ μπορεί να διατυπωκεί και διαφορετικά, π.χ. αν θ ςυνάρτθςθ f(x, y) είναι οριςμζνθ ςτο ςφνολο D R 2, τότε λζμε ότι είναι ςυνεχισ ςτο ςθμείο M 0 (x 0, y 0 ) του D αν για κάκε ε > 0 υπάρχει δ > 0 τζτοιο ϊςτε για όλα τα ςθμεία του ςυνόλου π(m 0, δ) ιςχφει f(x, y) f(x 0, y 0 ) ε. 37

38 υνζχεια Αν το ςθμείο (x 0, y 0 ) είναι εςωτερικό του πεδίου οριςμοφ τθσ f, τότε ο τρόποσ προςζγγιςισ του δεν ζχει περιοριςμοφσ, αλλά αν το ςθμείο (x 0, y 0 ) είναι ςυνοριακό τότε το (x, y) πρζπει να πλθςιάηει το (x 0, y 0 ), ενϊ παράλλθλα κα παραμζνει ςτο εςωτερικό του πεδίου οριςμοφ τθσ. Όταν μια ςυνάρτθςθ είναι ςυνεχισ ςε όλα τα ςθμεία του πεδίου οριςμοφ τθσ D, τότε κα λζμε ότι θ ςυνάρτθςθ f είναι ςυνεχισ ςτο D. 38

39 Αςυνζχεια πρώτου είδουσ Συμβαίνει πολλζσ φορζσ θ ςυνάρτθςθ f(x, y) να ζχει όριο ςτο ςθμείο M 0 D, όπου D είναι το πεδίο οριςμοφ τθσ, αλλά το όριο αυτό να διαφζρει από τθν τιμι τθσ ςυνάρτθςθσ ςτο M 0, lim f(x, y) = λ f(x Μ 0 0, y 0 ). Η αςυνζχεια αυτι λζγεται πρϊτου είδουσ και είναι απαλείψιμθ γιατί μποροφμε να ορίςουμε μια νζα ςυνάρτθςθ που να ζχει τιμι λ ςτο M 0. 39

40 Ιδιότητεσ Εάν οι ςυναρτιςεισ f και g ζχουν κοινό πεδίο οριςμοφ D και θ κάκε μία είναι ςυνεχισ ςτο ςθμείο (x 0, y 0 ) του D, τότε ❶το άκροιςμα f + g και το γινόμενο f g είναι επίςθσ ςυνεχείσ ςυναρτιςεισ ςτο ςθμείο (x 0, y 0 ). ❷το πθλίκο (f/g) αν φυςικά g(x 0, y 0 ) 0, αλλά και οι ςχζςεισ f, 1, f n n f είναι επίςθσ ςυνεχείσ όταν υπάρχουν οι κατάλλθλεσ προχποκζςεισ. 40

41 Θεώρημα ΘΕΩΡΗΜΑ: Εάν η ςυνάρτηςη f είναι ςυνεχήσ ςε ζνα ςυγκεκριμζνο ςημείο M 0 του πεδίου οριςμοφ τησ, τότε υπάρχει πάντοτε μια περιοχή του ςημείου M 0 ςτην οποία η ςυνάρτηςη f είναι φραγμζνη. Η απόδειξθ αυτοφ του κεωριματοσ είναι απλι αφοφ από τον οριςμό ζχουμε ότι για κάκε ε > 0 υπάρχει δ > 0 τζτοιο ϊςτε όλα τα ςθμεία τθσ περιοχισ π(m 0, δ) να ιςχφει θ ςχζςθ άρα f f(m 0 ) < ε f(m 0 ) ε < f < ε + f(m 0 ). Μπορεί επίςθσ να αποδειχκεί ότι, αν θ ςυνάρτθςθ f είναι ςυνεχισ ςε όλα τα ςθμεία ενόσ ςυμπαγοφσ ςυνόλου, τότε οι τιμζσ τθσ ςυνάρτθςθσ ορίηουν ζνα φραγμζνο ςφνολο πραγματικϊν αρικμϊν. 41

42 Παράδειγμα 10 Η ςυνάρτθςθ f(x, y) = 1 + x 2 sin y όταν (x, y) (0, 0) y λ όταν x, y = 0,0 Να προςδιοριςκεί το λ για να είναι θ ςυνάρτθςθ ςυνεχισ ςτο πεδίο οριςμοφ τθσ. 42

43 Απάντηςη Το όριο τθσ ςυνάρτθςθσ ςτο (0, 0) είναι θ μονάδα γιατί, όπωσ γνωρίηουμε, sin y lim = 1 y 0 y Άρα αν το λ = 1 πράγματι θ ςυνάρτθςθ f(x, y) κα είναι ςυνεχισ. Αυτό είναι ζνα παράδειγμα αςυνζχειασ πρϊτου είδουσ, όταν το λ ζχει τιμι διάφορθ τθσ μονάδασ, αλλά θ αςυνζχεια αυτι μπορεί να απαλειφκεί με τον επαναπροςδιοριςμό του λ. 43

44 Να λυθοφν οι αςκήςεισ 1. Να μελετθκεί θ ςυνζχεια τθσ ςυνάρτθςθσ f(x, y) = x y μ x 2 +y 2 όταν (x, y) (0, 0) 0 όταν x, y = (0,0) 2. Να μελετθκεί αν θ ςυνάρτθςθ είναι ςυνεχισ f(x, y) = 1 x 2 y 2 όταν x 2 + y 2 1 exp 1 1 x 2 +y Να μελετθκεί θ ςυνζχεια τθσ ςυνάρτθςθσ f(x, y) = όταν x 2 + y 2 > 1 x y x 2 +y 2 όταν (x, y) (0, 0) 0 όταν x, y = (0,0) 44

45 Βιβλιογραφία 1. Βλάχοσ Λ., Διαφορικόσ Λογιςμόσ Πολλών Μεταβλητών με ςύντομη ειςαγωγή ςτο Mathematica, Εκδ. Τηίολα, Κεφ Finney R. L., Giordano F. R., Weir M. D., Απειροςτικόσ Λογιςμόσ (Ενιαίοσ τόμοσ), Πανεπιςτθμιακζσ Εκδόςεισ Κριτθσ, Κεφ. 1 45

46 ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Σζλοσ Ενότητασ Επεξεργαςία: Φίλιογλου Μαρία Θεςςαλονίκθ, 2014

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 5 η : Μερικι Παράγωγοσ Ι Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 13 η : Επαναλθπτικι Ενότθτα Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 10 η : Εφαρμογζσ Διανυςματικών Συναρτιςεων Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 7 η : Σφνκετεσ Συναρτιςεισ Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ

Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ Λουκάσ Βλάχοσ Τμιμα Φυςικισ Α.Π.Θ. Θεςςαλονίκθ, 2014 Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 11 η : Μζγιςτα και Ελάχιςτα Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Γενικά Μακθματικά ΙΙ

Γενικά Μακθματικά ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Ενότθτα 8 θ : Σειρζσ Taylor και Πεπλεγμζνεσ Συναρτιςεισ Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χριςθσ Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΦΥΕ 14 ΑΚΑΔ. ΕΤΟΣ Η ΕΡΓΑΣΙΑ. Ημερομηνία παράδοςησ: 12 Νοεμβρίου (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 10 μονάδεσ θ κάκε μία)

ΦΥΕ 14 ΑΚΑΔ. ΕΤΟΣ Η ΕΡΓΑΣΙΑ. Ημερομηνία παράδοςησ: 12 Νοεμβρίου (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 10 μονάδεσ θ κάκε μία) ΦΥΕ ΑΚΑΔ. ΕΤΟΣ 007-008 Η ΕΡΓΑΣΙΑ Ημερομηνία παράδοςησ: Νοεμβρίου 007 (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 0 μονάδεσ θ κάκε μία) Άςκηςη α) Να υπολογιςκεί θ προβολι του πάνω ςτο διάνυςμα όταν: (.

Διαβάστε περισσότερα

ΑΝΣΙΣΡΟΦΗ ΤΝΑΡΣΗΗ. f y x y f A αντιςτοιχίηεται ςτο μοναδικό x A για το οποίο. Παρατθριςεισ Ιδιότθτεσ τθσ αντίςτροφθσ ςυνάρτθςθσ 1. Η. f A τθσ f.

ΑΝΣΙΣΡΟΦΗ ΤΝΑΡΣΗΗ. f y x y f A αντιςτοιχίηεται ςτο μοναδικό x A για το οποίο. Παρατθριςεισ Ιδιότθτεσ τθσ αντίςτροφθσ ςυνάρτθςθσ 1. Η. f A τθσ f. .. Αντίςτροφθ ςυνάρτθςθ Ζςτω θ ςυνάρτθςθ : A θ οποία είναι " ". Τότε ορίηεται μια νζα ςυνάρτθςθ, θ μζςω τθσ οποίασ το κάκε ιςχφει y. : A με Η νζα αυτι ςυνάρτθςθ λζγεται αντίςτροφθ τθσ. y y A αντιςτοιχίηεται

Διαβάστε περισσότερα

α) Στο μιγαδικό επίπεδο οι εικόνεσ δφο ςυηυγϊν μιγαδικϊν είναι ςθμεία ςυμμετρικά ωσ προσ τον πραγματικό άξονα

α) Στο μιγαδικό επίπεδο οι εικόνεσ δφο ςυηυγϊν μιγαδικϊν είναι ςθμεία ςυμμετρικά ωσ προσ τον πραγματικό άξονα ΘΕΜΑ Α ΠΑΝΕΛΛΗΝΙΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ ΚΑΙ ΕΠΑΛ ΟΜΑΔΑ Β ΔΕΤΣΕΡΑ 8 ΜΑΪΟΤ ΕΞΕΣΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΣΙΚΑ ΘΕΣΙΚΗ ΚΑΙ ΣΕΧΝΟΛΟΓΙΚΗ ΚΑΣΕΤΘΤΝΗ ΤΝΟΛΟ ΕΛΙΔΩΝ: ΣΕΕΡΙ A. Ζςτω μια ςυνάρτθςθ f θ

Διαβάστε περισσότερα

Βάςεισ Δεδομζνων Ι. Ενότθτα 10: Συνακροιςτικζσ ςυναρτιςεισ. Δρ. Σςιμπίρθσ Αλκιβιάδθσ Σμιμα Μθχανικών Πλθροφορικισ ΣΕ

Βάςεισ Δεδομζνων Ι. Ενότθτα 10: Συνακροιςτικζσ ςυναρτιςεισ. Δρ. Σςιμπίρθσ Αλκιβιάδθσ Σμιμα Μθχανικών Πλθροφορικισ ΣΕ Βάςεισ Δεδομζνων Ι Ενότθτα 10: Συνακροιςτικζσ ςυναρτιςεισ Δρ. Σςιμπίρθσ Αλκιβιάδθσ Άδειεσ Χριςθσ Σο παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για εκπαιδευτικό υλικό, όπωσ εικόνεσ,

Διαβάστε περισσότερα

Aντιπτζριςη (ΕΠ027) Ενότητα 10

Aντιπτζριςη (ΕΠ027) Ενότητα 10 ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Aντιπτζριςη (ΕΠ027) Ενότητα 10: Σακτικι Απλοφ τεπάν-αρκίσ Παρτεμιάν Σμιμα Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ Θεςςαλονίκθσ Άδειεσ Χρήςησ

Διαβάστε περισσότερα

Βάςεισ Δεδομζνων Ι. Ενότητα 12: Κανονικοποίηςη. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ

Βάςεισ Δεδομζνων Ι. Ενότητα 12: Κανονικοποίηςη. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ Βάςεισ Δεδομζνων Ι Ενότητα 12: Κανονικοποίηςη Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

lim x και lim f(β) f(β). (β > 0)

lim x και lim f(β) f(β). (β > 0) . Δίνεται θ παραγωγίςιμθ ςτο * α, β + ( 0 < α < β ) ςυνάρτθςθ f για τθν οποία ιςχφουν: f(α) lim (-) a και lim ( f(β)) = Να δείξετε ότι: α. f(α) < α και f(β) > β β. Αν g() = τότε θ C f και C g ζχουν ζνα

Διαβάστε περισσότερα

Aντιπτζριςθ (ΕΠ027) Ενότθτα 12

Aντιπτζριςθ (ΕΠ027) Ενότθτα 12 ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Aντιπτζριςθ (ΕΠ027) Ενότθτα 12: Σακτικι διπλοφ μικτοφ τεπάν-αρκίσ Παρτεμιάν Σμιμα Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ Θεςςαλονίκθσ Άδειεσ

Διαβάστε περισσότερα

Aντιπτζριςη (ΕΠ027) Ενότητα 6

Aντιπτζριςη (ΕΠ027) Ενότητα 6 ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Aντιπτζριςη (ΕΠ027) Ενότητα 6: Backhand Overhead Clear Στεπάν-Σαρκίσ Παρτεμιάν Τμιμα Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ Θεςςαλονίκθσ Άδειεσ

Διαβάστε περισσότερα

Παράγοντεσ υμμετοχήσ Ενηλίκων ςτην Εκπαίδευςη: Ζητήματα Κινητοποίηςησ και Πρόςβαςησ ςε Οργανωμζνεσ Εκπαιδευτικζσ Δραςτηριότητεσ

Παράγοντεσ υμμετοχήσ Ενηλίκων ςτην Εκπαίδευςη: Ζητήματα Κινητοποίηςησ και Πρόςβαςησ ςε Οργανωμζνεσ Εκπαιδευτικζσ Δραςτηριότητεσ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Παράγοντεσ υμμετοχήσ Ενηλίκων ςτην Εκπαίδευςη: Ζητήματα Κινητοποίηςησ και Πρόςβαςησ ςε Οργανωμζνεσ Εκπαιδευτικζσ Δραςτηριότητεσ Ενότητα 7:

Διαβάστε περισσότερα

Aντιπτζριςη (ΕΠ027) Ενότητα 5

Aντιπτζριςη (ΕΠ027) Ενότητα 5 ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Aντιπτζριςη (ΕΠ027) Ενότητα 5: Lift Στεπάν-Σαρκίσ Παρτεμιάν Τμιμα Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ Θεςςαλονίκθσ Άδειεσ Χρήςησ Το παρόν

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ Ενότθτα 1: Οργάνωςθ μακιματοσ Χατηόπουλοσ Δθμιτρθσ Σχολι Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ

Διαβάστε περισσότερα

Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων

Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Ενότητα 3: υςτιματα ουρϊν αναμονισ Κακθγθτισ Γιάννθσ Γιαννίκοσ χολι Οργάνωςθσ και Διοίκθςθσ Επιχειριςεων Σμιμα Διοίκθςθσ Επιχειριςεων Σκοποί ενότητασ Μελζτθ ςυςτθμάτων

Διαβάστε περισσότερα

Aντιπτζριςη (ΕΠ027) Ενότητα 9

Aντιπτζριςη (ΕΠ027) Ενότητα 9 ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Aντιπτζριςη (ΕΠ027) Ενότητα 9: Drive shots Στεπάν-Σαρκίσ Παρτεμιάν Τμιμα Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ Θεςςαλονίκθσ Άδειεσ Χρήςησ

Διαβάστε περισσότερα

EMUNI A.U.Th. SUMMER SCHOOL

EMUNI A.U.Th. SUMMER SCHOOL ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ EMUNI A.U.Th. SUMMER SCHOOL - 2014 6 η Διάλεξη: Τα ταξίδια των πολιτιςμικών αντικειμζνων Η περιγραφι των εκκεςιακών αντικειμζνων μιασ ζκκεςθσ.

Διαβάστε περισσότερα

Κοινωνική Δημογραφία

Κοινωνική Δημογραφία ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΧΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Κοινωνική Δημογραφία Ενότητα 4 η : Ο πλθκυςμόσ τθσ Ελλάδασ από το 1951 ζωσ το 2001 Όλγα Ιακωβίδου Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ Ενότητα 8: Διά βίου άκλθςθ για υγεία (ευκαμψία) Χατηόπουλοσ Δθμιτρθσ Σχολι Επιςτιμθσ Φυςικισ Αγωγισ

Διαβάστε περισσότερα

Διαγλωςςική Επικοινωνία

Διαγλωςςική Επικοινωνία ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Διαγλωςςική Επικοινωνία Ενότητα 6 : Μετάφραςθ και εκδόςεισ Ελζνθ Καςάπθ Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη

Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

Παράγοντεσ υμμετοχήσ Ενηλίκων ςτην Εκπαίδευςη: Ζητήματα Κινητοποίηςησ και Πρόςβαςησ ςε Οργανωμζνεσ Εκπαιδευτικζσ Δραςτηριότητεσ

Παράγοντεσ υμμετοχήσ Ενηλίκων ςτην Εκπαίδευςη: Ζητήματα Κινητοποίηςησ και Πρόςβαςησ ςε Οργανωμζνεσ Εκπαιδευτικζσ Δραςτηριότητεσ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Παράγοντεσ υμμετοχήσ Ενηλίκων ςτην Εκπαίδευςη: Ζητήματα Κινητοποίηςησ και Πρόςβαςησ ςε Οργανωμζνεσ Εκπαιδευτικζσ Δραςτηριότητεσ Ενότητα 6:

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ Ενότθτα 3: Κοινωνικζσ ικανότθτεσ και «ευ αγωνίηεςκαι» Χατηόπουλοσ Δθμιτρθσ Σχολι Επιςτιμθσ Φυςικισ

Διαβάστε περισσότερα

8 τριγωνομετρία. βαςικζσ ζννοιεσ. γ ςφω. εφω και γ. κεφάλαιο

8 τριγωνομετρία. βαςικζσ ζννοιεσ. γ ςφω. εφω και γ. κεφάλαιο κεφάλαιο 8 τριγωνομετρία Α βαςικζσ ζννοιεσ τθν τριγωνομετρία χρθςιμοποιοφμε τουσ τριγωνομετρικοφσ αρικμοφσ, οι οποίοι ορίηονται ωσ εξισ: θμω = απζναντι κάκετθ πλευρά υποτείνουςα Γ ςυνω = εφω = προςκείμενθ

Διαβάστε περισσότερα

Γενικά Μακθματικά ΙΙ

Γενικά Μακθματικά ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Ενότθτα 1 θ : Μακθματικά και Φυςικι Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χριςθσ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ

Διαβάστε περισσότερα

Ειδικά Θζματα Βάςεων Δεδομζνων

Ειδικά Θζματα Βάςεων Δεδομζνων Ειδικά Θζματα Βάςεων Δεδομζνων Ενότητα 11: Αντικειμενοςτραφήσ και αντικείμενοςχεςιακζσ βάςεισ Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Πλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ςυςτιματα γραμμικϊν εξιςϊςεων

ςυςτιματα γραμμικϊν εξιςϊςεων κεφάλαιο 7 Α ςυςτιματα γραμμικϊν εξιςϊςεων αςικζσ ζννοιεσ Γραμμικά, λζγονται τα ςυςτιματα εξιςϊςεων ςτα οποία οι άγνωςτοι εμφανίηονται ςτθν πρϊτθ δφναμθ. Σα γραμμικά ςυςτιματα με δφο εξιςϊςεισ και δφο

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ Ενότητα 4: Στόχοι τθσ εκπαίδευςθσ Χατηόπουλοσ Δθμιτρθσ Σχολι Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ

Διαβάστε περισσότερα

ΘΕΡΜΟΔΤΝΑΜΙΚΗ IΙ. Ενότθτα 4: Χθμικζσ αντιδράςεισ αερίων τακερά Χθμικισ Ιςορροπίασ Πρότυπθ Ελεφκερθ Ενζργεια

ΘΕΡΜΟΔΤΝΑΜΙΚΗ IΙ. Ενότθτα 4: Χθμικζσ αντιδράςεισ αερίων τακερά Χθμικισ Ιςορροπίασ Πρότυπθ Ελεφκερθ Ενζργεια ΘΕΡΜΟΔΤΝΑΜΙΚΗ IΙ Ενότθτα 4: Χθμικζσ αντιδράςεισ αερίων τακερά Χθμικισ Ιςορροπίασ Πρότυπθ Ελεφκερθ Ενζργεια ογομών Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικών Μθχανικών κοποί ενότθτασ κοπόσ τθσ ενότθτασ αυτισ

Διαβάστε περισσότερα

Κλαςικι Ηλεκτροδυναμικι

Κλαςικι Ηλεκτροδυναμικι Κλαςικι Ηλεκτροδυναμικι Ενότθτα 21: Διάδοςθ θλεκτρομαγνθτικών κυμάτων Ανδρζασ Τερηισ Σχολι Θετικών Επιςτθμών Τμιμα Φυςικισ Σκοποί ενότθτασ Σκοπόσ τθσ ενότθτασ είναι να ςυνεχίςει τθν μελζτθ που αφορά τθν

Διαβάστε περισσότερα

Βάςεισ Δεδομζνων Ι. Ενότητα 4: Μετατροπή ςχήματοσ Ο/Σ ςε ςχεςιακό. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Ρλθροφορικισ ΤΕ

Βάςεισ Δεδομζνων Ι. Ενότητα 4: Μετατροπή ςχήματοσ Ο/Σ ςε ςχεςιακό. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Ρλθροφορικισ ΤΕ Βάςεισ Δεδομζνων Ι Ενότητα 4: Μετατροπή ςχήματοσ Ο/Σ ςε ςχεςιακό Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Ρλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons.

Διαβάστε περισσότερα

ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι

ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι Παράςταςη κινητήσ υποδιαςτολήσ ςφμφωνα με το πρότυπο ΙΕΕΕ Δρ. Χρήστος Ηλιούδης το πρότυπο ΙΕΕΕ 754 ζχει χρθςιμοποιθκεί ευρζωσ ςε πραγματικοφσ υπολογιςτζσ. Το πρότυπο αυτό κακορίηει δφο βαςικζσ μορφζσ κινθτισ

Διαβάστε περισσότερα

ΘΕΡΜΟΔΤΝΑΜΙΚΗ Ι. Ενότθτα 1: Βαςικά χαρακτθριςτικά τθσ Θερμοδυναμικισ. ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν

ΘΕΡΜΟΔΤΝΑΜΙΚΗ Ι. Ενότθτα 1: Βαςικά χαρακτθριςτικά τθσ Θερμοδυναμικισ. ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν ΘΕΡΜΟΔΤΝΑΜΙΚΗ Ι Ενότθτα 1: Βαςικά χαρακτθριςτικά τθσ Θερμοδυναμικισ ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν κοποί ενότθτασ κοπόσ τθσ ενότθτασ αυτισ είναι θ περιγραφι των οριςμϊν και και

Διαβάστε περισσότερα

Ειςαγωγή ςτη διδακτική των γλωςςών

Ειςαγωγή ςτη διδακτική των γλωςςών ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Ειςαγωγή ςτη διδακτική των γλωςςών Ενότητα 5: Μζκοδοι διδαςκαλίασ IV Άννα Μουτι, Α.Π.Θ & Πανεπιςτιμιο Θεςςαλίασ Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό

Διαβάστε περισσότερα

1. Αν θ ςυνάρτθςθ είναι ΠΟΛΤΩΝΤΜΙΚΗ τότε το πεδίο οριςμοφ είναι το διότι για κάκε x θ f(x) δίνει πραγματικό αρικμό.

1. Αν θ ςυνάρτθςθ είναι ΠΟΛΤΩΝΤΜΙΚΗ τότε το πεδίο οριςμοφ είναι το διότι για κάκε x θ f(x) δίνει πραγματικό αρικμό. ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΑ ΝΑ ΒΡΙΚΟΤΜΕ ΣΟ ΠΕΔΙΟ ΟΡΙΜΟΤ ΤΝΑΡΣΗΗ Για να οριςκεί μια ςυνάρτθςθ πρζπει να δοκοφν δφο ςτοιχεία : Σο πεδίο οριςμοφ τθσ Α και Η τιμι τθσ f() για κάκε Α. Οριςμζνεσ φορζσ μασ δίνουν μόνο τον

Διαβάστε περισσότερα

ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q

ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q Ενότητα 7: Φιλολογικζσ και Λογοτεχνικζσ Εξαρτιςεισ / Το Παράδειγμα των Παραβολών Αικατερίνθ Τςαλαμποφνθ

Διαβάστε περισσότερα

Ψθφιακά Ηλεκτρονικά. Ενότθτα 7 : Ελαχιςτοποίθςθ και κωδικοποίθςθ καταςτάςεων Φϊτιοσ Βαρτηιϊτθσ

Ψθφιακά Ηλεκτρονικά. Ενότθτα 7 : Ελαχιςτοποίθςθ και κωδικοποίθςθ καταςτάςεων Φϊτιοσ Βαρτηιϊτθσ Ελλθνικι Δθμοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 7 : Ελαχιςτοποίθςθ και κωδικοποίθςθ καταςτάςεων Φϊτιοσ Βαρτηιϊτθσ 1 Ανοιχτά Ακαδημαϊκά Μαθήματα ςτο ΤΕΙ Ηπείρου Τμιμα

Διαβάστε περισσότερα

Πανεπιςτιμιο Κφπρου ΟΙΚ 223: Μακθματικά για οικονομολόγουσ ΙΙ Διδάςκων:

Πανεπιςτιμιο Κφπρου ΟΙΚ 223: Μακθματικά για οικονομολόγουσ ΙΙ Διδάςκων: Πανεπιςτιμιο Κφπρου ΟΙΚ 3: Μακθματικά για οικονομολόγουσ ΙΙ Διδάςκων: Φάμπιο Αντωνίου τοιχεία Επικοινωνίασ: email: fantoniou@aueb.gr ; fabio@ucy.ac.cy Σθλ:893683 Προςωπικι Ιςτοςελίδα: fantoniou.wordpress.com

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6 η : Μερική Παράγωγος ΙΙ Λουκάς Βλάχος Καθηγητής Αστροφυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Ειςαγωγή ςτη διδακτική των γλωςςών

Ειςαγωγή ςτη διδακτική των γλωςςών ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Ειςαγωγή ςτη διδακτική των γλωςςών Ενότητα 2: Μζκοδοι διδαςκαλίασ I Άννα Μουτι, Α.Π.Θ & Πανεπιςτιμιο Θεςςαλίασ Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ Ενότητα 10: Ψυχοκινθτικι Αγωγι Χατηόπουλοσ Δθμιτρθσ Σχολι Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ

Διαβάστε περισσότερα

Ειδικά Θζματα Βάςεων Δεδομζνων

Ειδικά Θζματα Βάςεων Δεδομζνων Ειδικά Θζματα Βάςεων Δεδομζνων Ενότητα 15: Εξόρυξη Δεδομζνων (Data Mining) Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Πλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ

Διαβάστε περισσότερα

Η γραφικι παράςταςθ τθσ ςυνάρτθςθσ f(x)=αx+β είναι μια ευκεία με εξίςωςθ y=αx+β θ οποία τζμνει τον άξονα των y ςτο ςθμείο Β(0,β) και ζχει κλίςθ λ=α.

Η γραφικι παράςταςθ τθσ ςυνάρτθςθσ f(x)=αx+β είναι μια ευκεία με εξίςωςθ y=αx+β θ οποία τζμνει τον άξονα των y ςτο ςθμείο Β(0,β) και ζχει κλίςθ λ=α. ε καρτεςιανό ςφςτθμα ςυντεταγμζνων Οxy δίνεται ευκεία ε. Σί ονομάηουμε : α) γωνία που ςχθματίηει θ ευκεία ε με τον άξονα xϋx; β) ςυντελεςτι διευκφνςεωσ τθσ ευκείασ ε; ΑΠΑΝΤΗΣΗ α) Παρατιρθςθ β) Παρατιρθςθ

Διαβάστε περισσότερα

Ψθφιακά Ηλεκτρονικά. Ενότθτα 5 : Ανάλυςθ κυκλώματοσ με D και JK FLIP- FLOP Φώτιοσ Βαρτηιώτθσ

Ψθφιακά Ηλεκτρονικά. Ενότθτα 5 : Ανάλυςθ κυκλώματοσ με D και JK FLIP- FLOP Φώτιοσ Βαρτηιώτθσ Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 5 : Ανάλυςθ κυκλώματοσ με D και JK FLIP- FLOP Φώτιοσ Βαρτηιώτθσ 1 Ανοιχτά Ακαδημαϊκά Μαθήματα ςτο ΤΕΙ Ηπείρου Σμιμα

Διαβάστε περισσότερα

Πλαγιογώνια Συςτήματα Συντεταγμζνων Γιϊργοσ Καςαπίδθσ

Πλαγιογώνια Συςτήματα Συντεταγμζνων Γιϊργοσ Καςαπίδθσ Πρόλογοσ το άρκρο αυτό κα δοφμε πωσ διαμορφϊνονται κάποιεσ ζννοιεσ όπωσ το εςωτερικό γινόμενο διανυςμάτων, οι ςυνκικεσ κακετότθτασ και παραλλθλίασ διανυςμάτων και ευκειϊν, ο ςυντελεςτισ διευκφνςεωσ διανφςματοσ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση Συγγραφή:

Διαβάστε περισσότερα

Εκκλθςιαςτικό Δίκαιο ΙΙΙ (Μεταπτυχιακό)

Εκκλθςιαςτικό Δίκαιο ΙΙΙ (Μεταπτυχιακό) ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Εκκλθςιαςτικό Δίκαιο ΙΙΙ (Μεταπτυχιακό) Ενότθτα 1θ: Συςτιματα χωριςμοφ κράτουσ - κρθςκευμάτων Κυριάκοσ Κυριαηόπουλοσ Άδειεσ Χριςθσ Το παρόν

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium V Στατιςτική Συμπεραςματολογία Ι Σημειακζσ Εκτιμήςεισ Διαςτήματα Εμπιςτοςφνησ Στατιςτική Συμπεραςματολογία (Statistical Inference) Το πεδίο τθσ Στατιςτικισ Συμπεραςματολογία,

Διαβάστε περισσότερα

ΘΕΡΜΟΔΤΝΑΜΙΚΗ Ι. Ενότθτα 11: Μεταπτϊςεισ πρϊτθσ και δεφτερθσ τάξθσ. ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν

ΘΕΡΜΟΔΤΝΑΜΙΚΗ Ι. Ενότθτα 11: Μεταπτϊςεισ πρϊτθσ και δεφτερθσ τάξθσ. ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν ΘΕΡΜΟΔΤΝΑΜΙΚΗ Ι Ενότθτα 11: Μεταπτϊςεισ πρϊτθσ και δεφτερθσ τάξθσ ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν κοποί ενότθτασ κοπόσ τθσ ενότθτασ αυτισ είναι θ ειςαγωγι του παράγοντα τθσ «τάξθσ»

Διαβάστε περισσότερα

ΑΝΟΙΧΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΔΙΕΘΝΕΙΣ ΟΙΚΟΝΟΜΙΚΕΣ ΣΧΕΣΕΙΣ

ΑΝΟΙΧΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΔΙΕΘΝΕΙΣ ΟΙΚΟΝΟΜΙΚΕΣ ΣΧΕΣΕΙΣ ΑΝΟΙΧΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΔΙΕΘΝΕΙΣ ΟΙΚΟΝΟΜΙΚΕΣ ΣΧΕΣΕΙΣ Γιώργος Ν. Μαγούλιος, Κακθγθτις Τμιμα Λογιστικής & Χρηματοοικονομικής Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative

Διαβάστε περισσότερα

Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R

Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R Ενότητα 5 η : Η Μζθοδοσ Simplex Παρουςίαςη τησ μεθόδου Κων/νοσ Κουνετάσ, Επίκουροσ Κακθγθτισ Νίκοσ Χατηθςταμοφλου, Υπ. Δρ. Οικονομικισ Επιςτιμθσ

Διαβάστε περισσότερα

Παράςταςη ςυμπλήρωμα ωσ προσ 1

Παράςταςη ςυμπλήρωμα ωσ προσ 1 Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ ΣΤ1 Προςθεςη αφαίρεςη ςτο ΣΤ1 2 ή ΣΤ1 Ονομάηουμε ςυμπλιρωμα ωσ προσ μειωμζνθ βάςθ R ενόσ μθ προςθμαςμζνου αρικμοφ Χ = ( Χ θ-1 Χ θ-2... Χ 0 ) R ζναν άλλον αρικμό Χ'

Διαβάστε περισσότερα

Ειςαγωγή ςτη διδακτική των γλωςςών

Ειςαγωγή ςτη διδακτική των γλωςςών ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Ειςαγωγή ςτη διδακτική των γλωςςών Ενότητα 6: Μζκοδοι διδαςκαλίασ V Τψθλάντθσ Γεϊργιοσ, αναπλθρωτισ κακθγθτισ Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΘΕΡΜΟΔΤΝΑΜΙΚΘ IΙ. Ενότθτα 11: Διαλυτότθτα Ιδανικά διαλφματα ογομών Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικών Μθχανικών

ΘΕΡΜΟΔΤΝΑΜΙΚΘ IΙ. Ενότθτα 11: Διαλυτότθτα Ιδανικά διαλφματα ογομών Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικών Μθχανικών ΘΕΡΜΟΔΤΝΑΜΙΚΘ IΙ Ενότθτα 11: Διαλυτότθτα Ιδανικά διαλφματα ογομών Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικών Μθχανικών κοποί ενότθτασ κοπόσ τθσ ενότθτασ αυτισ είναι o οριςμόσ του ιδανικοφ διαλφματοσ με βάςθ

Διαβάστε περισσότερα

Slide 1. Εισαγωγή στη ψυχρομετρία

Slide 1. Εισαγωγή στη ψυχρομετρία Slide 1 Εισαγωγή στη ψυχρομετρία 1 Slide 2 Σφντομη ειςαγωγή ςτη ψυχρομετρία. Διάγραμμα Mollier (πίεςησ-ενθαλπίασ P-H) Σο διάγραμμα Mollier είναι μία γραφικι παράςταςθ ςε ζναν άξονα ςυντεταγμζνων γραμμϊν

Διαβάστε περισσότερα

ΘΕΜΑΣΑ ΕΞΕΣΑΕΩΝ

ΘΕΜΑΣΑ ΕΞΕΣΑΕΩΝ ΠΕΡΙΒΑΛΛΟΝΣΙΚΗ ΠΟΛΙΣΙΚΗ Τομζασ Ανκρωπιςτικϊν Κοινωνικϊν Επιςτθμϊν και Δικαίου Σχολι Εφαρμοςμζνων Μακθματικϊν και Φυςικϊν Επιςτθμϊν 2012-2013 Διδάσκοντες: Παναγιώτα Ράπτη, Κώστας Θεολόγου ΑΔΕΙΑ ΧΡΗΗ Το

Διαβάστε περισσότερα

ΑΝΩΣΕΡΑ ΜΑΘΗΜΑΣΙΚΑ. Διαφορικόσ και Ολοκληρωτικόσ Λογιςμόσ Δφο ή Περιςςοτζρων Μεταβλητϊν

ΑΝΩΣΕΡΑ ΜΑΘΗΜΑΣΙΚΑ. Διαφορικόσ και Ολοκληρωτικόσ Λογιςμόσ Δφο ή Περιςςοτζρων Μεταβλητϊν ΑΝΩΣΕΡΑ ΜΑΘΗΜΑΣΙΚΑ Διαφορικόσ και Ολοκληρωτικόσ Λογιςμόσ Δφο ή Περιςςοτζρων Μεταβλητϊν 1 υναρτιςεισ Περιςςοτζρων Μεταβλθτϊν Παράδειγμα.(E.F. Dbois S =επιφάνεια ςϊματοσ W =βάροσ ςϊματοσ H =φψοσ ςϊματοσ

Διαβάστε περισσότερα

Αγροτική - Κοινοτική Ανάπτυξη

Αγροτική - Κοινοτική Ανάπτυξη ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΧΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Αγροτική - Κοινοτική Ανάπτυξη Ενότητα 7 η : Σφγχρονα προβλιματα Τοπικισ Ανάπτυξθσ Όλγα Ιακωβίδου, Μαρία Παρταλίδου, Ελζνθ Δθμθτριάδου Άδειεσ

Διαβάστε περισσότερα

Aντιπτζριςη (ΕΠ027) Ενότητα 2

Aντιπτζριςη (ΕΠ027) Ενότητα 2 ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Aντιπτζριςη (ΕΠ027) Ενότητα 2: Λαβι ρακζτασ Στεπάν-Σαρκίσ Παρτεμιάν Τμιμα Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ Θεςςαλονίκθσ Άδειεσ Χρήςησ

Διαβάστε περισσότερα

ΔΙΔΑΚΣΙΚΗ ΣΗ ΠΑΙΔΑΓΩΓΙΚΗ ΓΤΜΝΑΣΙΚΗ ΙΙ

ΔΙΔΑΚΣΙΚΗ ΣΗ ΠΑΙΔΑΓΩΓΙΚΗ ΓΤΜΝΑΣΙΚΗ ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΔΙΔΑΚΣΙΚΗ ΣΗ ΠΑΙΔΑΓΩΓΙΚΗ ΓΤΜΝΑΣΙΚΗ ΙΙ Ενότητα 9: Διδαςκαλία ακλοπαιδιϊν ςτο ςχολείο Χατηόπουλοσ Δθμιτρθσ Σχολι Επιςτιμθσ Φυςικισ Αγωγισ και

Διαβάστε περισσότερα

Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8

Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Διαχείριςθ Μνιμθσ Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Κάκε μεταβλθτι ςχετίηεται με μία κζςθ ςτθν κφρια μνιμθ του υπολογιςτι. Κάκε κζςθ ςτθ μνιμθ ζχει τθ δικι τθσ ξεχωριςτι διεφκυνςθ. Με άμεςθ

Διαβάστε περισσότερα

ΘΕΟΛΟΓΙΑ ΚΑΙΝΗΣ ΔΙΑΘΗΚΗΣ

ΘΕΟΛΟΓΙΑ ΚΑΙΝΗΣ ΔΙΑΘΗΚΗΣ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΘΕΟΛΟΓΙΑ ΚΑΙΝΗΣ ΔΙΑΘΗΚΗΣ Ενότητα 7: Χριςτολογία του κατά Λουκάν Αικατερίνθ Τςαλαμποφνθ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Τεχνολογία Περιβάλλοντοσ: Διαχείριςθ Υγρών Αποβλιτων Ενότθτα 9: Απολφμανςθ. Κορνάροσ Μιχαιλ Πολυτεχνικι Σχολι Τμιμα Χθμικών Μθχανικών

Τεχνολογία Περιβάλλοντοσ: Διαχείριςθ Υγρών Αποβλιτων Ενότθτα 9: Απολφμανςθ. Κορνάροσ Μιχαιλ Πολυτεχνικι Σχολι Τμιμα Χθμικών Μθχανικών Τεχνολογία Περιβάλλοντοσ: Διαχείριςθ Υγρών Αποβλιτων Ενότθτα 9: Απολφμανςθ Κορνάροσ Μιχαιλ Πολυτεχνικι Σχολι Τμιμα Χθμικών Μθχανικών Απολφμανςθ Η εκροι που προζρχεται από πρωτοβάκμια, δευτεροβάκμια ι τριτοβάκμια

Διαβάστε περισσότερα

Διαγλωςςική Επικοινωνία

Διαγλωςςική Επικοινωνία ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Διαγλωςςική Επικοινωνία Ενότητα 7 : Εγκυρότθτα κειμζνου πθγι και αξιολόγθςθ πολλαπλών μεταφράςεων Ελζνθ Καςάπθ Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R

Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R Ενότητα 6 η : Η Μζθοδοσ Μ και η Μζθοδοσ των Δφο Φάςεων Κων/νοσ Κουνετάσ, Επίκουροσ Κακθγθτισ Νίκοσ Χατηθςταμοφλου, Υπ. Δρ. Οικονομικισ Επιςτιμθσ

Διαβάστε περισσότερα

ΘΕΡΜΟΔΤΝΑΜΙΚΗ Ι. Ενότθτα 4: Πρϊτοσ Θερμοδυναμικόσ Νόμοσ. ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν

ΘΕΡΜΟΔΤΝΑΜΙΚΗ Ι. Ενότθτα 4: Πρϊτοσ Θερμοδυναμικόσ Νόμοσ. ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν ΘΕΡΜΟΔΤΝΑΜΙΚΗ Ι Ενότθτα 4: Πρϊτοσ Θερμοδυναμικόσ Νόμοσ ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν κοποί ενότθτασ κοπόσ τθσ ενότθτασ αυτισ είναι θ περιγραφι των οριςμϊν και των κεμελιωδϊν

Διαβάστε περισσότερα

Ειςαγωγι ςτισ Μεταφραςτικζσ Σπουδζσ

Ειςαγωγι ςτισ Μεταφραςτικζσ Σπουδζσ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Ειςαγωγι ςτισ Μεταφραςτικζσ Σπουδζσ Ενότθτα 6 : Θεωρία τθσ μετάφραςθσ Ελζνθ Καςάπθ Άδειεσ Χριςθσ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ

Διαβάστε περισσότερα

ΘΕΟΛΟΓΙΑ ΚΑΙΝΗΣ ΔΙΑΘΗΚΗΣ

ΘΕΟΛΟΓΙΑ ΚΑΙΝΗΣ ΔΙΑΘΗΚΗΣ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΘΕΟΛΟΓΙΑ ΚΑΙΝΗΣ ΔΙΑΘΗΚΗΣ Ενότητα 6: Παφλοσ. Ευαγγζλιο και Νόμοσ Αικατερίνθ Τςαλαμποφνθ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΘΕΡΜΟΔΤΝΑΜΙΚΗ Ι. Ενότθτα 3: Μθδενικόσ Νόμοσ - Ζργο. ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν

ΘΕΡΜΟΔΤΝΑΜΙΚΗ Ι. Ενότθτα 3: Μθδενικόσ Νόμοσ - Ζργο. ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν ΘΕΡΜΟΔΤΝΑΜΙΚΗ Ι Ενότθτα 3: Μθδενικόσ Νόμοσ - Ζργο ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν κοποί ενότθτασ κοπόσ τθσ ενότθτασ αυτισ είναι θ περιγραφι των οριςμϊν και των κεμελιωδϊν εννοιϊν

Διαβάστε περισσότερα

Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό. μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ

Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό. μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ Για τθν ανάδειξθ του κζματοσ κα λφνουμε κάποια προβλιματα

Διαβάστε περισσότερα

Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων

Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Ενότητα 7: Ειςαγωγι ςτο Δυναμικό Προγραμματιςμό Κακθγθτισ Γιάννθσ Γιαννίκοσ Σχολι Οργάνωςθσ και Διοίκθςθσ Επιχειριςεων Τμιμα Διοίκθςθσ Επιχειριςεων Σκοποί ενότητασ

Διαβάστε περισσότερα

Αγροτικι - Κοινοτικι Ανάπτυξθ

Αγροτικι - Κοινοτικι Ανάπτυξθ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΧΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Αγροτικι - Κοινοτικι Ανάπτυξθ Ενότθτα 3 θ : Προςεγγίςεισ και ιςτορικι εξζλιξθ τθσ ανάπτυξθσ Όλγα Ιακωβίδου, Μαρία Παρταλίδου, Ελζνθ Δθμθτριάδου

Διαβάστε περισσότερα

Αγροτικι - Κοινοτικι Ανάπτυξθ

Αγροτικι - Κοινοτικι Ανάπτυξθ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΧΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Αγροτικι - Κοινοτικι Ανάπτυξθ Ενότθτα 2 θ : Ραγκοςμιοποίθςθ και Τοπικι Ανάπτυξθ Πλγα Ιακωβίδου, Μαρία Ραρταλίδου, Ελζνθ Δθμθτριάδου Άδειεσ

Διαβάστε περισσότερα

Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2

Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Δρ. Χρήζηος Ηλιούδης Μθ Προςθμαςμζνοι Ακζραιοι Εφαρμογζσ (ςε οποιαδιποτε περίπτωςθ δεν χρειάηονται αρνθτικοί αρικμοί) Καταμζτρθςθ. Διευκυνςιοδότθςθ.

Διαβάστε περισσότερα

Ειδικζσ Ναυπηγικζσ Καταςκευζσ και Ιςτιοφόρα κάφη (Ε)

Ειδικζσ Ναυπηγικζσ Καταςκευζσ και Ιςτιοφόρα κάφη (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα Σεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνασ Ειδικζσ Ναυπηγικζσ Καταςκευζσ και Ιςτιοφόρα κάφη (Ε) Ενδεικτική επίλυςη άςκηςησ 1 Δρ. Θωμάσ Π. Μαηαράκοσ Τμιμα Ναυπθγϊν Μθχανικϊν ΤΕ Το

Διαβάστε περισσότερα

ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q

ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q Ενότητα 9: Το ιδιαίτερο υλικό του Μτ και Λκ Αικατερίνθ Τςαλαμποφνθ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Αν η ςυνάρτηςη ƒ είναι ςυνεχήσ ςτο να προςδιορίςετε το α.

Αν η ςυνάρτηςη ƒ είναι ςυνεχήσ ςτο να προςδιορίςετε το α. 1 AΣΚΗΣΕΙΣ 1. Να υπολογιςθοφν τα παρακάτω όρια Ι. ΙΙ. ΙΙΙ. Ιν. ν. νι. νιι. νιιι. 2. Να βρεθοφν τα όρια Ι. ΙΙ. 3. Αν ƒ(χ)= α. Να βρείτε το πεδίο οριςμοφ Β. Να βρείτε τα όρια Ι. ΙΙ. 4. Δίνεται η ςυνάρτηςη

Διαβάστε περισσότερα

ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΔΙΕΘΝΕΙΣ ΟΙΚΟΝΟΜΙΚΕΣ ΣΧΕΣΕΙΣ

ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΔΙΕΘΝΕΙΣ ΟΙΚΟΝΟΜΙΚΕΣ ΣΧΕΣΕΙΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΔΙΕΘΝΕΙΣ ΟΙΚΟΝΟΜΙΚΕΣ ΣΧΕΣΕΙΣ Γιώργος Ν. Μαγούλιος, Κακθγθτις Τμιμα Λογιστικής & Χρηματοοικονομικής Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative

Διαβάστε περισσότερα

ΘΕΜΟΔΥΝΑΜΙΚΗ IΙ. Ενότθτα 1: Μερικζσ Γραμμομοριακζσ Ιδιότθτεσ. Σογομϊν Μπογοςιάν Ρολυτεχνικι Σχολι Τμιμα Χθμικϊν Μθχανικϊν

ΘΕΜΟΔΥΝΑΜΙΚΗ IΙ. Ενότθτα 1: Μερικζσ Γραμμομοριακζσ Ιδιότθτεσ. Σογομϊν Μπογοςιάν Ρολυτεχνικι Σχολι Τμιμα Χθμικϊν Μθχανικϊν ΘΕΜΟΔΥΝΑΜΙΚΗ IΙ Ενότθτα 1: Μερικζσ Γραμμομοριακζσ Ιδιότθτεσ Σογομϊν Μπογοςιάν Ρολυτεχνικι Σχολι Τμιμα Χθμικϊν Μθχανικϊν Σκοποί ενότθτασ Σκοπόσ τθσ ενότθτασ αυτισ είναι θ ανάπτυξθ μακθματικϊν ςχζςεων μεταξφ

Διαβάστε περισσότερα

Η θεωρία τησ ςτατιςτικήσ ςε ερωτήςεισ-απαντήςεισ Μέροσ 1 ον (έωσ ομαδοποίηςη δεδομένων)

Η θεωρία τησ ςτατιςτικήσ ςε ερωτήςεισ-απαντήςεισ Μέροσ 1 ον (έωσ ομαδοποίηςη δεδομένων) 1)Πώσ ορύζεται η Στατιςτικό επιςτόμη; Στατιςτικι είναι ζνα ςφνολο αρχϊν και μεκοδολογιϊν για: το ςχεδιαςμό τθσ διαδικαςίασ ςυλλογισ δεδομζνων τθ ςυνοπτικι και αποτελεςματικι παρουςίαςι τουσ τθν ανάλυςθ

Διαβάστε περισσότερα

Βάςεισ Δεδομζνων Λ. Ενότθτα 8: SQL Γλώςςα χειριςμοφ δεδομζνων. Δρ. Σςιμπίρθσ Αλκιβιάδθσ Σμιμα Μθχανικών Πλθροφορικισ ΣΕ

Βάςεισ Δεδομζνων Λ. Ενότθτα 8: SQL Γλώςςα χειριςμοφ δεδομζνων. Δρ. Σςιμπίρθσ Αλκιβιάδθσ Σμιμα Μθχανικών Πλθροφορικισ ΣΕ Βάςεισ Δεδομζνων Λ Ενότθτα 8: SQL Γλώςςα χειριςμοφ δεδομζνων Δρ. Σςιμπίρθσ Αλκιβιάδθσ Άδειεσ Χριςθσ Σο παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για εκπαιδευτικό υλικό, όπωσ

Διαβάστε περισσότερα

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό.

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό. Κωδικοποιητές Ο κωδικοποιθτισ (nor) είναι ζνα κφκλωμα το οποίο διακζτει n γραμμζσ εξόδου και το πολφ μζχρι m = 2 n γραμμζσ ειςόδου και (m 2 n ). Οι ζξοδοι παράγουν τθν κατάλλθλθ λζξθ ενόσ δυαδικοφ κϊδικα

Διαβάστε περισσότερα

HY437 Αλγόριθμοι CAD

HY437 Αλγόριθμοι CAD HY437 Αλγόριθμοι CAD Διδάςκων: Χ. Σωτηρίου http://inf-server.inf.uth.gr/courses/ce437/ 1 Περιεχόμενα Σφνολα και Σχζςεισ Πράξεισ Συνόλων Κατθγορίεσ Σχζςεων Σχζςεισ Ιςοδυναμίασ, Διάταςθσ, Συμβατότθτασ Συναρτιςεισ

Διαβάστε περισσότερα

Βάςεισ Δεδομζνων Ι. Ενότθτα 11: SQL-Ερωτιματα Ομαδοποίθςθσ με υνζνωςθ Πινάκων. Δρ. Σςιμπίρθσ Αλκιβιάδθσ Σμιμα Μθχανικϊν Πλθροφορικισ ΣΕ

Βάςεισ Δεδομζνων Ι. Ενότθτα 11: SQL-Ερωτιματα Ομαδοποίθςθσ με υνζνωςθ Πινάκων. Δρ. Σςιμπίρθσ Αλκιβιάδθσ Σμιμα Μθχανικϊν Πλθροφορικισ ΣΕ Βάςεισ Δεδομζνων Ι Ενότθτα 11: SQL-Ερωτιματα Ομαδοποίθςθσ με υνζνωςθ Πινάκων Δρ. Σςιμπίρθσ Αλκιβιάδθσ Άδειεσ Χριςθσ Σο παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΘΕΟΛΟΓΙΑ ΚΑΙΝΗΣ ΔΙΑΘΗΚΗΣ

ΘΕΟΛΟΓΙΑ ΚΑΙΝΗΣ ΔΙΑΘΗΚΗΣ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΘΕΟΛΟΓΙΑ ΚΑΙΝΗΣ ΔΙΑΘΗΚΗΣ Ενότητα 1: Ειςαγωγι - Ιςτορία ζρευνασ Αικατερίνθ Τςαλαμποφνθ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται ςε

Διαβάστε περισσότερα

Δομθμζνοσ Προγραμματιςμόσ. Βαγγζλθσ Οικονόμου Εργαςτιριο 9

Δομθμζνοσ Προγραμματιςμόσ. Βαγγζλθσ Οικονόμου Εργαςτιριο 9 Δομθμζνοσ Προγραμματιςμόσ Βαγγζλθσ Οικονόμου Εργαςτιριο 9 Συναρτιςεισ Αφαιρετικότθτα ςτισ διεργαςίεσ Συνάρτθςεισ Διλωςθ, Κλιςθ και Οριςμόσ Εμβζλεια Μεταβλθτών Μεταβίβαςθ παραμζτρων ςε ςυναρτιςεισ Συναρτιςεισ

Διαβάστε περισσότερα

Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν:

Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν: Μζθοδος Simplex Η πλζον γνωςτι και περιςςότερο χρθςιμοποιουμζνθ μζκοδοσ για τθν επίλυςθ ενόσ γενικοφ προβλιματοσ γραμμικοφ προγραμματιςμοφ, είναι θ μζκοδοσ Simplex θ οποία αναπτφχκθκε από τον George Dantzig.

Διαβάστε περισσότερα

Βάςεισ Δεδομζνων Ι. Ενότητα 7: Ειςαγωγή ςτην γλώςςα_sql. Δρ. Σςιμπίρθσ Αλκιβιάδθσ Σμιμα Μθχανικϊν Πλθροφορικισ ΣΕ

Βάςεισ Δεδομζνων Ι. Ενότητα 7: Ειςαγωγή ςτην γλώςςα_sql. Δρ. Σςιμπίρθσ Αλκιβιάδθσ Σμιμα Μθχανικϊν Πλθροφορικισ ΣΕ Βάςεισ Δεδομζνων Ι Ενότητα 7: Ειςαγωγή ςτην γλώςςα_sql Δρ. Σςιμπίρθσ Αλκιβιάδθσ Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για εκπαιδευτικό υλικό, όπωσ εικόνεσ,

Διαβάστε περισσότερα

Λαμβάνοντασ υπόψη ότι κατά την πρόςθεςη δφο δυαδικϊν ψηφίων ιςχφει: Κρατοφμενο

Λαμβάνοντασ υπόψη ότι κατά την πρόςθεςη δφο δυαδικϊν ψηφίων ιςχφει: Κρατοφμενο Αριθμητικά κυκλώματα Ημιαθροιστής (Half Adder) Ο ημιαθροιςτήσ είναι ζνα κφκλωμα το οποίο προςθζτει δφο δυαδικά ψηφία (bits) και δίνει ωσ αποτζλεςμα το άθροιςμά τουσ και το κρατοφμενο. Με βάςη αυτή την

Διαβάστε περισσότερα

ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q

ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q Ενότητα 1: Περιγραφι και Λφςεισ που προτάκθκαν Αικατερίνθ Τςαλαμποφνθ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο του Άβακα

Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο του Άβακα Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο του Άβακα Αυτζσ οι οδθγίεσ ζχουν ςτόχο λοιπόν να βοθκιςουν τουσ εκπαιδευτικοφσ να καταςκευάςουν τισ δικζσ τουσ δραςτθριότθτεσ με το μοντζλο του Άβακα. Παρουςίαςη

Διαβάστε περισσότερα

Αυτόνομοι Πράκτορες. Αναφορά Εργασίας Εξαμήνου. Το αστέρι του Aibo και τα κόκαλα του

Αυτόνομοι Πράκτορες. Αναφορά Εργασίας Εξαμήνου. Το αστέρι του Aibo και τα κόκαλα του Αυτόνομοι Πράκτορες Αναφορά Εργασίας Εξαμήνου Το αστέρι του Aibo και τα κόκαλα του Jaohar Osman Η πρόταςθ εργαςίασ που ζκανα είναι το παρακάτω κείμενο : - ξ Aibo αγαπάει πάρα πξλύ ρα κόκαλα και πάμρα ρα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΣΙΚΑ Γ ΓΕΝΙΚΗ ( ΑΠΟ ΘΕΜΑΣΑ ΛΤΚΕΙΩΝ ) ΕΡΩΣΗΕΙ ΩΣΟΤ ΛΑΘΟΤ ΑΝΑΛΤΗ

ΜΑΘΗΜΑΣΙΚΑ Γ ΓΕΝΙΚΗ ( ΑΠΟ ΘΕΜΑΣΑ ΛΤΚΕΙΩΝ ) ΕΡΩΣΗΕΙ ΩΣΟΤ ΛΑΘΟΤ ΑΝΑΛΤΗ ΜΑΘΗΜΑΣΙΚΑ Γ ΓΕΝΙΚΗ ( ΑΠΟ ΘΕΜΑΣΑ ΛΤΚΕΙΩΝ ) ΕΡΩΣΗΕΙ ΩΣΟΤ ΛΑΘΟΤ ΑΝΑΛΤΗ 1. Αν οι ςυναρτιςεισ f και g ζχουν όρια ςτο x πραγματικοφσ αρικμοφσ, δθλαδι lim f( x) l 1 και lim g( x) l 2 με l 1, l 2 IR, τότε lim

Διαβάστε περισσότερα

Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 9 : Διαδικαςία φνκεςθσ Φϊτιοσ Βαρτηιϊτθσ

Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 9 : Διαδικαςία φνκεςθσ Φϊτιοσ Βαρτηιϊτθσ Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 9 : Διαδικαςία φνκεςθσ Φϊτιοσ Βαρτηιϊτθσ 1 Ανοιχτά Σμιμα Ψθφιακά Ηλεκτρονικά Ενότητα 9: Διαδικαςία φνκεςθσ Φϊτιοσ

Διαβάστε περισσότερα

Καταςκευζσ Οπλιςμζνου Σκυροδζματοσ Ι

Καταςκευζσ Οπλιςμζνου Σκυροδζματοσ Ι ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Διαςταςιολόγθςθ πλακϊν από Ο/Σ Γεϊργιοσ Παναγόπουλοσ Τμιμα Πολιτικϊν Μθχανικϊν ΤΕ & Μθχανικϊν Τοπογραφίασ και Γεωπλθροφορικισ ΤΕ (Κατεφκυνςθ ΠΜ) Άδειεσ Χρήςησ Το

Διαβάστε περισσότερα