4. ΕΠΙΛΟΓΗ ΤΗΣ ΜΕΘΟΔΟΥ ΠΡΟΒΛΕΨΗΣ
|
|
- Γαλήνη Ζωγράφου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 4. ΕΠΙΛΟΓΗ ΤΗΣ ΜΕΘΟΔΟΥ ΠΡΟΒΛΕΨΗΣ Πριν από την επιλογή της κατάλληλης μεθόδου πρόβλεψης είναι σκόπιμο να λάβουμε υπ όψη τα παρακάτω ερωτήματα: (α) (β) (γ) (δ) (ε) (ζ) (η) Γιατί χρειαζόμαστε την πρόβλεψη; Ποιός θα την χρησιμοποιήσει; Ποιά είναι τα χαρακτηριστικά των δεδομένων; Ποιά θα είναι η περίοδος πρόβλεψης; Ποιές είναι οι ελάχιστες απαιτήσεις σε δεδομένα; Πόση ακρίβεια απαιτείται; Ποιό θα είναι το κόστος της πρόβλεψης; Ενας σημαντικός παράγοντας που επηρεάζει την επιλογή της μεθόδου πρόβλεψης είναι ο εντοπισμός και η κατανόηση των παρελθόντων επαναληπτικών σχημάτων (patterns) στα δεδομένα. Αν μπορέσουμε να εντοπίσουμε την τάση η/και τις κυκλικές η εποχικές επαναλήψεις, τότε μπορούμε να επιλέξουμε τις κατάλληλες τεχνικές για την αποτελεσματική προέκταση των επαναλήψεων αυτών στο μέλλον. Παράδειγμα 4.1 Στο αρχείο Operating Revenues.MTW περιέχονται δεδομένα για τα λετουργικά έσοδα μιάς επιχείρησης κατά τα έτη (α) Να κάνετε τη γραφική παράσταση της χρονοσειράς. (β) Να υπολογίσετε τη συνάρτηση αυτοσυσχέτισης. (γ) Να κάνετε τη γραφική παράσταση της συνάρτησης αυτοσυσχέτισης. 4.1 Η ΣΥΝΑΡΤΗΣΗ ΑΥΤΟΣΥΣΧΕΤΙΣΗΣ Ανοίγουμε το αρχείο C:\Forecasting Lab Data\Operating Revenues.MTW. Για να κάνουμε τη γραφική παράσταση της χρονοσειράς 1. Από τη γραμμή μενού επιλέγουμε Stat Time Series Time Series Plot. 2. Στο πλαίσιο διαλόγου Time Series Plots που εμφανίζεται επιλέγουμε Simple OK. 3. Στο πλαίσιο διαλόγου Time Series Plots Simple που εμφανίζεται, διπλοπατάμε C1 Operating Revenue από τον αριστερό κατάλογο. 69
2 4. Πατάμε ΟΚ οπότε στο Graph Window παίρνουμε το διάγραμμα Για να υπολογίσουμε τη συνάρτηση αυτοσυσχέτισης και να πάρουμε τη γραφική της παράσταση 1. Από τη γραμμή μενού επιλέγουμε Stat Time Series Autocorrelation. 2. Στο πλαίσιο διαλόγου Autocorrelation Function που εμφανίζεται, διπλοπατάμε C1 Operating Revenue από τον αριστερό κατάλογο. 70
3 3. Πατάμε ΟΚ και η γραφική παράσταση εμφανίζεται στο Graph Window με την ονομασία Autocorrelation function for Operating Revenue. Για να πάρουμε τη συνάρτηση αυτοσυσχέτιση, από τη γραμμή μενού επιλέγουμε Window Session όπου έχουμε 4.2 ΔΟΚΙΜΑΣΙΑ ΥΠΟΘΕΣΕΩΝ Οι δύο πρώτες στήλες (Lag, ACF)είναι οι τιμές του r k για 12 διαδοχικές χρονικές υστερήσεις. Η τρίτη στήλη (T) είναι οι τιμές του στατιστικού για τη δοκιμασία των υποθέσεων rk - k rk - 0 rk t SE( r ) SE( r ) SE( r ) k k k Η0: k 0 με εναλλακτική Η1: k 0, για k 1,2,...,12. Επειδή το δείγμα είναι μεγάλο ( n 46 ) η περιοχή αποδοχής της δοκιμασίας υπολογίζεται προσεγγιστικά από την κανονική κατανομή. Σε επίπεδο σημαντικότητας 71
4 0.05 η περιοχή αποδοχής είναι (-1.96, 1.96). Κατά συνέπεια η αυτοσυχέτιση για χρονικές υστερήσεις 1, 2, 3 και 4 εμφανίζεται στατιστικά σημαντική ενώ για υστερήσεις k 4 οι συντελεστές αυτοσυσχέτισης τείνουν σταδιακά στο μηδέν. Η τέταρτη στήλη (LBQ) είναι οι τιμές του στατιστικού m 2 rk Q n( n 2), k 1 n - k των Ljung-Box το οποίο χρησιμοποιείται για τον έλεγχο της υπόθεσης Η0: 1 0 &... & 0 με εναλλακτική Η1: 1 0 η... η 0, για m 2,...,12. m Κάτω από την Η0, το Q έχει την κατανομή χ 2 με ( m πλήθος εκτιμούμενων παραμέτρων) βαθμούς ελευθερίας. Για παράδειγμα για 12 χρονικές υστερήσεις είναι Q = > = χ 2 με 12 βαθμούς ελευθερίας σε επίπεδο σημαντικότητας = Κατά συνέπεια υπάρχει υψηλού βαθμού αυτοσυσχέτιση και τάση στα δεδομένα. Για το λόγο αυτό θα αφαιρέσουμε την τάση για να δημιουργήσουμε μία στάσιμη χρονοσειρά. 4.3 ΑΦΑΙΡΕΣΗ ΤΗΣ ΤΑΣΗΣ Για να αφαιρέσουμε την τάση 1. Από τη γραμμή μενού επιλέγουμε Stat Time Series Differences. 2. Στο πλαίσιο διαλόγου Differences που εμφανίζεται, διπλοπατάμε C1 Operating Revenue από τον αριστερό κατάλογο και στο πλαίσιο Store differences in: δίνουμε C2. m 3. Πατάμε ΟΚ και οι υπολογισμένες διαφορές εμφανίζονται στη στήλη C2 του Worksheet. 72
5 Από τη γραφική παράσταση της χρονοσειράς των διαφορών (να την κάνετε και μόνοι σας, σαν άσκηση), καθώς και από το διάγραμμα της συνάρτησης αυτοσυσχέτισης (να το κάνετε επίσης), αλλά και από τις τιμές των συντελεστών αυτοσυσχέτισης, 73
6 προκύπτει ότι δεν υπάρχει πλέον τάση. Μόνο ο συντελεστής αυτοσυσχέτισης για υστέρηση 3 έχει την τιμή 0.32 που εμφανίζεται να είναι στατιστικά σημαντική ( 0), ενώ οι συντελεστές αυτοσυσχέτισης για υστέρηση k 3 έχουν τιμές κοντά στο 0. Το γεγονός αυτό θα πρέπει να κινήσει την υποψία μας μήπως υπάρχουν επαναλαμβανόμενα σχήματα στα δεδομένα που θα πρέπει να διερευνηθούν με πιό προηγμένες μεθόδους πρόβλεψης. Παράδειγμα 4.2 Στο αρχείο Marine Sales.MTW περιέχονται τριμηνιαία δεδομένα για πωλήσεων για τα έτη 1984 έως 1996 μιάς επιχείρησης σκαφών αναψυχής. Να διευρευνήσετε την ύπαρξη εποχικότητας στα δεδομένα. 4.4 ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΠΟΧΙΚΟΤΗΤΑΣ Ανοίγουμε το αρχείο C:\Forecasting Lab Data\Marine Sales.MTW. Από τη γραφική παράσταση της χρονοσειράς έχουμε ότι υπάρχουν εποχικές επαναλήψεις. Από τη γραφική παράσταση της συνάρτησης αυτοσυσχέτισης βλέπουμε ότι οι συντελεστές αυτοσυσχέτισης έχουν μεγάλες τιμές σε χρονικές υστερήσεις πολλαπλάσιες του 4. 74
7 Το γεγονός αυτό επιβεβαιώνεται και από τη συνάρτηση αυτοσυσχέτισης όπου οι τιμές των συντελεστών αυτοσυσχέτισης είναι στατιστικά σημαντικές για υστερήσεις πολλαπλάσιες του 4. Κατά συνέπεια υπάρχει εποχικότητα περιόδου 4. 75
8 4.5 ΑΣΚΗΣΕΙΣ ΠΑΡΑΔΕΙΓΜΑ 4.1 Μία επιχείρηση χονδρικής διακινεί τρόφιμα με τα οποία τροφοδοτεί 27 καταστήματα σε μία περιοχή. Η επιχείρηση έχει κατά καιρούς χρησιμοποιήσει διάφορους τρόπους διαφήμισης των προϊόντων της ενώ ποτέ δεν διερεύνησε τα αποτελέσματα των διαφημίσεων αυτών πάνω στον όγκο των πωλήσεών της παρά το γεγονός ότι τα αρμόδια τμήματα λογιστηρίου και μάρκετινγκ κρατάνε επαρκεί στοιχεία για το συγκεκριμένο σκοπό. Πρόσφατα η διοίκηση της επιχείρησης αποφάσισε ότι πρέπει να διερευνηθεί η επίδραση των διαφημίσεων στον όγκο των μηνιαίων πωλήσεων καθώς και η επίδραση που θα έχει η διαφήμιση των ανταγωνιστών της. Τα υπάρχοντα στοιχεία είναι δεδομένα 48 μηνών που περιλαμβάνουν τις μεταβλητές: Πωλήσεις Δαπάνες διαφήμισης σε εφημερίδες Δαπάνες διαφήμισης σε τηλεόραση Κωδικός μήνα (1 = Ιανουάριος, 2 = Φεβρουάριος,...,12 = Δεκέμβριος) Μία σειρά από 11 εικονικές (dummy) μεταβλητές που καταδικνύουν μήνα Διαφήμιση σε εφημερίδες με υστέρηση 1 μήνα Διαφήμιση σε εφημερίδες με υστέρηση 2 μήνες Διαφήμιση σε τηλεόραση με υστέρηση 1 μήνα Διαφήμιση σε τηλεόραση με υστέρηση 2 μήνες Αριθμός μήνα από 1έως 48 Κωδικός 1, 2 η 3 για την διαφήμιση ανταγωνιστών Το σύνολο των δεδομένων υπάρχει στο αρχείο Food Sales.MTW και βρίσκεται στον φάκελο C:\Forecasting Lab Data. Να διερευνηθούν τα δεδομένα για την ύπαρξη επαναλαμβανομένων σχημάτων. 76
5. ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΚΙΝΗΤΟΥΣ ΜΕΣΟΥΣ
5. ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΚΙΝΗΤΟΥΣ ΜΕΣΟΥΣ Κατά την επιλογή της μεθόδου πρόβλεψης, μια καλή στρατηγική αξιολόγησής της περιλαμβάνει το εξής βήματα: (α) Επιλογή της μεθόδου πρόβλεψης με βάση τη διαίσθηση του αρμόδιου
7. ΧΡΟΝΟΣΕΙΡΕΣ ΚΑΙ ΟΙ ΣΥΝΙΣΤΩΣΕΣ ΤΟΥΣ
7. ΧΡΟΝΟΣΕΙΡΕΣ ΚΑΙ ΟΙ ΣΥΝΙΣΤΩΣΕΣ ΤΟΥΣ Πολλές οικονομικές χρονοσειρές αποτελούνται από συνιστώσες οι οποίες όταν μελετηθούν μεμονωμένα μας παρέχουν χρήσιμες πληροφορίες για την κατανόηση της συμπεριφοράς
10. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ
0. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 0. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ Συχνά στην πράξη το μοντέλο της απλής γραμμικής παλινδρόμησης είναι ανεπαρκές για την περιγραφή της μεταβλητότητας που υπάρχει στην εξαρτημένη
11. ΠΑΛΙΝΔΡΟΜΗΣΗ ΜΕ ΔΕΔΟΜΕΝΑ ΧΡΟΝΟΣΕΙΡΩΝ
11. ΠΑΛΙΝΔΡΟΜΗΣΗ ΜΕ ΔΕΔΟΜΕΝΑ ΧΡΟΝΟΣΕΙΡΩΝ 11.1 Η ΔΟΚΙΜΑΣΙΑ DURBIN-WATSON Όταν στη γραμική παλινδρόμηση τα σφάλματα δεν είναι ανεξάρτητα αλλά συμπεριφέρονται σύμγωνα με το μοντέλο 1 όπου = συντελεστής αυτοσυσχέτισης
ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ
ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ Το ενδιαφέρον επικεντρώνεται πάντα στον πληθυσμό Το δείγμα χρησιμεύει για εξαγωγή συμπερασμάτων για τον πληθυσμό π.χ. το ετήσιο εισόδημα των κατοίκων μιας περιοχής Τα στατιστικά
8. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Ι
8. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Ι Απλή γραμμική παλινδρόμηση είναι μία στατιστική μέθοδος που χρησιμοποιείται για τη μελέτη της σχέσης μεταξύ δύο ποσοτικών μεταβλητών εκ των οποίων μία είναι η ανεξάρτητη
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 4ο Διαδικασία των συντελεστών αυτοσυσχέτισης Ονομάζουμε συνάρτηση αυτοσυσχέτισης (autocorrelation function) και συμβολίζεται με τα γράμματα
ΜΑΘΗΜΑ 3ο. Βασικές έννοιες
ΜΑΘΗΜΑ 3ο Βασικές έννοιες Εισαγωγή Βασικές έννοιες Ένας από τους βασικότερους σκοπούς της ανάλυσης των χρονικών σειρών είναι η διενέργεια των προβλέψεων. Στα υποδείγματα αυτά η τρέχουσα τιμή μιας οικονομικής
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΑΥΤΟΣΥΣΧΕΤΙΣΗ (AUTOCORRELATION)
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΑΥΤΟΣΥΣΧΕΤΙΣΗ (AUTOCORRELATION) Μέθοδοςεκθετικήςεξομάλυνσης Μια άλλη τεχνική για δεδομένα με
ΧΡΟΝΟΣΕΙΡΕΣ. Διαχείριση Πληροφοριών
ΧΡΟΝΟΣΕΙΡΕΣ Μία χρονοσειρά είναι ένα σύνολο παρατηρήσεων πάνω σε μία ποσοτική μεταβλητή που συγκεντρώνονται με το πέρασμα του χρόνου. Πρόκειται για δεδομένα πάνω στη συμπεριφορά μιας ή πολλών μεταβλητών
ΣΤΑΤΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΠΡΟΒΛΕΨΗΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΕΡΓΑΣΤΗΡΙAKΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΠΡΟΒΛΕΨΗΣ ΜΕ ΤΟ MINITAB ΙΩΑΝΝΗΣ Ι.ΓΕΡΟΝΤΙΔΗΣ Καθηγητής ΚΑΒΑΛΑ 2009 Ιωάννης Ι.Γεροντίδης,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ Η ΕΠΟΧΙΚΟΤΗΤΑ ΣΤΙΣ ΤΙΜΕΣ ΤΟΥ ΑΝΘΡΑΚΑ, ΤΟΥ ΠΕΤΡΕΛΑΙΟΥ, ΤΟΥ ΧΑΛΥΒΑ ΚΑΙ ΤΟΥ ΧΡΥΣΟΥ Δαμιανού Χριστίνα Διπλωματική
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΡΙΤΟ ΣΥΝΑΡΤΗΣΗ ΑΥΤΟΣΥΣΧΕΤΙΣΗΣ-ΕΛΕΓΧΟΣ ΣΤΑΣΙΜΟΤΗΤΑΣ Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΡΙΤΟ ΣΥΝΑΡΤΗΣΗ ΑΥΤΟΣΥΣΧΕΤΙΣΗΣ-ΕΛΕΓΧΟΣ ΣΤΑΣΙΜΟΤΗΤΑΣ Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου
2. ΕΠΙΛΟΓΗ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ
1. ΕΙΣΑΓΩΓΗ ΣΤΟ SPSS Το SPSS είναι ένα στατιστικό πρόγραμμα γενικής στατιστικής ανάλυσης αρκετά εύκολο στη λειτουργία του. Για να πραγματοποιηθεί ανάλυση χρονοσειρών με τη βοήθεια του SPSS θα πρέπει απαραίτητα
3. ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΔΥΟ Η ΤΡΙΩΝ ΜΕΤΑΒΛΗΤΩΝ
3. ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΔΥΟ Η ΤΡΙΩΝ ΜΕΤΑΒΛΗΤΩΝ 3.1 ΕΙΔΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ Στη στατιστική ανάλυση υπάρχουν δύο βασικές κατηγορίες δεδομένων βάσει των οποίων επιλέγεται και η αντίστοιχη στατιστική μέθοδος.
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΠΡΩΤΟ-ΔΕΥΤΕΡΟ-ΣΤΑΣΙΜΟΤΗΤΑ- ΕΠΟΧΙΚΟΤΗΤΑ-ΚΥΚΛΙΚΗ ΤΑΣΗ ΧΡΗΣΙΜΟΙΟΡΙΣΜΟΙ Χρονολογική Σειρά (χρονοσειρά)
Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές
Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές Εαρινό εξάμηνο 2018-2019 μήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό μήμα, Πανεπιστήμιο
ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ
ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΓΙΑΝΝΗΣ ΦΑΝΟΥΡΓΙΑΚΗΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΣΥΝΕΡΓΑΤΗΣ ΤΕΙ ΚΡΗΤΗΣ ΔΟΜΗ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγή
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 3ο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 3ο Κίβδηλες παλινδρομήσεις Μια από τις υποθέσεις που χρησιμοποιούμε στην ανάλυση της παλινδρόμησης είναι ότι οι χρονικές σειρές που χρησιμοποιούμε
ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ (Time-series Analysis)
ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ (Time-series Analysis) Δρ Ιωάννης Δημόπουλος Καθηγητής Τμήμα Διοίκησης Μονάδων Υγείας και Πρόνοιας -ΤΕΙ Καλαμάτας Τι είναι η χρονολογική σειρά Χρονολογική σειρά ή Χρονοσειρά
Το πρόγραμμα συγχρηματοδοτείται 75% από το Ευρωπαϊκό κοινωνικό ταμείο και 25% από εθνικούς πόρους.
Το πρόγραμμα συγχρηματοδοτείται 75% από το Ευρωπαϊκό κοινωνικό ταμείο και 25% από εθνικούς πόρους. ΓΕΝΙΚΟ ΤΜΗΜΑ ΦΥΣΙΚΗΣ, ΧΗΜΕΙΑΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΕΡΓΑΣΤΗΡΙΑ ΦΥΣΙΚΗΣ ORIGIN ΕΙΣΑΓΩΓΙΚΟ ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ
1. Ποιες είναι οι διαφορές μεταξύ αυτοπαλίνδρομων υποδειγμάτων (AR) και υποδειγμάτων κινητού μέσου (MA);
Ερωτήσεις: 1. Ποιες είναι οι διαφορές μεταξύ αυτοπαλίνδρομων υποδειγμάτων (AR) και υποδειγμάτων κινητού μέσου (MA); Στα αυτοπαλίνδρομα υποδείγματα η τρέχουσα τιμή της y είναι συνάρτηση p υστερήσεων της
Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2)
Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2) Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα,
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 5.1 Αυτοσυσχέτιση: Εισαγωγή Συχνά, η υπόθεση της μη αυτοσυσχέτισης ή σειριακής συσχέτισης
Κεφάλαιο 4: Επιλογή σημείου παραγωγής
Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή διαδικασίας παραγωγής αναγνωρίζει
Στατιστική ΙΙΙ-Εφαρμογές Χρονολογικές Σειρές(Μέθοδοι Εξομάλυνσης ΙΙΙ-Εφαρμογές)
Στατιστική ΙΙΙ-Εφαρμογές Χρονολογικές Σειρές(Μέθοδοι Εξομάλυνσης ΙΙΙ-Εφαρμογές) Γεώργιος Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης Στατιστική ΙΙΙ(ΣΤΑΟ 230) Περιγραφή
Στασιμότητα χρονοσειρών Νόθα αποτελέσματα-spurious regression Ο έλεγχος στασιμότητας είναι απαραίτητος ώστε η στοχαστική ανάλυση να οδηγεί σε ασφαλή
Χρονικές σειρές 12 Ο μάθημα: Έλεγχοι στασιμότητας ΑΝΑΚΕΦΑΛΑΙΩΣΗ: Εκτίμηση παραμέτρων γραμμικών μοντέλων Συνάρτηση μερικής αυτοσυσχέτισης Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ. ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΠΕΜΠΤΟ-ΑΥTOΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ(AR(p))
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΠΕΜΠΤΟ-ΑΥTOΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ(AR(p)) ΑΥTOΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ(AR(p)) O όρος αυτοπαλίνδρομο
ΤΕΛΕΣΤΕΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΑ ΕΡΓΑΛΕΙΑ ΑΝΑΛΥΣΗΣ ΧΡΟΝΟΣΕΙΡΩΝ
ΚΕΦΑΛΑΙΟ 4ο ΧΡΟΝΙΚΟΙ ΤΕΛΕΣΤΕΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΑ ΕΡΓΑΛΕΙΑ ΑΝΑΛΥΣΗΣ ΧΡΟΝΟΣΕΙΡΩΝ 4.1 ΕΙΣΑΓΩΓΗ 4. ΔΙΑΔΙΚΑΣΙΕΣ ΛΕΥΚΟΥ ΘΟΡΥΒΟΥ 4.3 ΥΠΟΔΕΙΓΜΑΤΑ ΤΥΧΑΙΟΥ ΠΕΡΙΠΑΤΟΥ 4.4 Η ΣΥΝΑΡΤΗΣΗ ΑΥΤΟΣΥΣΧΕΤΙΣΗΣ 4.5 ΜΕΡΙΚΗ ΑΥΤΟΣΥΣΧΕΤΙΣΗ
Κεφάλαιο 4: Επιλογή σημείου παραγωγής
Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή
ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE)
ΔΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE) ΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE). Εισαγωγή Οι στατιστικές δοκιμασίες που μελετήσαμε μέχρι τώρα ονομάζονται παραμετρικές (paramtrc) διότι χαρακτηρίζονται από υποθέσεις σχετικές είτε για
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΑΥΤΟΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ AR(p) Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου ιαφάνεια
Ανάλυση Χρονοσειρών. Κεφάλαιο Ανάλυση Χρονοσειρών
Κεφάλαιο 22 Ανάλυση Χρονοσειρών 22.1 Ανάλυση Χρονοσειρών Με τον όρο Χρονοσειρά εννοούµε µια σειρά από παρατηρήσεις που παίρνονται σε ορισµένες χρονικές στιγµές ή περιόδους που ισαπέχουν µεταξύ τους. Υπάρχουν
Ενότητα 15 Μορφοποίηση της Γραφικής Παράστασης
Ενότητα 15 Μορφοποίηση της Γραφικής Παράστασης Ίσως η γραφική σας παράσταση δεν παρουσιάζεται όπως εσείς περιμένατε. Τα εργαλεία που προσφέρει το Excel για δημιουργία γραφικών παραστάσεων είναι ευέλικτα
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΘΕΩΡΙΑΣ-ΣΤΑΣΙΜΕΣ ΔΙΑΔΙΚΑΣΙΕΣ-ΥΠΟΔΕΙΓΜΑΤΑ SARIMA (sp,sd,qs) ARIMA (p,d,q) ΕΠΙΧ - Τεχνικές Προβλέψεων & Ελέγχου
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 13: Επανάληψη Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana 1 Γιατί μελετούμε την Οικονομετρία;
ΣΥΝΙΣΤΩΣΕΣ ΜΙΑΣ ΧΡΟΝΟΣΕΙΡΑΣ
9-1 ΣΥΝΙΣΤΩΣΕΣ ΜΙΑΣ ΧΡΟΝΟΣΕΙΡΑΣ Χρονοσειρά (Time Series) είναι η καταγραφή δεδομένων κατά τη διάρκεια μιας χρονικής περιόδου. Η καταγραφή αυτή μπορεί να είναι ημερήσια, εβδομαδιαία, μηνιαία, τριμηνιαία,
ΦΑΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΠΟΧΙΚΗ ΔΙΟΡΘΩΣΗ ΧΡΟΝΟΛΟΓΙΚΩΝ ΣΕΙΡΩΝ
ΦΑΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΠΟΧΙΚΗ ΔΙΟΡΘΩΣΗ ΧΡΟΝΟΛΟΓΙΚΩΝ ΣΕΙΡΩΝ Υπό Δρος ΔΙΟΝΥΣΙΟΥ Ε. ΚΑΡΑΜΠΑΛΗ Τράπεζα της Ελλάδος 1. ΕΙΣΑΓΩΓΗ Σκοπός της εργασίας αυτής είναι η εξέταση της συμπεριφοράς των χρονολογικών σειρών
Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model)
ΜΑΘΗΜΑ 4 ο 1 Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model) Αυτοσυσχέτιση (Serial Correlation) Lagrange multiplier test of residual
Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ B Δημήτρης Κουγιουμτζής e-mal: dkugu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://uer.auth.gr/~dkugu/teach/cvltraport/dex.html Εφαρμοσμένη Στατιστική:
ΜΑΘΗΜΑ 2 ο. ΗχρήσητουπακέτουEviews (Using Eviews econometric package)
ΜΑΘΗΜΑ 2 ο ΗχρήσητουπακέτουEviews (Using Eviews econometric package) Για να καλέσετε το πρόγραμμα πρέπει να εργαστείτε ως εξής: 1. Κάντε δύο κλικ στο εικονίδιο του Eviews 2. Από την εντολή File πάω στο
Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1)
Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Το πρόβλημα της επιλογής των μέσων διαφήμισης (??) το αντιμετωπίζουν τόσο οι επιχειρήσεις όσο και οι διαφημιστικές εταιρείες στην προσπάθειά τους ν' αναπτύξουν
Χρονολογικές Σειρές (Time Series) Lecture notes Φ.Κουντούρη 2008
Χρονολογικές Σειρές (Time Series) Lecture notes Φ.Κουντούρη 2008 1 Τύποι Οικονομικών Δεδομένων Τα οικονομικά δεδομένα που χρησιμοποιούνται για την εξέταση οικονομικών φαινομένων μπορεί να έχουν τις ακόλουθες
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Μάθημα 2: Mη-στάσιμη χρονοσειρά, έλεγχος μοναδιαίας ρίζας και έλεγχος ανεξαρτησίας
close index close index Μάθημα : Mη-στάσιμη χρονοσειρά, έλεγχος μοναδιαίας ρίζας και έλεγχος ανεξαρτησίας Σταθεροποίηση διασποράς Απαλοιφή τάσης και περιοδικότητας / εποχικότητας Έλεγχοι μοναδιαίας ρίζας
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της
Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21
ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις
Χρονικές σειρές 8 Ο μάθημα: Μοντέλα κινητού μέσου
Χρονικές σειρές 8 Ο μάθημα: Μοντέλα κινητού μέσου Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα, Πανεπιστήμιο
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που
Ευθεία Mayer Θεωρία - Ασκήσεις
1 Ευθεία Mayer Θεωρία - Ασκήσεις Θεωρία 1. Επιλέγουμε ποια είναι η ανεξάρτητη μεταβλητή και ποια η εξαρτημένη και τοποθετούμε τα ζεύγη έτσι ώστε η ανεξάρτητη μεταβλητή να είναι κατά αύξουσα τάξη μεγέθους.
Αρχίζοντας με το ΜΙΝΙΤΑΒ 15
Αρχίζοντας με το ΜΙΝΙΤΑΒ 15 Βήματα: 1. Ανοίγουμε το φύλλο εργασίας (Worksheet) του Minitab 15. 2. Ανοίγουμε το φύλλο εργασίας του Excel με το όνομα data Ν115.xls. 3. Μαρκάρουμε τα δεδομένα μας από το φύλλο
Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α)
Τμήμα Διοίκησης Επιχειρήσεων (Αγ. Νικόλαος), Τ.Ε.Ι. Κρήτης Σελίδα 1 από 15 3η Εργαστηριακή Άσκηση Σκοπός: Η παρούσα εργαστηριακή άσκηση, χρησιμοποιώντας ως δεδομένα τα στοιχεία που προέκυψαν από την 1η
Εργασία στο µάθηµα Ανάλυση εδοµένων
Μεταπτυχιακό Υπολογιστικής Φυσικής Εργασία στο µάθηµα Ανάλυση εδοµένων ηµήτρης Κουγιουµτζής E-mail: dkugiu@gen.auth.gr 31 Ιανουαρίου 2017 Οδηγίες : Σχετικά µε την παράδοση της εργασίας ϑα πρέπει : Το κείµενο
Μηνιαίες Συγκεντρωτικές1 Καταστάσεις1
Μηνιαίες Συγκεντρωτικές1 Καταστάσεις1 Σύντομες Οδηγίες Χρήσης 1/4/2014 Σελίδα 1 από 12 8 2014 Rowega Consulting Ltd. i. ΕΝΕΡΓΟΠΟΙΗΣΗ ΤΗΣ ΕΦΑΡΜΟΓΗΣ Κατά την εκκίνηση της εφαρµογής, εµφανίζεται στην οθόνη
Παράδειγμα. Χρονολογικά δεδομένα. Οι πωλήσεις μιας εταιρείας ανά έτος για το διάστημα (σε χιλιάδες $)
Χρονολογικά δεδομένα Ένα διάγραμμα που παριστάνει την εξέλιξη των τιμών μιας μεταβλητής στο χρόνο χρονόγραμμα (ή χρονοδιάγραμμα). Κύρια μέθοδος παρουσίασης χρονολογικών δεδομένων είναι η πολυγωνική γραμμή
Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:
Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον
Εισαγωγή στην Ανάλυση Δεδομένων
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 09-10-2015 Εισαγωγή στην Ανάλυση Δεδομένων Βασικές έννοιες Αν. Καθ. Μαρί-Νοέλ Ντυκέν ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 30-10-2015 1. Στατιστικοί παράμετροι - Διάστημα εμπιστοσύνης Υπολογισμός
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα
Α. ΟΔΗΓΙΕΣ ΣΤΟ FARMAKONET ΠΡΙΝ ΤΗΝ ΑΠΟΓΡΑΦΗ 1) Θα πρέπει να κάνετε Κλείσιμο Έτους και να δουλεύετε στο τρέχον έτος.
Α. ΟΔΗΓΙΕΣ ΣΤΟ FARMAKONET ΠΡΙΝ ΤΗΝ ΑΠΟΓΡΑΦΗ 1) Θα πρέπει να κάνετε Κλείσιμο Έτους και να δουλεύετε στο τρέχον έτος. 2) Η διαδικασία της απογραφής θα πρέπει να ξεκινήσει και να ολοκληρωθεί σε χρόνο που
Πίνακας περιεχομένων. Κεφάλαιο 1 Λειτουργίες βάσης δεδομένων Κεφάλαιο 2 Συγκεντρωτικοί πίνακες Πρόλογος... 11
Πίνακας περιεχομένων Πρόλογος... 11 Κεφάλαιο 1 Λειτουργίες βάσης δεδομένων...13 1.1 Εισαγωγή... 13 1.2 Δημιουργία βάσης δεδομένων... 14 1.3 Ταξινόμηση βάσης δεδομένων... 16 1.4 Μερικά αθροίσματα... 20
ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΟΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ
ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΟΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΑΝΑΛΥΣΗ ΧΡΟΝΟΛΟΓΙΚΩΝ ΣΕΙΡΩΝ ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΟΥΣ ΣΕ ΕΠΙΧΕΙΡΗΜΑΤΙΚΑ ΔΕΔΟΜΕΝΑ» ΓΙΑΠΙΤΖΑΚΗΣ ΝΙΚΟΛΑΟΣ ΜΑΝΤΑΣ
ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΦΟΡΩΝ
ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΦΟΡΩΝ Ενότητα 4: Time and Frequency Analysis Διδάσκων: Γεώργιος Στεφανίδης Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών Σκοποί ενότητας Για την περιγραφή ενός συστήματος κρίσιμο
Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο
Εισαγωγή στο Γραμμικό Προγραμματισμό Χειμερινό Εξάμηνο 2016-2017 Παράδειγμα προβλήματος ελαχιστοποίησης Μια κατασκευαστική εταιρία κατασκευάζει εξοχικές κατοικίες κοντά σε γνωστά θέρετρα της Εύβοιας Η
Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Κατανομή Δειγματοληψίας του Δειγματικού Μέσου Ο Δειγματικός Μέσος X είναι μια Τυχαία Μεταβλητή. Καθώς η επιλογή και χρήση διαφορετικών δειγμάτων από έναν
ΔΙΕΘΝΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΑΓΟΡΕΣ
ΔΙΕΘΝΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΑΓΟΡΕΣ Ενότητα 18: ΠΡΟΥΠΟΛΟΓΙΣΜΟΙ ΚΑI ΑΡΙΘΜΟΔΕΙΚΤΕΣ ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα.
ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα. Στα παραπάνω ιστογράμματα, παρατηρούμε, ότι αν και υπάρχει διαφορά στη διασπορά των τιμών
Σηµειώσεις Οικονοµετρίας Ι.. ικαίος Τσερκέζος
Ο ΚΕΦΑΛΑΙΙΟ 33 Η ΣΣΥΜΜΕΕΤΤΑΒΛΗΤΤΟΤΤΗΤΤΑ ΤΤΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΜΕΕΓΓΕΕΘΩΝ.. (ΣΣΥΣΣΧΕΕΤΤΙ ( ΙΣΣΗ) ) Γραµµική και Μη Γραµµική Συσχέτιση. Συντελεστής Αυτοσυσχέτισης. Μνήµη Χρονοσειρών. 8 7 6 F F F3 F4 F5 F6 F7
3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ
3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ Πρόβλημα: Ένας ραδιοφωνικός σταθμός ενδιαφέρεται να κάνει μια ανάλυση για τους πελάτες του που διαφημίζονται σ αυτόν για να εξετάσει την ποσοστιαία μεταβολή των πωλήσεων
ΠΛΗΡΟΦΟΡΙΑ & ΔΙΑΙΣΘΗΣΗ
ΠΛΗΡΟΦΟΡΙΑ & ΔΙΑΙΣΘΗΣΗ Η διαίσθησή μας (ικανότητα να αναγνωρίζουμε πρότυπα σχήματα) μόνο δεν επαρκεί αν δεν υπάρχει επιπλέον πληροφορία για τα δεδομένα. Επιπλέον πληροφορία: Τα δεδομένα που ακολουθούν
Πρότυπα βιβλίων εργασίας και ονόματα κελιών
Περιεχόμενα Λίγα λόγια από το συγγραφέα...7 Κεφάλαιο 1: Ρυθμίσεις γραμμών εργαλείων και μενού...9 Κεφάλαιο 2: Διαχείριση παραθύρων και προβολές...25 Κεφάλαιο 3: Εισαγωγή δεδομένων...44 Κεφάλαιο 4: Προσαρμογή
Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής ΑΥΤΟΣΥΣΧΕΤΙΣΗ Στις βασικές υποθέσεις των γραμμικών υποδειγμάτων (απλών και πολλαπλών), υποθέτουμε ότι δεν υπάρχει αυτοσυσχέτιση (autocorrelation
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑΟΓΔΟΟ-ΥΠΟΔΕΙΓΜΑΤΑ ARIMA & ΜΗ ΣΤΑΣΙΜΕΣ ΔΙΑΔΙΚΑΣΙΕΣ ΤΥΧΑΙΑΔΙΑΔΡΟΜΗ (RANDOM WALK) Έστω η αυτοπαλίνδρομη
ΔΕΛΤΙΟ ΤΥΠΟΥ. ΕΡΕΥΝΑ ΕΡΓΑΤΙΚΟΥ ΔΥΝΑΜΙΚΟΥ: Αύγουστος 2016 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΡΧΗ. Πειραιάς, 10 Νοεμβρίου 2016
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΡΧΗ Πειραιάς, 10 Νοεμβρίου ΔΕΛΤΙΟ ΤΥΠΟΥ ΕΡΕΥΝΑ ΕΡΓΑΤΙΚΟΥ ΔΥΝΑΜΙΚΟΥ: Αύγουστος Η Ελληνική Στατιστική Αρχή (ΕΛΣΤΑΤ) ανακοινώνει τον εποχικά προσαρμοσμένο δείκτη ανεργίας
ΣΥΝΘΕΤΑ ΜΟΝΤΕΛΑ. Αριθμητικός Μέσος Εξομάλυνση Μοντελοποίηση. Συνδυασμός κάποιου μοντέλου και εξομάλυνσης. Διαχείριση Πληροφοριών 10.
ΣΥΝΘΕΤΑ ΜΟΝΤΕΛΑ Αριθμητικός Μέσος Εξομάλυνση Μοντελοποίηση Συνδυασμός κάποιου μοντέλου και εξομάλυνσης 10.1 ΑΡΙΘΜΗΤΙΚΟΣ ΜΕΣΟΣ Βασική έννοια στη Στατιστική Σημαντική για την κατανόηση προβλέψεων που βασίζονται
Εξαμηνιαία Εργασία Β. Κανονική Κατανομή - Επαγωγική Στατιστική
1 ΕΞΑΜΗΝΙΑΙΑ Β ΤΟ ΦΩΤΟΒΟΛΤΑΙΚΟ ΠΑΡΚΟ ΑΣΠΑΙΤΕ Τμήμα Εκπαιδευτικών Ηλεκτρολογίας Εργαστήριο Συλλογής και Επεξεργασίας Δεδομένων Διδάσκοντες: Σπύρος Αδάμ, Λουκάς Μιχάλης, Παναγιώτης Καράμπελας Εξαμηνιαία
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 11: Αυτοσυσχέτιση Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana 1 Περιεχόμενο ενότητας
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες για
ICAP Α.Ε. ΕΠΙΔΡΑΣΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΩΝ ΔΕΙΚΤΩΝ ΣΤΑ ΠΟΣΟΣΤΑ ΑΣΥΝΕΠΕΙΑΣ
ICAP Α.Ε. ΕΠΙΔΡΑΣΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΩΝ ΔΕΙΚΤΩΝ ΣΤΑ ΠΟΣΟΣΤΑ ΑΣΥΝΕΠΕΙΑΣ ΙΑΝΟΥΑΡΙΟΣ 2019 Πίνακας Περιεχομένων ΔΙΟΙΚΗΤΙΚΗ ΠΕΡΙΛΗΨΗ... 3 ΕΙΣΑΓΩΓΗ... 4 ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΟΙ ΔΕΙΚΤΕΣ... 6 ΠΡΟΒΛΕΨΗ ΠΟΣΟΣΤΟΥ ΑΣΥΝΕΠΕΙΑΣ
Έλεγχος των Phillips Perron
ΜΑΘΗΜΑ 8ο Έλεγχος των Phillip Perron Είδαμε στον έλεγχο των Dickey Fuller ότι για το πρόβλημα της αυτοσυσχέτισης των καταλοίπων προτείνουν την επαύξηση της εξίσωσης με επιπλέον όρους τωνδιαφορώντηςεξαρτημένηςμεταβλητής.
Μεταπτυχιακό Πρόγραμμα Φυσικού Τμήματος «Υπολογιστική Φυσική» Θέμα εργασίας στο A Μέρος του μαθήματος «Προσομοίωση Χαοτικών Συστημάτων»
Μεταπτυχιακό Πρόγραμμα Φυσικού Τμήματος «Υπολογιστική Φυσική» Θέμα εργασίας στο A Μέρος του μαθήματος «Προσομοίωση Χαοτικών Συστημάτων» Οδηγίες: Σχετικά με την παράδοση της εργασίας θα πρέπει: Το κείμενο
Συνδυασμός Μαθηματικών με γραφικές παραστάσεις
Το πρόγραμμα Origin Συνδυασμός Μαθηματικών με γραφικές παραστάσεις Δημιουργία γραφικής παράστασης συνάρτησης Για να δημιουργήσετε τη γραφική παράσταση από μια συνάρτηση επιλέξτε File-New-Graph To Origin
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100
Ποσοτικές Μέθοδοι Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR 50100 Απλή Παλινδρόμηση Η διερεύνηση του τρόπου συμπεριφοράς
Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ
Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή,
ΜΜΚ 105: Πειραματική και Στατιστική Ανάλυση Δημιουργία Πινάκων και Γραφικών Παραστάσεων στην Excel 18/09/14
ΜΜΚ 105: Πειραματική και Στατιστική Ανάλυση Δημιουργία Πινάκων και Γραφικών Παραστάσεων στην Excel 18/09/14 1. Δημιουργία Πίνακα 1.1 Εισαγωγή μετρήσεων και υπολογισμός πράξεων Έστω ότι χρειάζεται να υπολογιστεί
Συστήματα Αναμονής (Queuing Systems)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ - ΕΜΠ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης & Βέλτιστου Σχεδιασμού Δικτύων Τηλεματικής
Συνολοκλήρωση και VAR υποδείγματα
ΜΑΘΗΜΑ ο Συνολοκλήρωση και VAR υποδείγματα Ησχέσησ ένα στατικό υπόδειγμα συνολοκλήρωσης και σ ένα υπόδειγμα διόρθωσης λαθών μπορεί να μελετηθεί καλύτερα όταν χρησιμοποιούμε τις ιδιότητες των αυτοπαλίνδρομων
iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος
iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων
Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 9 Ανάλυση Fourier: Από τη Θεωρία στην Πρακτική Εφαρμογή των Μαθηματικών
Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 9 Ανάλυση Fourier: Από τη Θεωρία στην Πρακτική Εφαρμογή των Μαθηματικών Τύπων. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Σκοπός Βασική δομή ενός προγράμματος
Στατιστική ΙΙΙ(ΣΤΑΟ 230) Χρονολογικές Σειρες-Κινητοι Μέσοι, Αφελείς Μέθοδοι και Αποσύνθεση (εκδ. 2η)
Στατιστική ΙΙΙ-(ΣΤΑΟ 230) Χρονολογικές Σειρες-Κινητοι Μέσοι, Αφελείς Μέθοδοι και Αποσύνθεση (εκδ. 2η) Γεώργιος Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης Στατιστική
Εργαστήριο 10o. Συγκεντρωτικά Ερωτήματα Ερωτήματα Διασταύρωσης Ερωτήματα Ενεργειών. Ευάγγελος Γ. Καραπιδάκης
Εργαστήριο 10o Συγκεντρωτικά Ερωτήματα Ερωτήματα Διασταύρωσης Ερωτήματα Ενεργειών Συγκεντρωτικά ερωτήματα Με τα συγκεντρωτικά ερωτήματα μπορούμε να ομαδοποιήσουμε τα δεδομένα μας και να υπολογίσουμε για
ΜΕΛΕΤΗ ΑΡΜΟΝΙΚΗΣ ΤΑΛΑΝΤΩΣΗΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΤΟΥ ΜΑΘΗΤΗ Τάξη, τμήμα: Ημερομηνία:. Επώνυμο-όνομα:..
1 ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ Multilong ΜΕΛΕΤΗ ΑΡΜΟΝΙΚΗΣ ΤΑΛΑΝΤΩΣΗΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΤΟΥ ΜΑΘΗΤΗ Τάξη, τμήμα: Ημερομηνία:. Επώνυμο-όνομα:.. Στόχοι: Με τη βοήθεια των γραφικών παραστάσεων των ταλαντώσεων
Η ΘΕΡΜΟΚΡΑΣΙΑ ΤΩΝ ΑΘΗΝΩΝ
1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 171 Η ΘΕΡΜΟΚΡΑΣΙΑ ΤΩΝ ΑΘΗΝΩΝ Νίκος Καμπράνης Μαθηματικός, Επιμορφωτής νέων τεχνολογιών http://www.geocities.com/kampranis ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΤΑΞΗ:.
Ογενικός(πλήρης) έλεγχος των Dickey Fuller
ΜΑΘΗΜΑ 7ο Ογενικός(πλήρης) έλεγχος των Dickey Fuller Είδαμε προηγουμένως ότι οι τιμές της στατιστικής Τ 2δ0, Τ 3δ0 και Τ 3δ1 που χρησιμοποιήθηκαν στην παραπάνω παράγραφο εξαρτώνται από τη μορφή της εξίσωσης
ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων
ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τμήμα Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τμήμα Τραπεζικής & Χρηματοοικονομικής Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Τα υποδείγματα του απλού γραμμικού υποδείγματος της παλινδρόμησης (simple linear regression
Πολλαπλή παλινδρόμηση (Multivariate regression)
ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ
ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ
ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Είδη μεταβλητών Ποσοτικά δεδομένα (π.χ. ηλικία, ύψος, αιμοσφαιρίνη) Ποιοτικά δεδομένα (π.χ. άνδρας/γυναίκα, ναι/όχι) Διατεταγμένα (π.χ. καλό/μέτριο/κακό) 2 Περιγραφή ποσοτικών