ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ"

Transcript

1 ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Καθηγητής Ι. Κ. ΔΗΜΗΤΡΙΟΥ Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Οικονομικά, Διοικητικά και Πληροφοριακά Συστήματα Επιχειρήσεων

2 Οργάνωση διάλεξης σε 2 επίπεδα 1. Ανάλυση του προβλήματος με ένα παράδειγμα 2. Επιμέρους θέματα (ψευδομεταβλητές, stepwise regression, κατάλοιπα, ελαστικότητες, κλπ), ερωτήματα χρήσεως ΣΗΜΕΙΩΣΗ: Οι διαφάνειες γράφτηκαν αρκετά λεπτομερώς, ώστε να διευκολυνθεί η μελέτη του αντικειμένου. Ι. Κ. ΔΗΜΗΤΡΙΟΥ 10

3 Η παλινδρόμηση (με τις πολλές μορφές που μπορεί να λάβει) δίνει ποσοτικές εκτιμήσεις σε οικονομικές (και άλλες) σχέσεις πιστοποιεί τη θεωρία. Η θεωρία μπορεί να προέρχεται από την Οικονομία Φυσική, Μετεωρολογία, Αστρονομία Βιολογία Μηχανική (Engineering) Γενικά, οποιαδήποτε επιστήμη που υπόκειται σε αβεβαιότητες Επί του συνόλου των χρήσεων αναλυτικών μεθόδων φαίνεται να συντελεί στο 80% Ι. Κ. ΔΗΜΗΤΡΙΟΥ 11

4 Εμπειρική έρευνα (γενικώς) 1. Έστω οικονομικό / διοικητικό πρόβλημα (δηλ. υποθέσεις, μεταβλητές, σχέσεις, αρχικός προσδιορισμός οικονομετρικού υποδείγματος) 2. Μετασχηματισμός σε οικονομετρικό υπόδειγμα (σχέση, πχ γραμμική, υποθέσεις για σφάλμα) 3. Λήψη δείγματος με κατάλληλη μέθοδο οικονομετρίας 4. Εκτίμηση παραμέτρων και ΕΥ 5. Διάγνωση εγκυρότητας υποθέσεων (μτβλ, τύπος, ιδιότητες σφάλματος) 6. Αξιολόγηση συνεπειών των εμπειρικών αποτελεσμάτων που εξήχθησαν από το υπόδειγμα. Ι. Κ. ΔΗΜΗΤΡΙΟΥ 12

5 Εμπειρική έρευνα (ειδικώς για τη διάλεξη) 1. Έστω οικονομικό / διοικητικό πρόβλημα (δηλ. υποθέσεις, μεταβλητές, σχέσεις, αρχικός προσδιορισμός οικονομετρικού υποδείγματος) 2. Μετασχηματισμός σε οικονομετρικό υπόδειγμα (σχέση, πχ γραμμική, υποθέσεις για σφάλμα) 3. Λήψη δείγματος με κατάλληλη μέθοδο οικονομετρίας 4. Εκτίμηση παραμέτρων και ΕΥ 5. Διάγνωση εγκυρότητας υποθέσεων (μτβλ, τύπος, ιδιότητες σφάλματος) 6. Αξιολόγηση συνεπειών των εμπειρικών αποτελεσμάτων που εξήχθησαν από το υπόδειγμα. Ι. Κ. ΔΗΜΗΤΡΙΟΥ 13

6 Η Ανάλυση Παλινδρόμησης (γενικώς) προσδιορίζει το υπόδειγμα (μοντέλο ή εκτιμημένη εξίσωση) για μία ή περισσότερες μεταβλητές και παρέχει μεθόδους εξαγωγής συμπερασμάτων για κάποιον πληθυσμό βασισμένη σε ένα δείγμα μεγέθους n. Ι. Κ. ΔΗΜΗΤΡΙΟΥ 14

7 Στην πολλαπλή γραμμική παλινδρόμηση μια εξαρτημένη μεταβλητή είναι γραμμική σχέση πολλών ανεξάρτητων μεταβλητών. y x x x y sin( x) cos( x) y log( x ) log( x ) y k l Ι. Κ. ΔΗΜΗΤΡΙΟΥ 15

8 ΣΚΟΠΟΣ Αφού υπολογισθούν οι τιμές (ή για την ακρίβεια, οι εκτιμήσεις των τιμών) των β i, δίνομε τις τιμές αυτές στην εξίσωση για προβλέψεις των τιμών της y. Ι. Κ. ΔΗΜΗΤΡΙΟΥ 16

9 Περιγραφή της πολλαπλής γραμμικής παλινδρόμησης Δίνεται ένα σύνολο Ν-άδων παρατηρήσεων και μια άγνωστη συναρτησιακή σχέση, η οποία υπόκειται των παρατηρήσεων. Συγκεκριμένα θεωρούμε τη σχέση όπου μια μεταβλητή είναι γραμμική συνάρτηση Ν άλλων μεταβλητών. Πρώτον, θα προσδιορίσομε τη σχέση αυτή χρησιμοποιώντας πληροφορίες από τα δεδομένα. Έπειτα θα εξετάσομε (έλεγχος υπόθεσης) αν οι συντελεστές της σχέσης είναι σημαντικά διάφοροι του μηδενός. Ι. Κ. ΔΗΜΗΤΡΙΟΥ 17

10 Παράδειγμα δεδομένων, Ν-άδων μτβλ ανεξάρτητη ανεξάρτητη... ανεξάρτητη Εξαρτημένη ,5 68 F ,0 99 F ,0 98 M ,0 90 M ,0 99 F ,0 97 F ,0 79 M ,0 95 F ,0 85 M ,0 82 M ,0 81 M ,5 87 M ,0 92 F ,0 89 F ,0 97 F 0 89 Ι. Κ. ΔΗΜΗΤΡΙΟΥ 18

11 Παράδειγμα δεδομένων Calc HS ACT Math Alg Place Alg2 Grade HS Rank Gender Gender Code Calc ,5 68 F ,0 99 F ,0 98 M ,0 90 M ,0 99 F ,0 97 F ,0 79 M ,0 95 F ,0 85 M ,0 82 M ,0 81 M ,5 87 M ,0 92 F ,0 89 F ,0 97 F 0 89 Ι. Κ. ΔΗΜΗΤΡΙΟΥ 19

12 Υποθέσεις του υποδείγματος γραμμικής παλινδρόμησης (κάθε φορά που καλείται η Παλινδρ) 1. Το γραμμικό υπόδειγμα είναι σωστό 2. Ο όρος σφάλματος ε, κατανέμεται Κανονικά γύρω από το μηδέν 3. Τα σφάλματα έχουν σταθερή διακύμανση 4. Τα σφάλματα είναι ανεξάρτητα αλλήλων. ΠΡΟΣΟΧΗ: Η σημαντικότητα της εξίσωσης παλινδρόμησης δεν είναι απόδειξη ότι οι υποθέσεις αυτές δεν έχουν παραβιαστεί. Ι. Κ. ΔΗΜΗΤΡΙΟΥ 20

13 Η κατανομή F είναι βασική στην παλινδρόμηση και την ΑΝΑΔΙΑ. Λοξή (skewed) F(4,9) p-value: Η τιμή-p είναι η πιθανότητα για μια τιμή τόσο ακραία όσο η παρατηρηθείσα. Ι. Κ. ΔΗΜΗΤΡΙΟΥ 22

14 Ronald Fisher ( ) Karl Pearson ( ) F χ 2 Source: nt/kohler/stat/biographical_sket ches/fisher_3.jpeg Ι. Κ. ΔΗΜΗΤΡΙΟΥ 23

15 Χρήση Παλινδρόμησης για Πρόβλεψη Έστω (ΥΠΟΔΕΙΓΜΑ), εξαρτημένη μεταβλητή: τιμή διαμερίσματος (y) και ανεξάρτητες μεταβλητές: μ 2 & παλαιότητα πολυκατοικίας (x 1 ) & τιμή ενοικίασης (x 2 ) & κατάσταση κτηρίου (x 3 ). Χρησιμοποιούμε πολλαπλή παλινδρόμηση για να δούμε πώς πολλές μεταβλητές συνδυάζονται για να προβλέψουν την τιμή της εξαρτημένης μεταβλητής. Ι. Κ. ΔΗΜΗΤΡΙΟΥ 24

16 Πόση από τη μεταβλητότητα της εξαρτ μτβλ εξηγείται από τις ανεξ μτβλ; Οι συνδυασμένες μτβλ δίνουν καλύτερα ή χειρότερα αποτελέσματα από τα αναμενόμενα; Πόση σημασία έχουν οι επιμέρους μτβλ στην πρόβλεψη; Μπορούμε να απαλείψομε κάποια επιμέρους μτβλ χωρίς απώλεια αξιοπιστίας της πρόβλεψης; Πχ ας υποθέσομε ότι το προηγούμενο ΥΠΟΔΕΙΓΜΑ, χωρίς άλλες πληροφορίες, δίνει y x 0.76x 1.54x Ι. Κ. ΔΗΜΗΤΡΙΟΥ 25 Φανερά, η κατάσταση κτηρίου έχει τη μεγαλύτερη βαρύτητα στο υπόδειγμα

17 Παρατηρήσεις Στην πολλαπλή παλινδρόμηση οι υπολογισμοί είναι πολύπλοκοι και χειροτερεύουν καθώς αυξάνει ο αριθμός των συντελεστών Χρήση πακέτων λογισμικού. Επίσης, η παλινδρόμηση μπορεί να χρησιμοποιηθεί για τη σύγκριση ομάδων (πχ διαφοροποίηση μισθών ανδρών-γυναικών, σύγκριση αποδοτικότητας κλπ), αντί για ΑΝΑΔΙΑ. Μαρτυρία σε δικαστήριο - στις ΗΠΑ πολλοί στατιστικοί εργάζονται σε νομικές διαδικασίες. Ι. Κ. ΔΗΜΗΤΡΙΟΥ 26

18 Παρουσίαση με ένα παράδειγμα: Πρόβλεψη βαθμών Πώς η επίδοση των πρωτοετών φοιτητών στο διαφορικό λογισμό (μτβλ Calc) σχετίζεται με διάφορες ανεξάρτητες μεταβλητές; (δίνεται το αρχείο calc.xls > copy σε calc3.xls πριν το χρησιμοποιήσετε) Ι. Κ. ΔΗΜΗΤΡΙΟΥ 27

19 Δομή του αρχείου calc.xls ONOMA MTBΛ Calc_HS ACT_Math Alg_Place Alg2_Grade HS_Rank Gender Gender_Code Calc ΠΕΡΙΓΡΑΦΗ Calculus High School (0/1, N/O) ACT maths exam (American College Testing) Algebra Placement exam in the first week of classes 2nd year Άλγεβρα High School βαθμός Φύλλο Α/Θ Φύλλο (1/0) Βαθμός στο Calculus Ι. Κ. ΔΗΜΗΤΡΙΟΥ 28

20 Το περιεχόμενο του αρχείου (συνόλου) 80 δεδομένων Calc HS ACT Math Alg Place Alg2 Grade HS Rank Gender Code Gender Calc , F , F , M , M , F , F , M , F , M 88 Calc3.xls Κρατείστε αντίγραφο των δεδομένων Ι. Κ. ΔΗΜΗΤΡΙΟΥ 29

21 (Συσχέτιση μεταβλητών Όταν έχομε να μελετήσομε πολλές μεταβλητές, κατ αρχήν είναι χρήσιμο να υπολογίσομε τις συσχετίσεις μεταξύ των μεταβλητών. Έτσι λαμβάνομε μια γρήγορη εικόνα των σχέσεων μεταξύ των μεταβλητών, προσδιορίζοντας ποιες είναι πολύ συσχετισμένες και ποιες όχι. Αυτό μπορεί να γίνει με τον πίνακα συσχέτισης: Ι. Κ. ΔΗΜΗΤΡΙΟΥ 30

22 Σας δίνεται το αρχείο calc.xls > copy σε calc2.xls πριν το χρησιμοποιήσετε. Στο Excel εκτελούμε Εργαλεία > Ανάλυση Δεδομένων > Συσχέτιση Ι. Κ. ΔΗΜΗΤΡΙΟΥ 32

23 Πιο ενδιαφέρουσες, δηλ. υψηλότερες, οι συσχετίσεις με Calc. Κάθε άλλη συσχέτιση υπολείπεται. Πχ R(Calc με HSRank)= ή R 2 =10.5% του βαθμού Calc εξηγείται από HSRank. Ι. Κ. ΔΗΜΗΤΡΙΟΥ 33 Ερμηνείες συσχέτισης

24 Αν HS Rank χρησιμοποιηθεί (πρβλ παλινδρόμηση) για την πρόβλεψη του Calc, βελτιώνει κατά 10.5% το άθροισμα των σφαλμάτων στο Calc. R(Calc με Calc HS=0/1)= σημαίνει ότι αν ο φοιτητής είχε Calc HS είναι αρκετά πιθανό να λάβει καλύτερο βαθμό στο Calc (το Excel δεν δείχνει πόσο πιθανό είναι αυτό, δηλ. την p-τιμή). Αρνητικές συσχετίσεις: R(Alg2 Grade με Gender Code=0/1)= R(HS Rank με Gender Code=0/1)= Αφορούν μόνο τους Α: χειρότεροι στην Αλγ και στην κατάταξη. Οι Θ είχαν μεγαλύτερο βαθμό στην Άλγεβρα 2 και καλύτερη κατάταξη (HS Rank). 34

25 Επίσης μπορούμε να λάβομε τα διαγράμματα διασποράς της y ως προς κάθε άλλη μτβλ και εκάστης μτβλ ως προς τις άλλες μτβλ. Αυτό θα αποκαλύψει υποκείμενες σχέσεις (πχ. μονοτονίες, γραμμικότητες, καμπυλότητες, κλπ) μεταξύ των μεταβλητών και θα δείξει και τις ισχυρότερες εξαρτήσεις (ΙΚΔ εδώ χρειάζονται μέθοδοι ανάλυσης dd). Έχομε ήδη δει τον πίνακα συσχετ: δεν δείχνει ότι μπορεί να ληφθεί μια ακριβής πρόβλεψη. Ι. Κ. ΔΗΜΗΤΡΙΟΥ 35

26 Calc Calc Calc Πόσο φανερή είναι η συσχέτιση? - Ανοδική γραμμική τάση - Άνοιγμα τιμών y AlgPlace Calc Calc ACT Math Πόσο φανερή είναι η συσχέτιση? - Tάση? Ανοδική γραμμική τάση - Άνοιγμα τιμών y? Ι. Κ. ΔΗΜΗΤΡΙΟΥ 36

27 Alg2 Grade Alg2Grade 4,5 4,0 3,5 3,0 2,5 2,0 1,5 1,0 0,5 0, AlgPlace Πόσο φανερή είναι είναι η συσχέτιση? - Tάση? - Άνοιγμα τιμών y? Γενικώς, τα ανωτέρω γραφήματα υποδεικνύουν γραμμικότητες (άρα συσχέτιση και παλινδρόμηση είναι κατάλληλες τεχνικές για πρόβλεψη της calc). Ι. Κ. ΔΗΜΗΤΡΙΟΥ 37

28 Στην ουσία καμιά γραφική ανάλυση δεν είναι ακριβής. Απλώς υποδεικνύει σχέσεις. Σημειωτέον ότι η πολυσυγγραμμικότητα (Π/Σ) εκτιμάται από τον πίνακα παλινδρόμησης. Π/Σ υπάρχει αν οι μτβλ είναι πολύ συσχετισμένες ) Επιστρέφομε στην ανάλυση παλινδρόμησης. Ι. Κ. ΔΗΜΗΤΡΙΟΥ 38

29 Factors Affecting Achievement in the First Course in Calculus (Edge & Friedberg, J. Experim Education, 1984): Three groups of students at Illinois State University (of respective sizes 235, 157, and 397) were used as subjects to determine which factors were significant predictors of success in the first course in calculus. The second and third groups were used to provide replications of the initial study. Academic independent variables considered were: ACT scores, high school rank, high school GPA, high school algebra grades, and the score from an algebra pretest. Biographical independent variables considered were: sex, birth order, family size and high school size. The dependent variable was a function of the student's course grade in the first semester of calculus. The use of stepwise and all-subsets regression procedures on the three groups revealed in each case that the best combination of predictors consisted of the algebra pretest and high school rank. From this result, the investigators concluded that the combination of algebraic skills, as represented by the score on the algebra pretest, and long-term perseverance (επιμονή, εμμονή, εργατικότητα, φιλοπονία) and competitiveness, as measured by high school rank, play a significant role in the prediction of achievement in the 41 first semester of calculus.

30 Προτείνεται το υπόδειγμα: Calc= CalcHS + ACTMath AlgPlace + Alg2Grade HSRank + GenderCode + ε 5 6 Το μοντέλο αυτό αφορά στον πληθυσμό από τον οποίο έχομε λάβει το δείγμα Calc.xls. H Ανάλυση με Excel / Analysis ToolPak / Regression παρέχει ένα εκτιμημένο μοντέλο (υπόδειγμα) που βασίζεται σε ένα δείγμα 80 βαθμολογιών. Ι. Κ. ΔΗΜΗΤΡΙΟΥ 42

31 Για να εξάγομε συμπεράσματα για τον πληθυσμό από τον οποίο λάβαμε το δείγμα απαιτείται να αναπτύξομε ένα εκτιμημένο υπόδειγμα παλινδρόμησης και να χρησιμοποιήσομε μια διαδικασία στατιστικής συμπερασματολογίας. Ι. Κ. ΔΗΜΗΤΡΙΟΥ 43

32 Πρώτα τακτοποιούμε τα δεδομένα στο calc3.xls (σε σχέση με το αρχικό αρχείο calc.xls) για να έχομε συνεχόμενες στήλες με αριθμούς. Ι. Κ. ΔΗΜΗΤΡΙΟΥ 44

33 Ι. Κ. ΔΗΜΗΤΡΙΟΥ 45

34 Έπειτα στο Excel εκτελούμε Εργαλεία > Ανάλυση Δεδομένων > Παλινδρόμηση (Επιδείχθηκε στην προηγούμενη διάλεξη) Ι. Κ. ΔΗΜΗΤΡΙΟΥ 46

35 CALC3.xls / φύλλο MultReg Ι. Κ. ΔΗΜΗΤΡΙΟΥ 47

36 Ι. Κ. ΔΗΜΗΤΡΙΟΥ 48

37 Επιμέρους αναλύσεις και διερμηνεύσεις: Πρώτη ερώτηση Είναι το υπόδειγμα σημαντικό; Δεύτερη ερώτηση Πόσο επεξηγηματικό είναι το μοντέλο; Τρίτη ερώτηση Ποια είναι η εξίσωση παλινδρόμησης και ποιες μεταβλητές είναι οι πιο σημαντικές; Ι. Κ. ΔΗΜΗΤΡΙΟΥ 49

38 Επιμέρους Πρώτη ερώτηση: είναι το υπόδειγμα σημαντικό; (αφορά στην αμέσως επόμενη ανάλυση) Ι. Κ. ΔΗΜΗΤΡΙΟΥ 50

39 Διερμήνευση του πίνακα ANOVA / ANAΔΙΑ ΑΝΑΔΙΑ: Δείχνει αν το υπόδειγμα παλινδρόμησης είναι σημαντικό. Βοηθά να επιλέξομε μεταξύ των δύο υποθέσεων (α=5%): Η 0 : Οι συντελεστές και των έξι μεταβλητών = 0 Η 1 : Τουλάχιστον ένας συντελεστής 0 ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ n = 80 Αν Η 0 αληθής, το κλάσμα F ~ F(6,73) 2.23 βε SS MS F Σημαντικότητα F Παλινδρόμηση ESS ,2 640,03 7,2 4,7E-06 Κατάλοιπο RSS ,0 88,9 Σύνολο TSS ,0 Η0: δηλ. δεν υπάρχει σχέση μεταξύ των 6 μεταβλητών και της εξαρτημένης Ι. Κ. ΔΗΜΗΤΡΙΟΥ 51 Σημαντικότητα παλινδρόμησης?

40 ΠΑΡΑΤΗΡΗΣΗ: ΑΝΑΔΙΑ: Δείχνει αν το υπόδειγμα παλινδρόμησης είναι σημαντικό. Πρόχειρα μιλώντας: δηλ. αν το error (RSS) είναι μικρό σε σχέση με την παλινδρόμηση (ESS). Δηλ. όσο πιο μεγάλο το κλάσμα ESS/RSS, τόσο καλύτερα. Ι. Κ. ΔΗΜΗΤΡΙΟΥ 52

41 Έλεγχος υποθέσεων (συζήτηση) Αν Η 0 αληθής, τότε πρέπει το F-κλάσμα να ακολουθεί την F(με 6 βε στον αριθμητή και 73 στον παρονομαστή). Αυτό ελέγχεται με την απάντηση στην 6η στήλη. Υπό την Η 0, η πιθανότητα λήψης της τιμής F-κλάσμα = 7.2 (~F, κλάσμα με 6 βε στον αριθμητή και 73 στον παρονομαστή) είναι 0, (= p-value, αφορά στην Η 0 ) < < Κανόνας: Αν η παλινδρόμηση είναι σημαντική (βλ στήλη F, δηλ. p-value < εσ), απορρίπτομε την Η 0. Διαφορετικά δεν απορρίπτομε την Η 0. (Στο παράδειγμα, απορρίπτομε την Η 0 υπό 5% και αποδεχόμαστε την Η 1 ). Άρα η παλινδρόμηση είναι σημαντική σε επίπεδο 5%. Αν F όχι σημαντικό, δεν θα είχε ενδιαφέρον να 53 συνεχίσομε την ανάλυση.

42 A p-value means only one thing (although it can be phrased in a few different ways), it is: The probability of getting the results you did (or more extreme results) given that the null hypothesis is true. Ι. Κ. ΔΗΜΗΤΡΙΟΥ 54

43 Η Ανάλυση Διακύμανσης ξεκινά με την αποσύνθεση του ΤSS = Σ (y i y_bar) 2 = μονάδες μεταβολής. Που οφείλονται; Υπάρχουν δύο πηγές: Οι μτβλ πρόβλεψης ή άλλες μτβλ που δεν θεωρούνται στο μοντέλο. Το ΕSS (παλινδρόμηση) = 3840 μετρά τη μεταβολή στην εξαρτημένη μτβλ λόγω των έξι εξαρτημένων μτβλ συν όλων των άλλων πιθανών μτβλ που δεν θεωρούνται (ακόμη) στο μοντέλο. Το RSS (κατάλοιπα) = 6492 μετρά τη μεταβολή στην εξαρτημένη μτβλ μόνον λόγω όλων των άλλων μτβλ που δεν θεωρούνται (ακόμη) στο μοντέλο. TSS = ESS + RSS ή = TSS έχει n-1 βε = 80 1 (μέγεθος δείγματος, 1 λόγω y_bar) ESS έχει k βε = 6 (πλήθος μτβλ) RSS έχει n-1-k βε = 73 (κατάλοιπα) 55

44 St Error of Est = sqrt(m RSS) = sqrt(6492/73)= sqrt(88.9)=9.43 = επίδραση σφάλματος στην παλινδρόμηση Standard error είναι η εκτιμημένη τιμή του σ, η τυπική απόκλιση του όρου ε, δηλ βλπ παρακάτω (μειώνεται: 1. προσθέτοντας στατ σημαντ μετβλ στην παλινδρόμηση 2. απομακρύνοντας μη σημαντ μτβλ μέσω του ΑΝΑΔΙΑ) 56

45 Διερμήνευση του πίνακα ANOVA (συνέχεια) ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ βε SS MS F Σημαντικότητα F Παλινδρόμηση ESS ,2 640,03 7,2 4,7E-06 Υπόλοιπο RSS ,0 88,9 Σύνολο TSS ,0 Μικρό F δείχνει ότι η μεταβλητικότητα της y οφείλεται στο rnd error και όχι στην παλινδρόμηση. Εδώ, 7.2 > F(6,73,0.05)= Άρα παλινδρόμηση σημαντική σε εσ 5% και αποδοχή Η 1. Έπεται ότι κάποια β i 0. Αν F-test μη σημαντικό, δεν έχει ενδιαφέρον η υπόλοιπη παλινδρόμηση. 4.7Ε-06=[Η πιθανότητα ότι ένα κλάσμα F(6,73) έχει τιμή 7.2]<<5%=εσ. Ι. Κ. ΔΗΜΗΤΡΙΟΥ 58

46 Έχοντας απορρίψει την Η 0, μπορούμε να χρησιμοποιήσομε το μοντέλο παλινδρ για να κάνομε προβλέψεις. Ι. Κ. ΔΗΜΗΤΡΙΟΥ 59

47 Συνέχεια της ανάλυσης (δεύτερη ερώτηση). Πόσο επεξηγηματικό είναι το μοντέλο; Ι. Κ. ΔΗΜΗΤΡΙΟΥ 60

48 Διερμήνευση Στατιστικών Πολλ Παλινδρόμησης Στατιστικά παλινδρόμησης Πολλαπλό R (sqrt (R Τετρ) = συσχέτιση μεταξύ Calc και γραμμ συνδ ανεξ μετβλ) 0,61 R Τετράγωνο (συντελεστής προσδιορισμού) 0,37 Προσαρμοσμένο R Τετράγωνο Adj_R 2 = 1 [RSS/(n-K-1)]/[TSS/(n-1)] 0,32 Τυπικό σφάλμα (τυπικό σφάλμα του error ε) 9,43 Μέγεθος δείγματος 80 37% της ευ-μεταβλητότητας (variability) στο βαθμό Calc αποδίδεται στην παλινδρόμηση (δηλ. σε διαφορές μεταξύ των φοιτητών). Το υπόλοιπο, στο rnd αυξάνει αν Ν>>. Καλύτερα το Προσαρμ R Tετρ (0.32), Ι. Κ. ΔΗΜΗΤΡΙΟΥ 61 διότι δείχνει αν αξίζει να εισάγομε μεταβλητές στο υπόδειγμα.

49 Τυπικό σφάλμα = 9.43 = εκτιμητής του σ, ήτοι της τυπικής απόκλισης του σφάλματος ε = τυπική απόκλιση της πρόβλεψης του Calc όταν διαφοροποιούνται οι τιμές των μεταβλητών = τ/σ πρόβλεψης των 80 βαθμολογιών. Επειδή 10 βαθμοί διαφοροποιούν το [άριστα πολύ καλά], [πολύ καλά καλά] κοκ, το τ/σ είναι περίπου ένας βαθμός στην κλίμακα = επίδραση σφάλματος στην παλινδρόμηση (μειώνεται: 1. προσθέτοντας στατ σημαντ μετβλ στην παλινδρόμηση 2. απομακρύνοντας μη σημαντ μτβλ μέσω του ΑΝΑΔΙΑ) Ι. Κ. ΔΗΜΗΤΡΙΟΥ 62

50 Μέχρι στιγμής, το υπόδειγμα είναι στατιστικά σημαντικό και εξηγεί το 37% περίπου της μεταβλητότητας στους βαθμούς του Calc. (Τρίτη ερώτηση) - Ποια είναι η εξίσωση παλινδρόμησης και ποιες μεταβλητές είναι οι πιο σημαντικές; Ι. Κ. ΔΗΜΗΤΡΙΟΥ 63

51 Διερμήνευση του πίνακα συντελεστών Η παλινδρόμηση εξάγει τον ακόλουθο πίνακα, τον οποίο και εξηγούμε ανά στήλη Συντελ εστές Τυπικό σφάλμα t- στατ τιμή-p Κατώτ ερο 95% Υψηλό τερο 95% Κατώτ ερο 95% Υψηλό τερο 95% Τεταγμένη στην αρχή 27,94 12,44 2,25 0,03 3,15 52,73 3,15 52,73 Calc HS 7,19 2,49 2,89 0,01 2,23 12,15 2,23 12,15 ACT Math 0,35 0,43 0,82 0,42-0,51 1,21-0,51 1,21 Alg Place 0,83 0,27 3,09 0,003 0,29 1,36 0,29 1,36 Alg2 Grade 3,68 2,44 1,51 0,14-1,18 8,55-1,18 8,55 HS Rank 0,11 0,12 0,95 0,34-0,12 0,34-0,12 0,34 Gender Code 2,63 2,47 1,06 0,29-2,29 7,55-2,29 7,55 Ι. Κ. ΔΗΜΗΤΡΙΟΥ 64

52 Οι συντελεστές και η εξίσωση Συντελε στές Τυπικό σφάλμα t τιμή-p Κατώτε ρο 95% Υψηλό τερο 95% Τεταγμένη στην αρχή 27,94 12,44 2,25 0,03 3,15 52,73 Calc HS 7,19 2,49 2,89 0,01 2,23 12,15 ACT Math 0,35 0,43 0,82 0,42-0,51 1,21 Alg Place 0,83 0,27 3,09 0,00 0,29 1,36 Alg2 Grade 3,68 2,44 1,51 0,14-1,18 8,55 HS Rank 0,11 0,12 0,95 0,34-0,12 0,34 Gender Code 2,63 2,47 1,06 0,29-2,29 7,55 Calc=27.94 Θα εξηγήσομε στη συνέχεια τα στοιχεία του πίνακα 7.19 CalcHS ACTMath AlgPlace Alg2Grade Ι. Κ. ΔΗΜΗΤΡΙΟΥ HSRank GenderCode

53 Τι δείχνει η εξίσωση; - Την οριακή μεταβολή της Calc ως προς τη μοναδιαία μεταβολή μιας των μεταβλητών, ενώ υπόλοιπες μτβλ σταθερές. - Επίσης, πρόβλεψη: Για κάποιον υποψήφιο φοιτητή Ο συντελεστής 7.19 επηρεάζει ΠΟΛΥ το βαθμό του Calc Calc= Συντελε στές Τεταγμένη στην αρχή 27,94 Πχ δίνεται Calc HS 7,19 0 ACT Math 0,35 30 Alg Place 0,83 23 Alg2 Grade 3,68 4 HS Rank 0,11 90 Gender Code 2,63 1 To Gender Code επιδρά θετικά Ι. Κ. ΔΗΜΗΤΡΙΟΥ 66 στην πρόβλεψη! = 74.87=75 0 = η απουσία Calc HS επιδρά αρνητικά στην πρόβλεψη

54 Προσέξτε το συντελεστή GenderCode=2.63 που δείχνει την επίδραση του φύλου αν οι άλλες μτβλ σταθερές. Επειδή Άρρεν=1 και Θήλυ=0, αν η εξίσωση παλινδρόμησης είναι αληθής, ένας Α θα λάβει 2.63 βαθμούς υψηλότερους από μία Θ. Εμπιστεύεστε αυτό το συμπέρασμα; Εξαρτάται από τη σημαντικότητα της μτβλ GenderCode. Οπότε πρέπει να προσδιορίσομε την ακρίβεια με την οποία η τιμή υπολογίστηκε. Αυτό γίνεται εξετάζοντας τις est st deviations των συντελεστών. Τα τυπικά σφάλματα είναι χρήσιμα σε ελέγχους υποθέσεων για τους συντελεστές Συντελε στές Τυπικό σφάλμα Τεταγμένη στην αρχή 27,94 12,44 Calc HS 7,19 2,49 ACT Math 0,35 0,43 Alg Place 0,83 0,27 Alg2 Grade 3,68 2,44 HS Rank 0,11 0,12 67 Gender Code 2,63 2,47

55 t-test για τους συντελεστές (t-test=κλάσμα συντελεστή διά του τυπικού σφάλματος) Πχ. t_alg Place = 3.09 ή Συντελ Τυπικό t- μεγαλύτερο με πιθανότητα= εστές σφάλμα στατ τιμή-p 0.003<5%. Κατώτερο Υψηλότε Άρα, Alg Κατώτερ Place Υψηλότε 95% ρο 95% ο 95% ρο 95% σημαντικός σε 5%. Σε όρους ΕΥ, Τεταγμένη στην απόρριψη της Η0, ότι συντελεστής αρχή 27,94 12,44 2,25 0,03 =0 3,15 υπό 5% 52,73 και αποδοχή 3,15Η1. 52,73 Calc HS 7,19 2,49 2,89 0,01 Δίπλευρο 2,23 12,15 t. 2,23 12,15 ACT Math 0,35 0,43 0,82 0,42-0,51 Επίσης, Calc 1,21HS σημαντικός -0,51 1,21 (0.01) Alg Place 0,83 0,27 3,09 0,003 0,29 Υπόλοιπες 1,36 μτβλ μη 0,29 σημαντικές. 1,36 Alg2 Grade 3,68 2,44 1,51 0,14 Επομένως, -1,18 8,55 μη δαπανάσαι -1,18 για 8,55 τη HS Rank 0,11 0,12 0,95 0,34 διερμήνευση -0,12 0,34 των υπολοίπων -0,12 0,34 μτβλ. Gender Code 2,63 2,47 1,06 0,29-2,29 Επιμέρους, 7,55δεν συνιστάται -2,29 7,55 να υποθέσομε ότι άρρενες καλύτεροι θηλέων. t-test = Συντελεστής / Τυπ Σφαλμα Αν Συντελεστής = 0, τότε ακολουθεί t-κατανομή με n-k-1=80-6-1=73 βε P=πιθανότητα μιας t τιμής τόσο μεγάλης ή μεγαλύτερης σε απόλυτη τιμή 68

56 Υπολογισμός διαστημάτων εμπιστοσύνης για την προαναφερθείσα πρόβλεψη της calc και των β i Calc= yˆ 2 StandardError 1/ n 75 ( /80) = 74.87=75 ˆ Διάστημα εμπιστοσύνης για β i i StandardError( i) tn k 1, a/2 Gender Code 2,63 2,47 1,06 0,29 GenderCode t Το Excel δίνει αυτόματα τα δε ,0.025 n k 1, a/2 Ι. Κ. ΔΗΜΗΤΡΙΟΥ ή 2.29 ˆ t eg

57 95% διαστήματα εμπιστοσύνης για συντελεστές Συντελε στές Τυπικό σφάλμα t τιμή-p Κατώτ ερο 95% Υψηλό τερο 95% Τεταγμένη στην αρχή 27,94 12,44 2,25 0,03 3,15 52,73 Calc HS 7,19 2,49 2,89 0,01 2,23 12,15 ACT Math 0,35 0,43 0,82 0,42-0,51 1,21 Alg Place 0,83 0,27 3,09 0,003 0,29 1,36 Alg2 Grade 3,68 2,44 1,51 0,14-1,18 8,55 HS Rank 0,11 0,12 0,95 0,34-0,12 0,34 Gender Code 2,63 2,47 1,06 0,29-2,29 7,55 Είναι παράξενο που το ACTMath ΔΕΝ είναι σημαντικό, διότι το test σχετίζεται με τη δύναμη των μαθηματικών 95% δε για Calc HS: το μάθημα Calc HS σχετίζεται με μια αύξηση της βαθμολογίας της Calc μεταξύ 2.23 και στην εν λόγω εξίσωση παλινδρόμησης Ι. Κ. ΔΗΜΗΤΡΙΟΥ 70

58 Η συσχέτιση ACTmath με την Calc βρέθηκε = = πολύ σημαντική (p=0.001). Γιατί εδώ δεν φαίνεται η σημαντικότητα; Διότι, εμπλέκονται κι άλλες μτβλ που περιέχουν κάποια από την ίδια πληροφορία. Χρησιμοποιώντας το t-test για τη σημαντικότητα του ACTMath, εξετάζεται ουσιαστικά αν μπορούμε να προχωρήσομε διαγράφοντας αυτό τον όρο. Αν οι άλλες μεταβλητές αναλάβουν να δώσουν αυτή την πληροφορία, τότε ο συντελεστής δεν είναι σημαντικός και επομένως απορριπτέος. Άρα δε χάνομε και πολλά. Ωστόσο αν διώξομε τον λιγότερο σημαντικό, οι άλλοι μπορεί να καταστούν σημαντικοί. Ι. Κ. ΔΗΜΗΤΡΙΟΥ 71

59 Η ακόλουθη στρατηγική (stepwise regression) μειώνει τον αριθμό των ανεξ μτβλ: Βήμα 1. Απαλοιφή του λιγότερου σημαντικού 2. Επαναπαλινδρόμηση 3. Επανάληψη 1. και 2. έως ότου καταστούν οι ανεξ μτβλ σημαντικές. Σημείωση: μία μέθοδος ανάλυσης δεν αποτελεί μονόδρομο. Καλύτερα να χρησιμοποιούνται περισσότερες της μίας (πχ συσχέτιση και παλινδρόμηση). Ι. Κ. ΔΗΜΗΤΡΙΟΥ 72

60 ΥΠΕΝΘΥΜΙΣΗ, μέχρι εδώ: Αναλύσαμε και διερμηνεύσαμε τρεις ερωτήσεις: Πρώτη ερώτηση Είναι το υπόδειγμα σημαντικό; Δεύτερη ερώτηση Πόσο επεξηγηματικό είναι το μοντέλο; Τρίτη ερώτηση Ποια είναι η εξίσωση παλινδρόμησης και ποιες μεταβλητές είναι οι πιο σημαντικές; Ι. Κ. ΔΗΜΗΤΡΙΟΥ 83

61 ( Με πρακτική κατανοούμε την παλινδρόμηση και σχεδόν κάθε αντίστοιχη μέθοδο (μοντέλο + στατ ανάλυση). Αύξηση δεξιότητας. ) Ι. Κ. ΔΗΜΗΤΡΙΟΥ 85

62 Στη συνέχεια αξιολογούμε την επιτυχία της παλινδρόμησης με τα εξής τέσσερα κοινά διαγράμματα. Ι. Κ. ΔΗΜΗΤΡΙΟΥ 86

63 Εξέταση των υποθέσεων της παλινδρόμησης Τα τέσσερα κοινά διαγράμματα που δίνει η παλινδρόμηση του Excel βοηθούν στην εκτίμηση της παλινδρόμησης: 1. Διάγραμμα της εξαρτ μτβλ ως προς τις εκτιμημένες τιμές: καταλληλότητα παλινδρόμησης 2. Διάγραμμα καταλοίπων ως προς τις εκτιμημένες τιμές μεγεθύνει το κατακόρυφο άνοιγμα των δεδομένων, άρα ελέγχονται οι υποθέσεις παλινδρόμησης. Αν καμπυλότητες, τότε (?). Αν κατακόρυφο άνοιγμα τιμών στη μία μεριά, τότε μη σταθερή var 3. Διάγραμμα καταλοίπων ως προς επιμέρους μτβλ: αναδεικνύει επιμέρους προβλήματα 4. Κανονικό διάγραμμα των καταλοίπων: αποτιμά την Κανονική υπόθεση των καταλοίπων. 87

64 Eξαρτ μτβλ ως προς Εκτιμήσεις Πόσο πετυχημένη είναι η παλινδρόμηση; Σχεδίασε: Παρατηρήσεις (Calc) vs. Εκτιμήσεις Ι. Κ. ΔΗΜΗΤΡΙΟΥ 88

65 Ι. Κ. ΔΗΜΗΤΡΙΟΥ 89

66 Παρατηρήσεις Calculus Εκτιμήσεις Ι. Κ. ΔΗΜΗΤΡΙΟΥ 91

67 Φαίνεται να στενεύουν οι τιμές για μεγαλύτερες εκτιμήσεις του Calculus. Αν η διακύμανση του σφάλματος ήταν μικρότερη για βαθμούς με υψηλές εκτιμήσεις, θα παραβιαζόταν η 4η υπόθεση της παλινδρόμησης περί σταθερής διακύμανσης. Θεωρούμε αυτούς τους φοιτητές με εκτίμηση βαθμού 80 στο Calc. Οι πραγματικοί βαθμοί κυμαίνονται από 65 έως 95 περίπου, ευρύ! Όμως το εύρος είναι «<» στο βαθμό 90: Οι πραγματικές τιμές (παρατηρήσεις) είναι στο Τι συμβαίνει; Συμβαίνει το εξής: Υπάρχει το όριο 100 στη βαθμολογία (εξαρτημένη μτβλ). Αυτό γενικά (το όριο) προκαλεί μη σταθερή διακύμανση σφάλματος. 92

68 Κατάλοιπα ως προς Εκτιμήσεις Δείχνει μια άλλη όψη της μεταβολής μεταξύ των παρατηρούμενων και των εκτιμημένων τιμών (διότι κατάλοιπο = παρατήρηση - εκτίμηση). Ι. Κ. ΔΗΜΗΤΡΙΟΥ 93

69 Κατάλοιπα Κατάλοιπ Εκτιμήσεις Ι. Κ. ΔΗΜΗΤΡΙΟΥ 94

70 Χρήσιμο διάγραμμα για την επαλήθευση των υποθέσεων παλινδρόμησης. Πχ η 1η υπόθεση απαιτεί την κατάλληλη μορφή του υποδείγματος. Εδώ δεν παρατηρείται κάποιο συστηματικό πρότυπο (πχ καμπύλη). Αν η υπόθεση της σταθερής διακύμανσης δεν ικανοποιείται, τότε θα πρέπει να φαίνεται στο διάγραμμα. Κοιτάζομε για τάση στο κατακόρυφο άνοιγμα. Φανερά, στενεύει η τάση προς τα δεξιά (αυτό εγείρει υποψίες για την εγκυρότητα της παλινδρόμησης, robustness). Τότε, προτείνεται ο μετασχηματισμός των δεδομένων, αλλά επάγεται δυσκολία διερμήνευσης μτβλ. Κατάλοιπ Κατάλοιπα Ι. Κ. ΔΗΜΗΤΡΙΟΥ Εκτιμήσεις

71 Κατάλοιπα ως προς καθεμιά μεταβλητή Τα διαγράμματα μπορεί να δείξουν Καμπυλότητες Μη σταθερή διακύμανση Αυτά τα διαγράμματα δημιουργούνται αυτόματα από το Excel: 1. Διαγράμματα διασποράς καταλοίπων ως προς καθεμιά μτβλ 2. Διαγράμματα εκτίμησης calc ως προς μτβλ παλινδρόμησης Ι. Κ. ΔΗΜΗΤΡΙΟΥ 96

72 Υπόλοιπα Alg Place Διάγραμμα υπολοίπων Alg Place Φαίνεται άνοιγμα στα κατάλοιπα για μικρότερους βαθμούς. Μάλλον πρέπει να μετασχηματίσομε τα δεδομένα Πώς αιτιολογείται ένα θετικό (αρνητικό) κατάλοιπο Ι. Κ. ΔΗΜΗΤΡΙΟΥ 97

73 Calc Alg Place Διάγραμμα προσαρμογής γραμμής Alg Place Calc Προβλεπόμενος Calc 100 Εκτιμήσεις Χειρονακτικά Alg Place Ι. Κ. ΔΗΜΗΤΡΙΟΥ 98

74 Εκτιμήσει Alg Place Οι εκτιμήσεις είναι πιο συμμαζεμένες από τις παρατηρήσεις. (λογικό φαίνεται) Γραμμική τάση ως προς Alg Place Δεν φαίνεται να υπάρχει άνοιγμα Ι. Κ. ΔΗΜΗΤΡΙΟΥ 99

75 Κανονικά σφάλματα και Κανονικό διάγραμμα διασποράς Τι γίνεται με την υπόθεση της Κανονικότητας των σφαλμάτων; - Αν υπάρχουν μη Κανονικά σφάλματα, εμφανίζονται ακραίες τιμές στο διάγραμμα διασποράς καταλοίπων ως προς εκτιμήσεις (calc). Κατάλοιπα - Εδώ, δεν υπάρχουν τιμές καταλοίπων > από το Πόσο μεγάλα πρέπει να είναι τα κατάλοιπα αν τα σφάλματα είναι Κανονικά; Αποφάσισε χρησιμοποιώντας το Normal Probability plot. Κατάλοιπ Ι. Κ. ΔΗΜΗΤΡΙΟΥ Εκτιμήσεις

76 Για να λάβομε το Normal Probability plot επιλέγομε Ι. Κ. ΔΗΜΗΤΡΙΟΥ 101

77 Ι. Κ. ΔΗΜΗΤΡΙΟΥ 102

78 Διάγραμμα κανονικής πιθανότητας Calc Δείγμα ποσοστού Παρατηρούνται αποκλίσεις στην αρχή. Φαίνεται να υπάρχει μικρό πρόβλημα με την υπόθεση της Κανονικότητας. Ι. Κ. ΔΗΜΗΤΡΙΟΥ 103

79 Σύνοψη της παλινδρόμησης Ποια είναι τα κύρια συμπεράσματα από την παλινδρόμηση + κατάλοιπα + διαγράμματα; - Με F = 7.2 > F(6,73,0.05) = 2.23, παλινδρόμηση σημαντική σε εσ 5%. - Με R 2 = 0.37 και προσαρμοσμένο R 2 = 0.32, η παλινδρόμηση εξηγεί περίπου το 1/3 της διακύμανσης στο βαθμό του calc (απογοητευτικό ωστόσο, διότι το Πανεπιστήμιο δίνει βάρος στις προβλέψεις). - Μόνο η άλγεβρα και αν παρακολούθησε ή όχι HScalc είναι σημαντικοί συντελεστές. - Υπάρχει κάποιο πρόβλημα με τη μη σταθερή διακύμανση (ανεξάρτητο συμπερασμάτων). 104

80 Το παράδειγμα δίνει μια ιδέα για το πώς θα μπορούσε να γινόταν μια αξιολόγηση στα ΑΕΙ κατά το 2 ο έτος σπουδών μετά τις Πανελλαδικές (περιέχοντας και τα φροντιστήρια). Ι. Κ. ΔΗΜΗΤΡΙΟΥ 105

81 ( Πώς κάνομε κανονικοποίηση των καταλοίπων (normalization)

82 x y fit=y_hat residual residual residual

83 Residual avg residual std =0.8917/ ΚΑΝΟΝΙΚΟΠΟΙΗΣΗ Έρχονται περίπου στο -1 έως Σειρά1 )

84 // Ι. Κ. ΔΗΜΗΤΡΙΟΥ 110

85 Ψευδομεταβλητές dummy variables Ανακαλούμε το πρόβλημα της περασμένης διάλεξης, το οποίο χρησιμοποιεί δύο κατηγορικές μεταβλητές (δηλ. μεταβλητές που κατηγοριοποιούν τα δεδομένα): Ι. Κ. ΔΗΜΗΤΡΙΟΥ 111

86 Δομή του αρχείου calc.xls ONOMA MTBΛ Calc_HS ACT_Math Alg_Place Alg2_Grade HS_Rank Gender Gender_Code Calc ΠΕΡΙΓΡΑΦΗ Calculus High School (0/1, N/O) ACT maths exam (American College Testing) Algebra Placement exam in the first week of classes 2nd year Άλγεβρα High School βαθμός Φύλλο Α/Θ Φύλλο (1/0) Βαθμός στο Calculus Ι. Κ. ΔΗΜΗΤΡΙΟΥ 112

87 Το περιεχόμενο του αρχείου (συνόλου) 80 δεδομένων Calc HS ACT Math Alg Place Alg2 Grade HS Rank Gender Code Gender Calc , F , F , M , M , F , F , M , F , M 88 Calc3.xls Κρατείστε αντίγραφο των δεδομένων Ι. Κ. ΔΗΜΗΤΡΙΟΥ 113

88 Στη συνέχεια υπολογίσαμε το υπόδειγμα και προχωρήσαμε σε πρόβλεψη: Ι. Κ. ΔΗΜΗΤΡΙΟΥ 114

89 Τι δείχνει η εξίσωση; - Την οριακή μεταβολή της Calc ως προς τη μοναδιαία μεταβολή μιας των μεταβλητών, ενώ υπόλοιπες μτβλ σταθερές. - Επίσης, πρόβλεψη: Για κάποιον υποψήφιο φοιτητή Ο συντελεστής 7.19 επηρεάζει ΠΟΛΥ το βαθμό του Calc Calc= Συντελε στές Τεταγμένη στην αρχή 27,94 Πχ δίνεται Calc HS 7,19 0 ACT Math 0,35 30 Alg Place 0,83 23 Alg2 Grade 3,68 4 HS Rank 0,11 90 Gender Code 2,63 1 To Gender Code επιδρά θετικά Ι. Κ. ΔΗΜΗΤΡΙΟΥ 115 στην πρόβλεψη! = 74.87=75 0 = η απουσία Calc HS επιδρά αρνητικά στην πρόβλεψη

90 Ψευδομεταβλητές (dummy variables) Έστω μτβλ φύλο (άρρεν / θήλυ, gender) Εκφράζεται ποιοτικά και ποσοτικοποιείται με δυαδικές μτβλ (binary, 0/1) ή ψευδομεταβλητές ή κατηγορικές μτβλ Πχ Μισθός = β 0 +β 1 Χ 1 +β 2 Χ 2 +ε όπου Χ 1 = 1, αν έχει μεταπτυχιακό, = 0, διαφορετικά Χ 2 = έτη προϋπηρεσίας Τότε, αν Χ 1 = 0, Μισθός = β 0 +β 2 Χ 2 αν Χ 1 = 1, Μισθός = β 0 +β 1 +β 2 Χ 2 +ε β 1 = πρόσθετο έσοδο Ι. Κ. ΔΗΜΗΤΡΙΟΥ 116

91 Ψευδομεταβλητές (συνέχεια) Εποχικότητα (3 ψ/μ για αναπαράσταση 4 εποχών) Χ 1t = 1, 1o τέταρτο = 0, διαφορετικά Χ 2t = 1, 2o τέταρτο = 0, διαφορετικά Χ 3t = 1, 3o τέταρτο = 0, διαφορετικά Υ = β 0 +β 1 Χ 1t +β 2 Χ 2t +β 3 Χ 3t + β 4 Χ 4t +ε όπου Χ 4t δεν είναι ψ/μ και t = δείκτης τριμηνιαίων παρατηρήσεων β 1 = δείχνει την έκταση που η αναμενόμενη τιμή της Υ στο 1ο τρίμηνο διαφέρει από την αναμενόμενη τιμή της στο 4ο τρίμηνο. Ι. Κ. ΔΗΜΗΤΡΙΟΥ 117

92 Παράδειγμα Ι. Κ. ΔΗΜΗΤΡΙΟΥ 118

93 Ο αναλυτής πιστεύει ότι επιπρόσθετα του μεγέθους (Χ 1 ), οι χρόνοι προσαρμογής (Υ) μιας εταιρείας στη χρήση S/W (Χ 2 ) διαφέρουν στις εταιρείες πληροφορικής από τις εταιρείες καλλυντικών. Χ 2 : πρόκειται για ποιοτική μεταβλητή = τύπος εταιρείας. Ποσοτικοποιείται ως εξής: Χ 2 = 1, αν είναι εταιρεία καλλυντικών, = 0, αν είναι εταιρεία πληροφορικής Υ = β 0 +β 1 ΜέγεθοςΕταιρείας+β 2 ΕταιρείαΚαλυντικών+ε Υ = β 0 +β 1 Χ 1 +β 2 Χ 2 +ε Τότε, αν Χ 2 = 0, Υ = β 0 + β 1 Χ 1 αν Χ 2 = 1, Υ = β 0 + β 1 Χ 1 + β 2 β 2 = Αν >0 σημαίνει ότι εταιρείες στα καλλυντικά χρειάζονται περισσότερο χρόνο προσαρμογής στη χρήση S/W. Εταιρείες στο χώρο της πληροφορικής Εταιρείες στο χώρο των καλλυντικών Επειδή παράλληλες γραμμές, η διαφορά στο χρόνο προσαρμογής δεν Ι. Κ. ΔΗΜΗΤΡΙΟΥ 119 εξαρτάται από το μέγεθος της εταιρείας.

94 Χρόνος προσαρμογής καλλυντικά ( ) x x πληροφορική x x Μέγεθος εταιρίας β 2 δείχνει πόσο μεγαλύτερος (μικρότερος) είναι ο χρόνος προσαρμογής για τις εταιρίες 1 απ ό,τι για τις εταιρίες 0. Ι. Κ. ΔΗΜΗΤΡΙΟΥ 120, άρα ο χρόνος προσαρμογής δεν εξαρτάται από το μέγεθος της εταιρίας.

95 Ψευδομεταβλητές (συνέχεια) Υπόδειγμα τριών εταιρειών Πλέον των εταιρειών καλλυντικών (Χ 1 ) και πληροφορικής (Χ 2 ), υποθέτομε και λιανικής πώλησης Χ 3. Αναπαράσταση των εταιρειών: Χ 2 = 1, καλλυντικών 0, όχι καλλυντικών Χ 3 = 1, λιανικής 0, όχι λιανικής Άρα κωδικοποίηση (παράδειγμα): Καλλυντικών: Χ 2 = 1, Χ 3 = 0 Λιανικής: Χ 2 = 0, Χ 3 = 1 Πληροφορικής: Χ 2 = 0, Χ 3 = 0 (ούτε Καλλυντικών, ούτε Λιανικής) ( ) x x x Κανόνας: μια κατηγορική μεταβλητή με Κ κλάσεις, αναπαρίσταται με Κ-1 ενδείκτες (indicators), όπου έκαστος λαμβάνει την τιμή 0 ή

96 Υποδείγματα πρώτης τάξης με αλληλεπίδραση Είδαμε ότι η διαφορά στο χρόνο προσαρμογής δεν εξαρτάται από το μέγεθος της εταιρείας. Υποθέτομε ότι οι μικρές εταιρείες καλλυντικών είχαν μεγαλύτερους χρόνους προσαρμογής, αλλά οι μεγάλες εταιρείες καλλυντικών είχαν μικρότερους από τις εταιρείες πληροφορικής. Αυτό υποδεικνύει μια αλληλεπίδραση μεταξύ των τύπων εταιρειών και του μεγέθους. Ι. Κ. ΔΗΜΗΤΡΙΟΥ 122

97 Καθώς Χ 1 αυξάνει, χρ_προσαρμογής εταιρειών καλλυντικών μειώνεται. Καθώς Χ 1 αυξάνει, χρ_προσαρμογής εταιρειών πληροφορικής αυξάνει. Επομένως, η επίδραση του Χ 1 (μέγεθος εταιρείας) στους χρ_προσαρμογής εξαρτάται από τον τύπο εταιρείας. Άρα, όχι παράλληλες, αλλά υπό αλληλεπίδραση. x x x x x x ΟΧΙ ΑΛΛΗΛΕΠΙΔΡΑΣΗ ΜΕ ΑΛΛΗΛΕΠΙΔΡΑΣΗ Ερμηνεία των συντελεστών Ι. Κ. ΔΗΜΗΤΡΙΟΥ 123

98 Ερμηνεία του β 12 Έστω εταιρεία πληροφορικής Χ 2 = 1, αν είναι εταιρεία καλλυντικών, = 0, αν είναι εταιρεία πληροφορικής Τότε Χ 2 =0 και Χ 1 Χ 2 =0 x 0 0 x Έστω εταιρεία καλλυντικών Χ 2 = 1, αν είναι εταιρεία καλλυντικών, = 0, αν είναι εταιρεία πληροφορικής Τότε Χ 2 =1 και Χ 1 Χ 2 =Χ 1 x 1 x ( ) ( ) x Ι. Κ. ΔΗΜΗΤΡΙΟΥ 124

99 0 2 καλλυντικά Καθώς το μέγεθος των εταιρειών καλλυντικών αυξάνει, οι χρόνοι προσαρμογής μειώνονται x πληροφορική ( ) ( ) x , x 1 Πότε προσθέτομε όρο αλληλεπίδρασης; Όταν η λογική, η θεωρία ή τα δεδομένα υποδεικνύουν ότι η επίδραση μιας εξαρτημ μτβλ στην ανεξάρτητη εξαρτάται από μιαν άλλη ανεξάρτητη μτβλ. Ι. Κ. ΔΗΜΗΤΡΙΟΥ 125

100 Υποδείγματα δεύτερης τάξης Όταν υπάρχουν καμπύλες σχέσεις, όπως πολυώνυμα 2ου βαθμού. x x β 11 = επίδραση της επιτάχυνσης στην παλινδρόμηση Πχ Στην Ψυχολογία, stress (x) & παραγωγικότητα (y) Ι. Κ. ΔΗΜΗΤΡΙΟΥ 126

101 Η δημιουργία ενός υποδείγματος, ας πούμε τετραγωνικού ή σιγμοειδούς, απαιτεί θεώρηση και πρακτική. Στην επόμενη διαφάνεια τα δεδομένα (+) προσαρμόζονται από μια σιγμοειδή προσέγγιση (ο) που επιδεικνύει φθίνουσα επιτάχυνση. Ι. Κ. ΔΗΜΗΤΡΙΟΥ 127

102 Υπόδειγμα υποκατάστασης PDP (+) από VAX ( ) υπολογιστές (μη γραμμική σχέση μεταβλητών) Ι. Κ. ΔΗΜΗΤΡΙΟΥ 128

103 Υποδείγματα λογαριθμικής αναγωγής (πολλαπλασιαστικά υποδείγματα) Όταν υπάρχουν μη γραμμικές σχέσεις (με θετικές μεταβλητές), όπως x 1x 2e τότε ανάγεται στο γραμμικό υπόδειγμα ln ln ln x ln x Με αντίστοιχη λογαριθμική αναγωγή των δεδομένων Y, X 1 και Χ 2 σε LnY, LnX 1 και LnX 2 και συνήθη εφαρμογή της παλινδρόμησης. Ι. Κ. ΔΗΜΗΤΡΙΟΥ 129

104 Ελαστικότητα στο γραμμικό υπόδειγμα Στο γραμμικό υπόδειγμα, η κλίση είναι σταθερή k k, k 1,2, K, n Αλλά η ελαστικότητα (δηλ. η επί τοις εκατόν αλλαγή στην εξαρτημένη μτβλ που προκαλείται από 1% αλλαγή σε μια ανεξάρτητη, ενώ υπόλοιπες σταθερές) δεν είναι σταθερή k Y / Y Y X X k k X / X X Y Y k k k Ι. Κ. ΔΗΜΗΤΡΙΟΥ 130 k

105 Ελαστικότητα στο πολλαπλασιαστικό υπόδειγμα x 1x 2e Τότε ανάγεται στο γραμμικό υπόδειγμα ln ln ln x ln x k ln Y / Y YX ln X / X k k k k Σταθερές ελαστικότητες! η ΥΧ k = β k τοις εκατόν είναι η αλλαγή στην εξαρτημένη μτβλ Υ που προκαλείται από 1% αλλαγή σε μια ανεξάρτητη μτβλ Χ k, ενώ υπόλοιπες μτβλ σταθερές. 131

106 Ο λογάριθμος μια ψευδομεταβλητής Για να αποφευχθεί το ενδεχόμενο να λάβομε το λογάριθμο του μηδενός, ο καλύτερος τρόπος είναι να ορίσομε την ψ/μ έτσι ώστε να παίρνει τις τιμές 1 και e (αντί για 0 και 1). Οπότε ο λογάριθμος γίνεται 0 και 1 και η διερμήνευση του β παραμένει όπως στη γραμμική περίπτωση. Επίσης η θεωρητική ισχύς της ψ/μ διατηρείται. 132

107 How to interpret a coefficient on a dummy variable? For a single dummy variable without an interaction term, the value of the coefficient tells you the change in the value of the dependent variable compared with the base case. Example: Predicted Wage = Northeast 0.9Midwest 1.7South Consider cases: Person is from the Midwest. Then this person is predicted to make = 9.3 (dollars per hour) since the values for Northeast and South are zero. Southerners make $1.70 per hour less than Westerners. How to interpret a coefficient on a dummy variable with a log dependent variable? The coefficient on a dummy variable with a log-transformed Y variable is interpreted as the percentage change in Y associated with having the dummy variable characteristic relative to the omitted category, with all other included X variables held fixed. Example: Predicted ln Charitable Giving (δωρεές) = lnprice lnincome Married Approximate Interpretation: Predicted Charitable Giving is approximately 46 percent higher in for married tax payers, holding constant price of giving and income. 133

108 Υποθέσεις, Περιορισμοί, Πρακτικότητες Υπόθεση Γραμμικότητας Υπόθεση Κανονικότητας Περιορισμοί Επιλογή αριθμού μεταβλητών Πολυ-συγγραμμικότητα και ευαισθησία πινάκων Πολυωνυμική παλινδρόμηση Η σπουδαιότητα της ανάλυσης καταλοίπων Ι. Κ. ΔΗΜΗΤΡΙΟΥ 134

109 Υπόθεση Γραμμικότητας Κατ ουσίαν η υπόθεση αυτή ουδέποτε επιβεβαιώνεται. Ευτυχώς, οι διαδικασίες πολλαπλής παλινδρόμηση δεν επηρεάζονται πολύ από μικρές αποκλίσεις αυτής της υπόθεσης. Ωστόσο, ως κανόνας, ενδείκνυται να κοιτάζομε πάντοτε τα διδιάστατα διαγράμματα των ενδιαφερόμενων μεταβλητών. Αν εμφανίζεται καμπυλότητα, τότε είτε μετασχηματίζομε τις μεταβλητές, είτε εισάγομε μη γραμμικές συνιστώσες. Ι. Κ. ΔΗΜΗΤΡΙΟΥ 135

110 Υπόθεση Κανονικότητας Τα κατάλοιπα (παρατηρήσεις μείον y_hat) κατανέμονται Κανονικά (δηλ. ακολουθούν την Κανονική κατανομή). Ακόμη και αν οι περισσότεροι έλεγχοι (συγκεκριμένα το F- test) είναι πολύ ανθεκτικοί ως προς τις παραβιάσεις της υπόθεσης, είναι πάντα μια καλή ιδέα, πριν τα συμπεράσματα, να επανεξετάζομε τις κατανομές των κυρίων μεταβλητών που μας ενδιαφέρουν. Μπορούμε να παραγάγομε ιστογράμματα των καταλοίπων καθώς και normal probability plots, για να εξετάσομε την κατανομή των τιμών των καταλοίπων. Ι. Κ. ΔΗΜΗΤΡΙΟΥ 136

111 Περιορισμοί Ο κύριος εννοιολογικός περιορισμός όλων των τεχνικών παλινδρόμησης είναι ότι απλώς διαπιστώνομε σχέσεις, αλλά ποτέ δεν είμαστε βέβαιοι για την υποκείμενη αιτιώδη σχέση. Στην πραγματικότητα, στην ερευνητική ανάλυση, αιτιώδεις σχέσεις δεν εξετάζονται. (φιλοσοφική θεώρηση, επιστημονική αντιμετώπιση) Ι. Κ. ΔΗΜΗΤΡΙΟΥ 137

112 Επιλογή του Αριθμού των Μεταβλητών Η πολλαπλή παλινδρόμηση είναι δελεαστική τεχνική: «βάζεις» όσες μτβλ νομίζεις και κάποιες απ αυτές θα βγουν σημαντικές. Περικλείοντας απλώς όσες μτβλ νομίζομε ότι επηρεάζουν μιαν άλλη μτβλ σημαίνει ότι επενδύομε στην τύχη. Το πρόβλημα επιδεινώνεται όταν, επιπροσθέτως, ο αριθμός των μτβλ είναι σχετικά μικρός. Διαισθητικά, είναι φανερό ότι δύσκολα συνάγονται συμπεράσματα από μια ανάλυση 100 ερωτήσεων που βασίζονται σε 10 άτομα που ανταποκρίθηκαν. Πολλοί συγγραφείς προτείνουν να είναι ο αριθμός των παρατηρήσεων (ανταποκρίσεων) 10 έως 20 φορές μεγαλύτερος αυτού των μεταβλητών, διαφορετικά οι εκτιμητές της παλινδρόμησης θα είναι μάλλον πολύ ασταθείς και απίθανο να αναπαραχθούν σε 138 συνέχεια της μελέτης.

113 Πολυσυγγραμμικότητα (Π/Σ, γραμμική εξάρτηση) και ευαισθησία πινάκων Είναι κοινό πρόβλημα σε πολλές αναλύσεις συσχέτισης. Ιδιαίτερα όταν υπάρχουν πολλές μεταβλητές, δεν είναι άμεσα φανερή η ύπαρξη αυτού του προβλήματος, αλλά εκδηλώνεται αφού τρέξει η παλινδρόμηση. Ωστόσο, όταν υπάρξει αυτό το πρόβλημα σημαίνει ότι τουλάχιστον μία ανεξ μτβλ είναι εντελώς περιττή. Υπάρχουν πολλοί στατιστικοί ενδείκτες (tolerances, semi-partial R, κλπ) συγγραμμικότητας, καθώς και κάποιες θεραπείες (πχ Ridge regression). Για να ξεσκαρτάρομε την Π/Σ: διώξε μτβλ με απόλυτη τιμή t- stat < 1 ή με συντελεστή παλινδρόμησης που έχει πρόσημο αντίθετο προσδοκώμενου. (Βλ Χαλικιά, 3 η έκδ., σελ. 321 παράδειγμα) 139

114 Πολυωνυμική παλινδρόμηση Η πολυωνυμική παλινδρόμηση μπορεί να δημιουργήσει δύσκολα προβλήματα πολυσυγγραμμικότητας, είτε επειδή οι δυνάμεις x, x 2, x 3, x 4 κοκ παρουσιάζουν εξάρτηση, είτε επειδή οι τιμές της ανεξ μτβλ είναι μεγάλες. Υπάρχουν κάποιες τεχνικές για τον περιορισμό του προβλήματος. A cubic polynomial regression fit to a simulated data set. The confidence band is within 95%. Ι. Κ. ΔΗΜΗΤΡΙΟΥ 140

115 Η Σημαντικότητα της Ανάλυσης Καταλοίπων Ακόμη κι αν οι περισσότερες υποθέσεις της πολλαπλής παλινδρόμησης δεν μπορούν να ελεγχθούν κατηγορηματικά, χονδροειδείς παραβιάσεις μπορούν να εντοπισθούν, ώστε να τις διαχειρισθούμε κατάλληλα. Τα έκτοπα σημεία (outliers, extreme cases), ιδιαίτερα, μπορούν να εκτρέψουν τα αποτελέσματα «τραβώντας» ή «σπρώχνοντας» τη γραμμή παλινδρόμησης προς κάποια κατεύθυνση, κι έτσι να οδηγήσουν σε μεροληπτικούς συντελεστές. Συχνά, αποκλείοντας ακόμη και ένα έκτοπο σημείο μπορεί να διαφοροποιήσει ριζικά τ αποτελέσματα. Παράδειγμα Ι. Κ. ΔΗΜΗΤΡΙΟΥ 141

116 Ι. Κ. ΔΗΜΗΤΡΙΟΥ 142

117 Ένα πλαίσιο χρήσεως της παλινδρόμησης: Ι. Κ. ΔΗΜΗΤΡΙΟΥ 143

118 Σχεδίασε διαγράμματα διασποράς για κάθε ζεύγος (x i,y) ΔΙΑΓΡΑΜΜΑ ΡΟΗΣ ΓΙΑ ΤΗΝ ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ Βρες την παλινδρόμηση Pass Τεστάρισε το μοντέλο με ΑΝΑΔΙΑ Διώξε μη σημαντικές μτβλ με t-test Fail Σκέψου πρόσθετες μτβλ Τεστάρισε υποθέσεις υποκείμενες του τελικού εκτιμημένου υποδείγματος Pass Fail Μετασχημάτισε τα δεδομένα. Επίσης πρόσθετες μτβλ. Πρόβλεψη ή Εξήγηση Αποτίμησε την πολυσυγγραμμικότητα και διόρθωσε 144

119 Πλέον εισερχόμαστε σε ερευνητικές περιοχές Ι. Κ. ΔΗΜΗΤΡΙΟΥ 145

120 Τέλος Ι. Κ. ΔΗΜΗΤΡΙΟΥ 146

ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Καθηγητής Ι. Κ. ΔΗΜΗΤΡΙΟΥ Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών demetri@econ.uoa.gr Οικονομικά, Διοικητικά και Πληροφοριακά Συστήματα Επιχειρήσεων Οργάνωση διάλεξης

Διαβάστε περισσότερα

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 4.1 Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Γενικεύοντας τη διμεταβλητή (Y, X) συνάρτηση

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Κάθε σύνολο δεδομένων κρύβει δομή το θέμα είναι να την εντοπίσομε (analytics)

Κάθε σύνολο δεδομένων κρύβει δομή το θέμα είναι να την εντοπίσομε (analytics) Κάθε σύνολο δεδομένων κρύβει δομή το θέμα είναι να την εντοπίσομε (analytics) 2 ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ και ΣΥΣΧΕΤΙΣΗ Καθηγητής Ι. Κ. ΔΗΜΗΤΡΙΟΥ Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών demetri@econ.uoa.gr

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ και ΣΥΣΧΕΤΙΣΗ. Μέρος 2

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ και ΣΥΣΧΕΤΙΣΗ. Μέρος 2 ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ και ΣΥΣΧΕΤΙΣΗ Μέρος 2 Υπενθύμιση από την περασμένη διάλεξη Μοντέλο ή υπόδειγμα y x σφάλμα ή στοχαστική μεταβλητή 66 Για κάθε x=ανεργία υπάρχει μια κατανομή πιθανοτήτων για το αντίστοιχο

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 13: Επανάληψη Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana 1 Γιατί μελετούμε την Οικονομετρία;

Διαβάστε περισσότερα

10. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

10. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 0. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 0. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ Συχνά στην πράξη το μοντέλο της απλής γραμμικής παλινδρόμησης είναι ανεπαρκές για την περιγραφή της μεταβλητότητας που υπάρχει στην εξαρτημένη

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

χ 2 test ανεξαρτησίας

χ 2 test ανεξαρτησίας χ 2 test ανεξαρτησίας Καθηγητής Ι. Κ. ΔΗΜΗΤΡΙΟΥ demetri@econ.uoa.gr 7.2 Το χ 2 Τεστ Ανεξαρτησίας Tο χ 2 τεστ ανεξαρτησίας (όπως και η παλινδρόμηση) είναι στατιστικά εργαλεία για τον εντοπισμό σχέσεων μεταξύ

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑ (Ι)

ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑ (Ι) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΧΩΡΟΤΑΞΙΑΣ, ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΠΜΣ «ΕΠΕΝΔΥΣΕΙΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗ ΑΝΑΠΤΥΞΗ» ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ

Διαβάστε περισσότερα

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής Υποθέσεις του Απλού γραμμικού υποδείγματος της Παλινδρόμησης Η μεταβλητή ε t (διαταρακτικός όρος) είναι τυχαία μεταβλητή με μέσο όρο

Διαβάστε περισσότερα

Ανάλυση Διακύμανσης. Ι. Κ. Δημητρίου

Ανάλυση Διακύμανσης. Ι. Κ. Δημητρίου Ανάλυση Διακύμανσης Ι. Κ. Δημητρίου Να κάνετε πολλά παραδείγματα και για να κατανοήσετε την Ανάλυση Διακύμανσης (ΑΝΑΔΙΑ) ή Analysis of Variance (ANOVA). Ακόμη, να κοιτάξετε περιπτώσεις εφαρμογής. 3 Εισαγωγή

Διαβάστε περισσότερα

Αναλυτική Στατιστική

Αναλυτική Στατιστική Αναλυτική Στατιστική Συμπερασματολογία Στόχος: εξαγωγή συμπερασμάτων για το σύνολο ενός πληθυσμού, αντλώντας πληροφορίες από ένα μικρό υποσύνολο αυτού Ορισμοί Πληθυσμός: σύνολο όλων των υπό εξέταση μονάδων

Διαβάστε περισσότερα

Πολλαπλή παλινδρόμηση (Multivariate regression)

Πολλαπλή παλινδρόμηση (Multivariate regression) ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ

Διαβάστε περισσότερα

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Δεδομένων

Εισαγωγή στην Ανάλυση Δεδομένων ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 09-10-2015 Εισαγωγή στην Ανάλυση Δεδομένων Βασικές έννοιες Αν. Καθ. Μαρί-Νοέλ Ντυκέν ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 30-10-2015 1. Στατιστικοί παράμετροι - Διάστημα εμπιστοσύνης Υπολογισμός

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων

Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΠΟΤΕ ΚΑΙ ΓΙΑΤΙ ΧΡΗΣΙΜΟΠΟΙΕΙΤΑΙ ΜΟΝΤΕΛΟ ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ ΕΡΜΗΝΕΙΑ ΤΩΝ ΕΚΤΙΜΗΤΩΝ ΤΩΝ ΠΑΡΑΜΕΤΡΩΝ ΤΩΝ ΣΥΝΤΕΛΕΣΤΩΝ ΠΑΛΙΝ ΡΟΜΗΣΗΣ ΥΠΟΘΕΣΕΙΣ ΠΙΝΑΚΑΣ ΑΝΑ ΙΑ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΓΙΑ ΤΙΣ ΠΑΡΑΜΕΤΡΟΥΣ

Διαβάστε περισσότερα

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7o Μάθημα: Απλή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana

Διαβάστε περισσότερα

Χ. Εμμανουηλίδης, 1

Χ. Εμμανουηλίδης, 1 Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,

Διαβάστε περισσότερα

Η τελεία χρησιμοποιείται ως υποδιαστολή (π.χ 3 14 τρία κόμμα δεκατέσσερα) Παρακαλώ παραδώστε τα θέματα μαζί με το γραπτό σας ΟΝΟΜΑ: ΕΠΩΝΥΜΟ: ΑΜ:

Η τελεία χρησιμοποιείται ως υποδιαστολή (π.χ 3 14 τρία κόμμα δεκατέσσερα) Παρακαλώ παραδώστε τα θέματα μαζί με το γραπτό σας ΟΝΟΜΑ: ΕΠΩΝΥΜΟ: ΑΜ: Πανεπιστήμιο Πατρών, Τμήμα Οικονομικών Επιστημών Εξεταστική περίοδος Ιανουαρίου 2014 (18-Φεβ-2014) 9:00-11:00 Μάθημα: «ΟΙΚΟΝΟΜΕΤΡΙΑ» ΟΙΚΟΝ 320 Διδάσκων: Επίκουρος Καθηγητής Ιωάννης Α. Βενέτης Διάρκεια

Διαβάστε περισσότερα

Ερωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις)

Ερωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις) Ερωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις) 1. Έχοντας στη διάθεσή μας ένα δείγμα, προκύπτει ότι το 95% διάστημα εμπιστοσύνης για το μέσο μ ενός κανονικού

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Είδη μεταβλητών Ποσοτικά δεδομένα (π.χ. ηλικία, ύψος, αιμοσφαιρίνη) Ποιοτικά δεδομένα (π.χ. άνδρας/γυναίκα, ναι/όχι) Διατεταγμένα (π.χ. καλό/μέτριο/κακό) 2 Περιγραφή ποσοτικών

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

Στατιστικές συναρτήσεις Γραφική και πινακοποιημένη αναπαράσταση δεδομένων (ιστόγραμμα) Διαχειριστής Σεναρίων Κινητός Μέσος σε Χρονοσειρές o o o

Στατιστικές συναρτήσεις Γραφική και πινακοποιημένη αναπαράσταση δεδομένων (ιστόγραμμα) Διαχειριστής Σεναρίων Κινητός Μέσος σε Χρονοσειρές o o o ΙΩΑΝΝΗΣ Κ. ΔΗΜΗΤΡΙΟΥ Εφαρμογές Ποσοτικές Ανάλυσης με το Excel 141 ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Ανάλυση Δεδομένων Στατιστικές συναρτήσεις Γραφική και πινακοποιημένη αναπαράσταση δεδομένων (ιστόγραμμα) Διαχειριστής

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ

ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ Το ενδιαφέρον επικεντρώνεται πάντα στον πληθυσμό Το δείγμα χρησιμεύει για εξαγωγή συμπερασμάτων για τον πληθυσμό π.χ. το ετήσιο εισόδημα των κατοίκων μιας περιοχής Τα στατιστικά

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση Διδάσκουσα: Κοντογιάννη Αριστούλα Πώς συσχετίζονται δυο μεταβλητές; Ένας απλός τρόπος για να αποκτήσουμε

Διαβάστε περισσότερα

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 2 Γιατί ανάλυση διακύμανσης; (1) Ας θεωρήσουμε k πληθυσμούς με μέσες τιμές μ 1, μ 2,, μ k, αντίστοιχα Πως μπορούμε να συγκρίνουμε τις μέσες τιμές k πληθυσμών

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 2 Μαΐου /23

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 2 Μαΐου /23 Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 2 Μαΐου 2017 1/23 Ανάλυση Διακύμανσης. Η ανάλυση παλινδρόμησης μελετά τη στατιστική σχέση ανάμεσα

Διαβάστε περισσότερα

Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1)

Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1) Σημειώσεις Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου Αθήνα -3-7 Εκτίμηση των Παραμέτρων β & β Απλό γραμμικό υπόδειγμα: Y X () Η αναμενόμενη τιμή του Υ, δηλαδή, μέση τιμή του Υ, δίνεται παρακάτω: EY ( ) X EY

Διαβάστε περισσότερα

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Copyright 2009 Cengage Learning 16.1 Ανάλυση Παλινδρόμησης Σκοπός του προβλήματος είναι η ανάλυση της σχέσης μεταξύ συνεχών μεταβλητών. Η ανάλυση παλινδρόμησης

Διαβάστε περισσότερα

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών

Διαβάστε περισσότερα

Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής

Διαβάστε περισσότερα

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο Παράδειγμα 1 Ο παρακάτω πίνακας δίνει τις πωλήσεις (ζήτηση) ενός προϊόντος Υ (σε κιλά) από το delicatessen μιας περιοχής και τις αντίστοιχες τιμές Χ του προϊόντος (σε ευρώ ανά κιλό) για μια ορισμένη χρονική

Διαβάστε περισσότερα

Μάθηµα εύτερο-τρίτο- Βασικά Ζητήµατα στο Απλό Γραµµικό Υπόδειγµα Ακαδηµαϊκό Έτος

Μάθηµα εύτερο-τρίτο- Βασικά Ζητήµατα στο Απλό Γραµµικό Υπόδειγµα Ακαδηµαϊκό Έτος ΤΜΜΑ ΕΠΙΧΕΙΡΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΜΑΤΩΝ Μάθηµα εύτερο-τρίτο- Βασικά Ζητήµατα στο Απλό Γραµµικό Υπόδειγµα Ακαδηµαϊκό Έτος - Στο παρόν µάθηµα δίνεται µε κάποια απλά παραδείγµατα-ασκήσεις

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΟ SPSS To SPSS θα: - Κάνει πολύπλοκη στατιστική ανάλυση σε δευτερόλεπτα -

Διαβάστε περισσότερα

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 7.1 Πολυσυγγραμμικότητα: Εισαγωγή Παραβίαση υπόθεσης Οι ανεξάρτητες μεταβλητές δεν πρέπει

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Γ. Πειραματισμός Βιομετρία

Γ. Πειραματισμός Βιομετρία Γενικά Συσχέτιση και Συμμεταβολή Όταν σε ένα πείραμα παραλλάσουν ταυτόχρονα δύο μεταβλητές, τότε ενδιαφέρει να διερευνηθεί εάν και πως οι αλλαγές στη μία μεταβλητή σχετίζονται με τις αλλαγές στην άλλη.

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΠΡΩΤΟ ΘΕΩΡΙΑΣ-ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ ΕΡΓΑΣΤΗΡΙΟ PASW 18 Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2011 2012 ΕΠΙΧ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 6 Σχέσεις μεταξύ μεταβλητών

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 6 Σχέσεις μεταξύ μεταβλητών (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 6 Σχέσεις μεταξύ μεταβλητών ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 8.1 Η Φύση των Ψευδομεταβλητών Οι μεταβλητές που παίρνουν τιμές 0 και 1 ονομάζονται ψευδομεταβλητές

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών

ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών ΟΙΚΟΝΟΜΕΤΡΙΑ Βιολέττα Δάλλα Τµήµα Οικονοµικών Επιστηµών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών 1 Εισαγωγή Οικονοµετρία (Econometrics) είναι ο τοµέας της Οικονοµικής επιστήµης που περιγράφει και αναλύει

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Β μέρος: Ετεροσκεδαστικότητα. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Β μέρος: Ετεροσκεδαστικότητα. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 10: Οικονομετρικά προβλήματα: Παραβίαση των υποθέσεων Β μέρος: Ετεροσκεδαστικότητα Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr

Διαβάστε περισσότερα

Κάθε σύνολο δεδομένων κρύβει δομή το θέμα είναι να την εντοπίσομε (analytics)

Κάθε σύνολο δεδομένων κρύβει δομή το θέμα είναι να την εντοπίσομε (analytics) Κάθε σύνολο δεδομένων κρύβει δομή το θέμα είναι να την εντοπίσομε (analytics) 2 ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ και ΣΥΣΧΕΤΙΣΗ Καθηγητής Ι. Κ. ΔΗΜΗΤΡΙΟΥ Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών demetri@econ.uoa.gr

Διαβάστε περισσότερα

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 6.1 Ετεροσκεδαστικότητα: Εισαγωγή Συχνά, η υπόθεση της σταθερής διακύμανσης των όρων σφάλματος,

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 6: Ανάλυση γραμμικού υποδείγματος Πολυμεταβλητή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage:

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

Διάστημα εμπιστοσύνης της μέσης τιμής

Διάστημα εμπιστοσύνης της μέσης τιμής Διάστημα εμπιστοσύνης της μέσης τιμής Συντελεστής εμπιστοσύνης Όταν : x z c s < μ < x +z s c Ν>30 Στον πίνακα δίνονται κρίσιμες τιμές z c και η αντιστοίχισή τους σε διάφορους συντελεστές εμπιστοσύνης:

Διαβάστε περισσότερα

Απλή Παλινδρόμηση και Συσχέτιση

Απλή Παλινδρόμηση και Συσχέτιση Απλή Παλινδρόμηση και Συσχέτιση Πωλήσεις, Δαπάνες Διαφήμισης και Αριθμός Πωλητών Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) 98 050 6 3 989

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα

Διαβάστε περισσότερα

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για τον καθορισμό του καλύτερου υποσυνόλου από ένα σύνολο

Διαβάστε περισσότερα

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο 5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο Ένα εναλλακτικό μοντέλο της απλής γραμμικής παλινδρόμησης (που χρησιμοποιήθηκε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τρίτη Γραπτή Εργασία στη Στατιστική. Γενικές οδηγίες για την εργασία

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τρίτη Γραπτή Εργασία στη Στατιστική. Γενικές οδηγίες για την εργασία ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2017-2018 Τρίτη Γραπτή Εργασία στη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε

Διαβάστε περισσότερα

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ A εξάμηνο 2009-2010 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Μεθοδολογία Έρευνας και Στατιστική ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Ποιοτικές και Ποσοτικές

Διαβάστε περισσότερα

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6.1 Το Πρόβλημα του Ελέγχου Υποθέσεων Ενός υποθέσουμε ότι μία φαρμακευτική εταιρεία πειραματίζεται πάνω σε ένα νέο φάρμακο για κάποια ασθένεια έχοντας ως στόχο, τα πρώτα θετικά

Διαβάστε περισσότερα

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία I.1 Τι Είναι η Οικονομετρία; Η κυριολεκτική ερμηνεία της λέξης, οικονομετρία είναι «οικονομική

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (3 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana

Διαβάστε περισσότερα

Το στατιστικό κριτήριο που μας επιτρέπει να. μιας ή πολλών άλλων γνωστών μεταβλητών. Η σχέση ανάμεσα στις μεταβλητές που μελετώνται

Το στατιστικό κριτήριο που μας επιτρέπει να. μιας ή πολλών άλλων γνωστών μεταβλητών. Η σχέση ανάμεσα στις μεταβλητές που μελετώνται Κεφάλαιο 10 Η Ανάλυση Παλινδρόμησης Η Ανάλυση Παλινδρόμησης Το στατιστικό κριτήριο που μας επιτρέπει να προβλέψουμε τις τιμές μιας μεταβλητής από τις τιμές μιας ή πολλών άλλων γνωστών μεταβλητών Η σχέση

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 3

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 3 (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com ιαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ ιάλεξη 3 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ B Δημήτρης Κουγιουμτζής e-mal: dkugu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://uer.auth.gr/~dkugu/teach/cvltraport/dex.html Εφαρμοσμένη Στατιστική:

Διαβάστε περισσότερα

Ενότητα 3: Ανάλυση Διακύμανσης κατά ένα παράγοντα One-Way ANOVA

Ενότητα 3: Ανάλυση Διακύμανσης κατά ένα παράγοντα One-Way ANOVA ΕΘΝΙΚΟ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΙΑΤΡΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΦΑΡΜΟΣΜΕΝΗ ΝΕΥΡΟΑΝΑΤΟΜΙΑ» «Βιοστατιστική, Μεθοδολογία και Συγγραφή Επιστημονικής Μελέτης» Ενότητα 3: One-Way ANOVA

Διαβάστε περισσότερα

Λίγα λόγια για τους συγγραφείς 16 Πρόλογος 17

Λίγα λόγια για τους συγγραφείς 16 Πρόλογος 17 Περιεχόμενα Λίγα λόγια για τους συγγραφείς 16 Πρόλογος 17 1 Εισαγωγή 21 1.1 Γιατί χρησιμοποιούμε τη στατιστική; 21 1.2 Τι είναι η στατιστική; 22 1.3 Περισσότερα για την επαγωγική στατιστική 23 1.4 Τρεις

Διαβάστε περισσότερα

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης

Διαβάστε περισσότερα

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116)

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) Σελίδα 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΑΘΗΜΑ: ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙΙ (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) ΠΑΝΕΠΙΣΤΗΜΙΑΚΟΣ ΥΠΟΤΡΟΦΟΣ ΠΑΝΑΓΙΩΤΗΣ

Διαβάστε περισσότερα

Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ

Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Μοντέλα Παλινδρόμησης Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Εισαγωγή (1) Σε αρκετές περιπτώσεις επίλυσης προβλημάτων ενδιαφέρει η ταυτόχρονη μελέτη δύο ή περισσότερων μεταβλητών, για να προσδιορίσουμε με ποιο

Διαβάστε περισσότερα

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής ΑΥΤΟΣΥΣΧΕΤΙΣΗ Στις βασικές υποθέσεις των γραμμικών υποδειγμάτων (απλών και πολλαπλών), υποθέτουμε ότι δεν υπάρχει αυτοσυσχέτιση (autocorrelation

Διαβάστε περισσότερα

UNIVERSITY OF THESSALY FACULTY OF ENGINEERING DEPARTMENT OF PLANNINGAND REGIONAL DEVELOPMENT MASTER «EUROPEAN REGIONAL DEVELOPMENT STUDIES»

UNIVERSITY OF THESSALY FACULTY OF ENGINEERING DEPARTMENT OF PLANNINGAND REGIONAL DEVELOPMENT MASTER «EUROPEAN REGIONAL DEVELOPMENT STUDIES» UNIVERSITY OF THESSALY FACULTY OF ENGINEERING DEPARTMENT OF PLANNINGAND REGIONAL DEVELOPMENT MASTER «EUROPEAN REGIONAL DEVELOPMENT STUDIES» METHODS OF SPATIAL ECONOMIC ANALYSIS LECTURE 11 Δρ. Μαρί-Νοέλ

Διαβάστε περισσότερα

3η Ενότητα Προβλέψεις

3η Ενότητα Προβλέψεις ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων 3η Ενότητα Προβλέψεις (Μέρος 4 ο ) http://www.fsu.gr

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

Πρόλογος Μέρος Ι: Απλό και πολλαπλό υπόδειγμα παλινδρόμησης Αντικείμενο της οικονομετρίας... 21

Πρόλογος Μέρος Ι: Απλό και πολλαπλό υπόδειγμα παλινδρόμησης Αντικείμενο της οικονομετρίας... 21 Περιεχόμενα Πρόλογος... 15 Μέρος Ι: Απλό και πολλαπλό υπόδειγμα παλινδρόμησης... 19 1 Αντικείμενο της οικονομετρίας... 21 1.1 Τι είναι η οικονομετρία... 21 1.2 Σκοποί της οικονομετρίας... 24 1.3 Οικονομετρική

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΗ 07 & ΔΙΑΛΕΞΗ 08 ΣΗΜΠΕΡΑΣΜΑΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Βόλος, 016-017 ΕΙΣΑΓΩΓΗ ΣΤΗΝ

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4A: Έλεγχοι Υποθέσεων και Διαστήματα Εμπιστοσύνης Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Α μέρος: Πολυσυγγραμμικότητα. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Α μέρος: Πολυσυγγραμμικότητα. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 9: Οικονομετρικά προβλήματα: Παραβίαση των υποθέσεων Α μέρος: Πολυσυγγραμμικότητα Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος... 15

Περιεχόμενα. Πρόλογος... 15 Περιεχόμενα Πρόλογος... 15 Κεφάλαιο 1 ΘΕΩΡΗΤΙΚΑ ΚΑΙ ΦΙΛΟΣΟΦΙΚΑ ΟΝΤΟΛΟΓΙΚΑ ΚΑΙ ΕΠΙΣΤΗΜΟΛΟΓΙΚΑ ΖΗΤΗΜΑΤΑ ΤΗΣ ΜΕΘΟΔΟΛΟΓΙΑΣ ΕΡΕΥΝΑΣ ΤΟΥ ΠΡΑΓΜΑΤΙΚΟΥ ΚΟΣΜΟΥ... 17 Το θεμελιώδες πρόβλημα των κοινωνικών επιστημών...

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7ο μάθημα: Πολυμεταβλητή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana

Διαβάστε περισσότερα

Γ. Πειραματισμός - Βιομετρία

Γ. Πειραματισμός - Βιομετρία Γ. Πειραματισμός - Βιομετρία Πληθυσμοί και δείγματα Πληθυσμός Περιλαμβάνει όλες τις πιθανές τιμές μιας μεταβλητής, δηλαδή αναφέρεται σε μια παρατήρηση σε όλα τα άτομα του πληθυσμού Ο πληθυσμός προσδιορίζεται

Διαβάστε περισσότερα

Στατιστική. Ανάλυση ιασποράς με ένα Παράγοντα. One-Way Anova. 8.2 Προϋποθέσεις για την εφαρμογή της Ανάλυσης ιασποράς

Στατιστική. Ανάλυση ιασποράς με ένα Παράγοντα. One-Way Anova. 8.2 Προϋποθέσεις για την εφαρμογή της Ανάλυσης ιασποράς Στατιστική Ανάλυση ιασποράς με ένα Παράγοντα One-Way Anova Χατζόπουλος Σταύρος Κεφάλαιο 8ο. Ανάλυση ιασποράς 8.1 Εισαγωγή 8.2 Προϋποθέσεις για την εφαρμογή της Ανάλυσης ιασποράς 8.3 Ανάλυση ιασποράς με

Διαβάστε περισσότερα

σ = και σ = 4 αντιστοίχως. Τότε θα ισχύει

σ = και σ = 4 αντιστοίχως. Τότε θα ισχύει Θέματα ομάδας A 1. Σε κάποιο πείραμα τύχης μία τυχαία μεταβλητή λαμβάνει τις τιμές = 10 και = 10. Τότε η μέση τιμή x της θα είναι α. 10 β. 10 γ.,5 10 δ. 19,5 10 1= 10, = 10,. Δυο τυχαίες μεταβλητές, ακολουθούν

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΠΙΧ Οικονομετρικά Πρότυπα Διαφάνεια 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 5: Ανάλυση της Διακύμανσης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 5: Ανάλυση της Διακύμανσης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 5: Ανάλυση της Διακύμανσης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ

ΣΤΑΤΙΣΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΣΤΑΤΙΣΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΣΤΗΝ ΑΘΛΗΤΙΚΗ ΕΠΙΣΤΗΜΗ ΜΕ ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΤΟ SPSS 6 η Έκδοση Γιώργος Βαγενάς Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών ΕΚ ΟΣΕΙΣ ΤΖΙΟΛΑ Αποκλειστικότητα για την ελληνική γλώσσα: ΕΚ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες ΜΑΘΗΜΑ 3ο Βασικές έννοιες Εισαγωγή Βασικές έννοιες Ένας από τους βασικότερους σκοπούς της ανάλυσης των χρονικών σειρών είναι η διενέργεια των προβλέψεων. Στα υποδείγματα αυτά η τρέχουσα τιμή μιας οικονομικής

Διαβάστε περισσότερα

Εργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο

Εργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο Εργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο Χρήσιμες Οδηγίες Με την βοήθεια του λογισμικού E-views να απαντήσετε στα ερωτήματα των επόμενων σελίδων, (οι απαντήσεις πρέπει να περαστούν

Διαβάστε περισσότερα

Πολλαπλή παλινδρόµηση. Μάθηµα 3 ο

Πολλαπλή παλινδρόµηση. Μάθηµα 3 ο Πολλαπλή παλινδρόµηση Μάθηµα 3 ο Πολλαπλή παλινδρόµηση (Multivariate regression ) Η συµπεριφορά των περισσότερων οικονοµικών µεταβλητών είναι συνάρτηση όχι µιας αλλά πολλών µεταβλητών Y = f ( X, X 2, X

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Η μέθοδος των βοηθητικών μεταβλητών. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Η μέθοδος των βοηθητικών μεταβλητών. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 12: Σφάλματα μέτρησης στις μεταβλητές Η μέθοδος των βοηθητικών μεταβλητών Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage:

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α. Δ.Π.Θ.

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α. Δ.Π.Θ. Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο ανεξάρτητων δειγμάτων, που διαχωρίζονται βάσει ενός ανεξάρτητου παράγοντα (Ανάλυση διακύμανσης για ανεξάρτητα δείγματα ως προς

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα