Δυναμική Μηχανών Ι. Διδάσκων: Αντωνιάδης Ιωάννης. Aνάλυση Fourier
|
|
- Παραμονος Ταμτάκος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Aνάλυση Fourier
2 Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Aνάλυση Fourier του καθ. Ιωάννη Αντωνιάδη και υπόκειται σε άδεια χρήσης Creative Commons. Για υλικό όπως εικόνες, που υπόκειται σε άδεια χρήσης άλλου τύπου, αυτή πρέπει να αναφέρεται ρητώς.
3 Ανάλυςθ Fourier για Περιοδικζσ υναρτιςεισ Μια περιοδικι ςυνάρτθςθ u(tt) (περίοδο Τ) μπορεί να εκφραςτεί ςαν άκροιςμα αρμονικϊν ςυναρτιςεων όπου uu tt = 1 2 αα 0 + AA nn sin (nn Ω 0 tt + φφ nn ) Ω 0 = 2ππ/Τ AA nn = αα nn 2 + bb nn 2 φφ nn = tttttt 1 ( αα nn bb nn ) nn=1 αα nn = 2 TT bb nn = 2 TT TT 0 TT 0 uu tt cos (nn Ω 0 tt)dddd uu tt sin (nn Ω 0 tt)dddd 3
4 Ανάλυςθ Fourier για Περιοδικζσ υναρτιςεισ Ιςοδφναμα, μια περιοδικι ςυνάρτθςθ u(tt) μπορεί να εκφραςτεί ςαν άκροιςμα μιγαδικϊν εκκετικϊν uu tt = cc nn ee jj nn Ω 0 tt nn= όπου τα cc nn είναι μιγαδικοί αρικμοί Σα cc nn υπολογίηονται από τα αα nn και bb nn Για πραγματικά ςιματα (uu tt R): cc nn = cc nn 4
5 Περιεχόμενο υχνοτιτων Σο Π.. μιασ ςυνάρτθςθσ u(tt) είναι το ςφνολο των ςυχνοτιτων ω των αρμονικϊν ςυναρτιςεων sin (ωωtt) (ιςοδφναμα των ee jjωωtt ) ςτισ οποίεσ μπορεί να αναλυκεί θ u(tt) Παράδειγμα: το Π.. μιασ περιοδικισ ςυνάρτθςθσ u(tt) είναι το ςφνολο n Ω 0, nn = 0,1,2, cc nn uu tt = nn= cc nn ee jj nn Ω 0 tt cc nn 0 ω 3Ω 0 Ω 0 2Ω 0 Ω 0 2Ω0 3Ω 0 5
6 Μεταςχθματιςμόσ Fourier Περιγράφει πωσ μια τυχαία (όχι αναγκαςτικά περιοδικι) ςυνάρτθςθ u(tt) μπορεί να εκφραςτεί ςαν άκροιςμα από άπειρεσ αρμονικζσ ςυναρτιςεισ uu tt = 1 2ππ H ςυνάρτθςθ uu ωω είναι ο μ/χ Fourier τθσ u(tt) Περιγράφει το περιεχόμενο ςυχνοτιτων τθσ u(tt) uu ωω = uu ωω ee jjωωtt ddωω Σο ηευγάρι του μ/χ Fourier ςυμβολίηεται ωσ: uu ωω = F uu tt, uu tt = F 1 [uu ωω ] uu(tt)ee jjωωtt dddd 8 6
7 Μεταςχθματιςμόσ Fourier Παρόμοια με τον μ/χ Laplace Ο μ/χ Fourier υπάρχει ςε ςιματα ςυγκεκριμζνων ιδιοτιτων Τπολογίηεται είτε αναλυτικά είτε μζςω πινάκων/ιδιοτιτων ε αυτό το μάκθμα ΔΕΝ κα ηθτθκεί να υπολογίςετε τον μ/χ Fourier μιασ ςυνάρτθςθσ Περιςςότερα ςτο μάκθμα «Δυναμικι Μθχανϊν ΙΙ» 9 7
8 Εφαρμογζσ του Μ/Χ Fourier Χριςιμοσ τόςο κεωρθτικά όςο και πειραματικά! ε αντίκεςθ με μ/χ Laplace που είναι αναλυτικό εργαλείο Μια διακριτι δειγματολθψία του μ/χ Fourier ενόσ ςιματοσ (π.χ. μιασ μζτρθςθσ) προκφπτει μζςω του αλγορίκμου Fast Fourier Transformation (FFT) Βλζπε Δυναμικι Μθχανϊν ΙΙ
9 Περιεχόμενο υχνοτιτων Όςο πιο γριγορθ/απότομθ είναι μια ςυνάρτθςθ, τόςο μεγαλφτερο εφροσ ςυχνοτιτων περιζχει Ο μ/χ Fourier uu ωω είναι ςθμαντικόσ για μεγαλφτερο εφροσ ωω Παράδειγμα: Μ/χ Fourier ςυνάρτθςθσ παλμοφ Για διάρκεια παλμοφ τ, το uu ωω μεγάλο κυρίωσ για ωω < 2ππ ττ uu(tt) uu ωω 11 9
10 Μ/Χ Fourier και Απόκριςθ υχνότθτασ Ο μ/χ Fourier τθσ απόκριςθσ yy tt ενόσ γραμμικοφ δυναμικοφ ςυςτιματοσ (περιγράφεται από τθν ςυνάρτθςθ μεταφοράσ HH ss ) ςε διζγερςθ uu tt υπολογίηεται ωσ: yy ωω = H(jω) uu ωω μ/χ Fourier τθσ απόκριςθσ yy tt Απόκριςθ ςυχνότθτασ του ςυςτιματοσ μ/χ Fourier τθσ διζγερςθσ u tt H απόκριςθ ςυχνότθτασ ενόσ ςυςτιματοσ είναι ο μ/χ Fourier τθσ απόκριςθσ ςε κρουςτικι διζγερςθ tt HH jjω = F tt 12 10
11 Τπολογιςμόσ Απόκριςθσ Γραμμικϊν υςτθμάτων μζςω Μ/Χ Fourier Η απόκριςθ yy tt ενόσ γραμμικοφ δυναμικοφ ςυςτιματοσ ςε κάποια διζγερςθ uu tt μπορεί να υπολογιςτεί είτε ςτο πεδίο του χρόνου είτε ςτο πεδίο τθσ ςυχνότθτασ uu tt h(t) yy tt = h(t) uu tt F[ ] F 1 [ ] uu ωω H(jω) yy ωω = H(jΩ) uu ωω 11
12 Μοντελοποίθςθ υςτθμάτων υνεχοφσ Μζςου 12
13 Μοντελοποίθςθ Με Διακριτά τοιχεία τθν περίπτωςθ μοντζλων διακριτϊν ςτοιχείων, θ κινθτικι και δυναμικι ενζργεια υπολογίηεται ωσ ςυνάρτθςθ των Ν βακμϊν ελευκερίασ qq (το Ν είναι πεπεραςμζνο) τοιχεία αδράνειασ Τ = Τ(qq ) τοιχεία ελαςτικότθτασ V = V(qq) τοιχεία απόςβεςθσ xx F(tt) Μ g qq = xx θθ θθ L m 15 13
14 Μοντελοποίθςθ Με Διακριτά τοιχεία Μοντζλα διακριτϊν ςτοιχείων βαςίηονται ςε παραδοχζσ θμειακζσ μάηεσ (αμελείται αδράνεια, ελαςτικότθτα) τερεά ςϊματα (αμελείται αδράνεια) «Μικρζσ» μάηεσ αμελϊνται εισ βάροσ μεγάλων Ιδανικά ελατιρια (αμελείται μάηα, αδράνεια) «τυβαρά» εξαρτιματα μοντελοποιοφνται άκαμπτα Σριβζσ μοντελοποιοφνται ςαν γραμμικοί αποςβεςτιρεσ «Μικρζσ» τριβζσ αμελϊνται εισ βάροσ μεγάλων 14
15 Μοντελοποίθςθ Με Διακριτά τοιχεία Πολλζσ φορζσ θ μοντελοποίθςθ με διακριτά ςτοιχεία δεν φτάνει Πολφπλοκο ςφςτθμα. Αδράνεια & ελαςτικότθτα κατανζμονται ςτον χϊρο. Επιλογι βζλτιςτων διακριτϊν ςτοιχείων όχι προφανι Τψθλζσ απαιτιςεισ για ακρίβεια, λεπτομερι ανάλυςθ Ειδικά ςε μθχανικά ςυςτιματα 17 15
16 Μοντελοποίθςθ υςτθμάτων υνεχοφσ Μζςου Περιγράφουν δυναμικι ςυςτθμάτων, όπου τα ςτοιχεία αποκικευςθσ ενζργειασ (μάηα, ελαςτικότθτα) και οι διεγζρςεισ είναι κατανεμθμζνα ςτο χϊρο Περιγράφονται μζςω μερικϊν διαφορικϊν εξιςϊςεων Απλοποιθμζνα (π.χ. εξιςϊςεισ εφελκυςμοφ ι κάμψθσ δοκοφ) Πιο γενικά (εξιςϊςεισ ελαςτικότθτασ) 18 16
17 Παράδειγμα: τρεπτικζσ Σαλαντϊςεισ Ατράκτου Ιςορροπία ροπϊν για κάκε ςτοιχειϊδθ μικοσ τθσ ατράκτου Για Μ(xx) ΔΙ Μ(xx + Δx) μμ(xx, tt) Δx xx Δxx ΔΙ 2 θθ tt 2 = MM = Μ xx + Δx Μ xx + μμ xx, tt Δx = ( MM xx Μ xx = G JJ(xx) θθ χζςθ δυνάμεων-τάςεων: Διαφορικι εξίςωςθ κίνθςθσ ατράκτου: ρ II PP 2 θθ tt 2 = xx xx (G JJ(xx) ) + μμ xx, tt xx + μμ xx ) Δx 19 17
18 Παράδειγμα: τρεπτικζσ Σαλαντϊςεισ Ατράκτου Διαφορικι εξίςωςθ κίνθςθσ ατράκτου: Εξίςωςθ μετάδοςθσ κφματοσ (ΜΔΕ) ρ II PP 2 θθ tt 2 = (G JJ(xx) ) + μμ xx, tt xx xx αδράνεια ελαςτικότθτα διζγερςθ Η γωνία θθ(xx, tt) είναι ςυνάρτθςθ του χϊρου xx και χρόνου t Άπειροι βακμοί ελευκερίασ Καταςτατικι εξίςωςθ υλικοφ Ελαςτικό: Μ xx = G JJ(xx) xx Μζτρο διάτμθςθσ Γεωμετρικόσ παράγων 20 18
19 Απλοποιθμζνα Προβλιματα 2 θσ τάξθσ Γενικι μορφι ΜΔΕ: 2 yy tt 2 = 1 cc 2 2 yy + gg ff xx, tt xx2 Στρεπτικζσ ταλαντώςεισ ατράκτου Αξονικζσ ταλαντώςεισ δοκοφ Εγκάρςιεσ ταλαντώςεισ ςφρματοσ 19
20 Απλοποιθμζνα Προβλιματα 2 θσ τάξθσ Γενικι μορφι ΜΔΕ: 2 yy tt 2 = 1 cc 2 2 yy + gg ff xx, tt xx2 Στρεπτικζσ ταλαντώςεισ ατράκτου Αξονικζσ ταλαντώςεισ δοκοφ Εγκάρςιεσ ταλαντώςεισ ςφρματοσ Μεταβλθτι yy(xx, tt) Γωνία ςτρζψθσ θθ(xx, tt) Αξονικι μετατόπιςθ u(xx, tt) Εγκάρςια μετατόπιςθ w(xx, tt) Σαχφτθτα μετάδοςθσ κυμάτων cc Διζγερςθ ff xx, tt Νόμοσ υλικοφ cc = G JJ ρ II PP cc = EE ρ Ροπι ςτρζψθσ/μικοσ Διαμικθ δφναμθ/μικοσ Μ = G JJ xx F = A EE uu xx cc = SS ρ AA Εγκάρςια δφναμθ/μικοσ Q = S ww xx 22 20
21 Πρόβλθμα 4 θσ τάξθσ: Καμπτικι Σαλάντωςθ Δοκοφ ΜΔΕ (δοκόσ Euler-Bernoulli): ρ Α 2 ww tt xx 2 E II 2 ww xx 2 = qq xx, tt Βακμοί ελευκερίασ ww(xx, tt): εγκάρςια μετατόπθςθ Γωνία φ = ww xx Καμπτικι Ροπι: Μ = E II 2 ww xx 2 Εγκάρςιεσ δυνάμεισ: Q = MM xx Εγκάρςια δφναμθ ανά μονάδα μικουσ: q = QQ xx 21
22 Αναλυτικι Επίλυςθ ΜΔΕ Πρόβλθμα Αρχικϊν και υνοριακϊν υνκθκϊν 2 yy tt 2 = 1 cc 2 2 yy + gg ff xx, tt xx2 yy xx, tt ff 1 (yy ll 1, tt, ) = 0 xx=ll 1 yy xx, tt ff 2 (yy ll 2, tt, ) = 0 xx=ll 2 yy xx, 0 = yy 0 xx yy tt xx, 0 = uu 0(xx) Διαφορικι εξίςωςθ Οριακζσ ςυνκικεσ Αρχικζσ ςυνκικεσ 24 22
23 Yπόκεςθ Fourier: Αναλυτικι Επίλυςθ ΜΔΕ yy xx, tt = XX xx ηη(tt) Αντικατάςταςθ ςτθν ομογενι ΜΔΕ: 1 cc 2 Χ (xx) ηη (tt) = XX xx ηη(tt) = ωω2 Η πρϊτθ εξίςωςθ δίνει: Χ xx + ωω cc 2 XX xx = 0 Μαηί με ςυνοριακζσ ςυνκικεσ ορίηουν πρόβλθμα ςυνοριακϊν ςυνκθκϊν Λφςεισ: nn ωω (ιδιοςυχνότθτεσ) και αντίςτοιχεσ ςυναρτιςεισ nn Χ(x) (ιδιομορφζσ) Ιδιομορφζσ είναι κάκετεσ μεταξφ τουσ Κανονικοποιοφνται LL nnχ(x) mmχ(x) dddd = 1, n = m 0, nn mm
24 Αναλυτικι Επίλυςθ ΜΔΕ Αναηθτοφνται λφςεισ τθσ μορφισ: yy xx, tt = nn=1 nnχ(x) ηη nn (tt) Αντικατάςταςθ ςτθν ΜΔΕ δίνει μια ςειρά από ΔΕ: ηη nn + nn ωω 2 nn ηη nn = gg Χ x Με αρχικζσ ςυνκικεσ: ηη nn 0 = ηη nn 0 = 0 0 LL LL nnχ x nnχ x 0 LL yy xx, 0 dddd xx, 0 dddd ff xx, tt dddd = nn Χ x, yy xx, 0 = nn ψψ(tt) = nn Χ x, yy xx,
25 Επίλυςθ υςτθμάτων υνεχοφσ Μζςου Μζςω Τπόκεςθσ Fourier yy = cc 2 yy + gg ff xx, tt ff 1 yy ll 1, tt, yy ll 1, tt = 0, ff 2 (yy ll 2, tt, yy (ll 2, tt)) = 0 yy xx, 0 = yy 0 xx, yy xx, 0 = uu 0 (xx) ηη ωω 2 ηη 1 = 1 ψψ(tt) 1 ηη 1 0 = Χ x, yy xx, 0 ηη 1 0 = 1 Χ x, yy xx, 0 ηη nn + nn ωω 2 ηη nn = nn ψψ(tt) ηη nn 0 = nn Χ x, yy xx, 0 nn ηη nn 0 = Χ x, yy xx, 0 ηη 1 (tt) ηη nn (tt) yy xx, tt = nn=1 nnχ(x) ηη nn (tt) 27 25
26 Απόκριςθ υςτθμάτων υνεχοφσ Μζςου Η απόκριςθ yy xx, tt είναι επαλλθλία των ιδιομορφϊν μζςω των ςυντελεςτϊν ςυνειςφοράσ ηη nn (tt): Παρατθριςεισ yy xx, tt = nn=1 nnχ(x) ηη nn (tt) Αντίςτοιχο με τθν απόκριςθ διακριτϊν ςυςτθμάτων Ν Β.Ε. μζςω ιδιοανυςματικοφ μεταςχθματιςμοφ Σα ςυςτιματα ςυνεχοφσ μζςου ζχουν άπειρεσ ιδιομορφζσ υνικωσ, θ απόκριςθ yy xx, tt κυριαρχείται από λίγεσ χαμθλζσ ιδιομορφζσ yy xx, tt NN rr nnχ(x) ηη nn (tt) nn=
27 Γενικευμζνεσ Εξιςϊςεισ Ελαςτικότθτασ Οι μονοδιάςτατεσ εξιςϊςεισ 2 θσ και 4 θσ τάξθσ είναι απλοποιθμζνα μοντζλα των 3D εξιςϊςεων ελαςτικότθτασ: ρρ 2 uu(rr, t) tt 2 = σσ + ff rr, tt χζςεισ τάςεων-τροπϊν: εε = εε( uu) Καταςτατικζσ εξιςϊςεισ υλικοφ: σσ = σσ(εε) χεδόν πάντα δεν μποροφν να λυκοφν αναλυτικά Λφςθ μζςω αρικμθτικϊν μεκόδων (π.χ. πεπεραςμζνα ςτοιχεία) 29 27
28 Χρηματοδότηση Το Έργο Ανοικτά Ακαδημαϊκά Μαθήματα του ΕΜΠ υλοποιείται στο πλαίσιο του Επιχειρηματικού Προγράμματος Εκπαίδευση και Δια Βίου Μάθηση και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.
Δυναμικι Μθχανϊν I. Διάλεξθ 16. Χειμερινό Εξάμθνο 2013 Τμιμα Μθχανολόγων Μθχ., ΕΜΠ
Δυναμικι Μθχανϊν I Διάλεξθ 16 Χειμερινό Εξάμθνο 2013 Τμιμα Μθχανολόγων Μθχ., ΕΜΠ 1 Ανακοινϊςεισ Office Hours: Δευτζρα 1-3 μμ, Εργαςτιριο Εμβιομθχανικισ, Ιςόγειο Κτθρίου Μ (210 772-1516) DMmeche2013@gmail.com
Απόκριση σε Αρμονική Διέγερση
Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Απόκριση σε Αρμονική Διέγερση Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Απόκριση σε Αρμονική Διέγερση του καθ. Ιωάννη Αντωνιάδη και υπόκειται
Δυναμική Μηχανών Ι. Διδάσκων: Αντωνιάδης Ιωάννης. Απόκριση Συστημάτων 1 ου Βαθμού Ελευθερίας, που περιγράφονται από Σ.Δ.Ε.
Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Απόκριση Συστημάτων 1 ου Βαθμού Ελευθερίας, που περιγράφονται από Σ.Δ.Ε. 1 ης τάξης Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Απόκριση Συστημάτων
Επίλυση Δυναμικών Εξισώσεων
Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Επίλυση Δυναμικών Εξισώσεων Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Επίλυση Δυναμικών Εξισώσεων του καθ. Ιωάννη Αντωνιάδη και υπόκειται σε
Μοντελοποίηση Μηχανικών Συστημάτων Πολλών Βαθμών Ελευθερίας
Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Μοντελοποίηση Μηχανικών Συστημάτων Πολλών Βαθμών Ελευθερίας Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Μοντελοποίηση Μηχανικών Συστημάτων Πολλών
Συστήματα Αυτομάτου Ελέγχου Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ι Ενότητα #4: Μαθηματική εξομοίωση συστημάτων στο επίπεδο της συχνότητας Μετασχηματισμός Laplace και
Συστήματα Αυτομάτου Ελέγχου Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ι Ενότητα #7: Άλγεβρα Βαθμίδων (μπλόκ) Ολική Συνάρτηση Μεταφοράς Δημήτριος Δημογιαννόπουλος Τμήματος
Συστήματα Αυτομάτου Ελέγχου Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ι Ενότητα #9: Σύστημα ης τάξης: Χρονική Απόκριση και Χαρακτηριστικά Μεγέθη (Φυσικοί Συντελεστές) Δημήτριος
Δυναμική Μηχανών I. Δυναμικά Μοντέλα Συνεχούς Μέσου
Δυναμική Μηχανών I 8 1 Δυναμικά Μοντέλα Συνεχούς Μέσου 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Μοντελοποίηση
Δείκτεσ απόδοςθσ υλικών
Δείκτεσ απόδοςθσ υλικών Κάκε ςυνδυαςμόσ λειτουργίασ, περιοριςμϊν και ςτόχων, οδθγεί ςε ζνα μζτρο τθσ απόδοςθσ τθσ λειτουργίασ του εξαρτιματοσ και περιζχει μια ομάδα ιδιοτιτων των υλικϊν. Αυτι θ ομάδα των
Προσομoίωση Απόκρισης Συστήματος στο MATLAB
Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Προσομoίωση Απόκρισης Συστήματος στο MATLAB Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Προσομoίωση Απόκρισης Συστήματος στο MATLAB του καθ. Ιωάννη
Εισαγωγή στη Δυναμική Μηχανών
Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Εισαγωγή στη Δυναμική Μηχανών Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Εισαγωγή στη Δυναμική Μηχανών του καθ. Ιωάννη Αντωνιάδη και υπόκειται
ΑΝΩΣΑΣΟ ΕΚΠΑΙΔΕΤΣΙΚΟ ΙΔΡΤΜΑ ΠΕΙΡΑΙΑ ΣΕΧΝΟΛΟΓΙΚΟΤ ΣΟΜΕΑ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΤΣΟΜΑΣΙΜΟΤ Σ.Ε.
ΑΝΩΣΑΣΟ ΕΚΠΑΙΔΕΤΣΙΚΟ ΙΔΡΤΜΑ ΠΕΙΡΑΙΑ ΣΕΧΝΟΛΟΓΙΚΟΤ ΣΟΜΕΑ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΤΣΟΜΑΣΙΜΟΤ Σ.Ε. ΤΣΗΜΑΣΑ ΑΤΣΟΜΑΣΟΤ ΕΛΕΓΧΟΤ Ι ΑΚΗΕΙ ΠΡΑΞΗ Καθηγητήσ: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΤΛΟ Καθ. Εφαρμ:. ΒΑΙΛΕΙΑΔΟΤ
Γενικά Μαθηματικά ΙΙ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 5 η : Μερικι Παράγωγοσ Ι Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται
Διάδοση θερμότητας σε μία διάσταση
Διάδοση θερμότητας σε μία διάσταση Η θεωρητική μελζτη που ακολουθεί πραγματοποιήθηκε με αφορμή την εργαςτηριακή άςκηςη μζτρηςησ του ςυντελεςτή θερμικήσ αγωγιμότητασ του αλουμινίου, ςτην οποία διαγωνίςτηκαν
Δυναμική Μηχανών I. Διάλεξη 20. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ
Δυναμική Μηχανών I Διάλεξη 2 Χειμερινό Εξάμηνο 213 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Ανακοινώσεις Εξέταση Μαθήματος: 1/4/214, 12. Απαιτείται αποδεικτικό ταυτότητας Απαγορεύεται η παρουσία & χρήση κινητού!
Δυναμική Μηχανών I. Απόκριση Γραμμικών Συστημάτων στο. Πεδίο της Συχνότητας
Δυναμική Μηχανών I Απόκριση Γραμμικών Συστημάτων στο 7 4 Πεδίο της Συχνότητας 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς
Διαγώνισμα Φυσική ς Κατευ θυνσής Γ Λυκει ου - Ταλαντώσεις
Διαγώνισμα Φυσική ς Κατευ θυνσής Γ Λυκει ου - Ταλαντώσεις Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-4 και δίπλα το γράμμα που αντιςτοιχεί
ΕΛΛΗΝΙΚΑ Χ Ρ ΗΜ ΑΤ ΙΣ Τ ΗΡ ΙΑ CISCO EXPO 2009 G. V a s s i l i o u - E. K o n t a k i s g.vassiliou@helex.gr - e.k on t ak is@helex.gr 29 Α π ρ ι λ ί ο υ 20 0 9 Financial Services H E L E X N O C A g e
Φυσική IΙ. Ενότητα 5: Ηλεκτρικό δυναμικό στις 3 διαστάσεις. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική IΙ Ενότητα 5: Ηλεκτρικό δυναμικό στις 3 διαστάσεις Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Ορισμός και ερμηνεία του ηλεκτρικού δυναμικού στις 3 διαστάσεις μέσω:
Προχωρθμζνα Θζματα Συςτθμάτων Ελζγχου
ΠΑΝΕΠΙΣΗΜΙΟ ΑΙΓΑIΟΤ & ΑΕΙ ΠΕΙΡΑΙΑ Σ.Σ. Σμήματα Ναυτιλίας και Επιχειρηματικών Τπηρεσιών & Μηχ. Αυτοματισμού ΣΕ Π.Μ.. «Νέες Σεχνολογίες στη Ναυτιλία και τις Μεταφορές» Προχωρθμζνα Θζματα Συςτθμάτων Ελζγχου
Διακριτή Μοντελοποίηση Μηχανικών Συστημάτων
Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Διακριτή Μοντελοποίηση Μηχανικών Συστημάτων Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Διακριτή Μοντελοποίηση Μηχανικών Συστημάτων του καθ. Ιωάννη
ςυςτιματα γραμμικϊν εξιςϊςεων
κεφάλαιο 7 Α ςυςτιματα γραμμικϊν εξιςϊςεων αςικζσ ζννοιεσ Γραμμικά, λζγονται τα ςυςτιματα εξιςϊςεων ςτα οποία οι άγνωςτοι εμφανίηονται ςτθν πρϊτθ δφναμθ. Σα γραμμικά ςυςτιματα με δφο εξιςϊςεισ και δφο
Φυσική Ι. Ενότητα 2: Κίνηση σε επίπεδο Υλικό σημείο. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική Ι Ενότητα 2: Κίνηση σε επίπεδο Υλικό σημείο Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Επανάληψη θεωρίας διανυσμάτων Εξοικείωση με τη χρήση τους στην περιγραφή
8 τριγωνομετρία. βαςικζσ ζννοιεσ. γ ςφω. εφω και γ. κεφάλαιο
κεφάλαιο 8 τριγωνομετρία Α βαςικζσ ζννοιεσ τθν τριγωνομετρία χρθςιμοποιοφμε τουσ τριγωνομετρικοφσ αρικμοφσ, οι οποίοι ορίηονται ωσ εξισ: θμω = απζναντι κάκετθ πλευρά υποτείνουςα Γ ςυνω = εφω = προςκείμενθ
Γενικά Μαθηματικά ΙΙ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 10 η : Εφαρμογζσ Διανυςματικών Συναρτιςεων Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό
Κλαςικι Ηλεκτροδυναμικι
Κλαςικι Ηλεκτροδυναμικι Ενότθτα 21: Διάδοςθ θλεκτρομαγνθτικών κυμάτων Ανδρζασ Τερηισ Σχολι Θετικών Επιςτθμών Τμιμα Φυςικισ Σκοποί ενότθτασ Σκοπόσ τθσ ενότθτασ είναι να ςυνεχίςει τθν μελζτθ που αφορά τθν
Εργαστηριακή άσκηση στο μάθημα του Αυτομάτου Ελέγχου (ΜΜ803)
Εργαστηριακή άσκηση στο μάθημα του Αυτομάτου Ελέγχου (ΜΜ803) Το ςφςτθμα τθσ φωτογραφίασ αποτελείται από ζνα κινθτιρα ςτον άξονα του οποίου ζχουμε προςαρμόςει ζνα φορτίο. Στον κινθτιρα υπάρχει ςυνδεδεμζνοσ
Μοντελοποίηση Μηχανικών - Ηλεκτρικών - Υδραυλικών Θερμικών Συστημάτων
Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Μοντελοποίηση Μηχανικών - Ηλεκτρικών - Υδραυλικών Θερμικών Συστημάτων Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Μοντελοποίηση Μηχανικών - Ηλεκτρικών
Α1. Ροιεσ από τισ δυνάμεισ του ςχιματοσ ζχουν μθδενικι ροπι ωσ προσ τον άξονα (ε) περιςτροφισ του δίςκου;
ΜΑΘΗΜΑ /ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΟΝΟΜΑΤΕΡΩΝΥMΟ: ΗΜΕΟΜΗΝΙΑ: 1/3/2015 ΕΞΕΤΑΣΤΕΑ ΥΛΗ: ΚΥΜΑΤΑ ΚΑΙ ΣΤΕΕΟ ΣΩΜΑ ΘΕΜΑ Α Α1. Ροιεσ από τισ δυνάμεισ του ςχιματοσ ζχουν μθδενικι ροπι ωσ προσ τον άξονα (ε)
ΑΝΣΙΣΡΟΦΗ ΤΝΑΡΣΗΗ. f y x y f A αντιςτοιχίηεται ςτο μοναδικό x A για το οποίο. Παρατθριςεισ Ιδιότθτεσ τθσ αντίςτροφθσ ςυνάρτθςθσ 1. Η. f A τθσ f.
.. Αντίςτροφθ ςυνάρτθςθ Ζςτω θ ςυνάρτθςθ : A θ οποία είναι " ". Τότε ορίηεται μια νζα ςυνάρτθςθ, θ μζςω τθσ οποίασ το κάκε ιςχφει y. : A με Η νζα αυτι ςυνάρτθςθ λζγεται αντίςτροφθ τθσ. y y A αντιςτοιχίηεται
Φυσική Ι. Ενότητα 9: Στροφορμή. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική Ι Ενότητα 9: Στροφορμή Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Εισαγωγή στην έννοια της στροφορμής Διαφοροποίηση υλικού σημείου από στερεό σώμα Εναλλακτικοί
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #7: Σύστημα Ασαφούς Λογικής Μαθηματικές Εκφράσεις
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #7: Σύστημα Ασαφούς Λογικής Μαθηματικές Εκφράσεις Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.
ΦΥΕ 14 ΑΚΑΔ. ΕΤΟΣ Η ΕΡΓΑΣΙΑ. Ημερομηνία παράδοςησ: 12 Νοεμβρίου (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 10 μονάδεσ θ κάκε μία)
ΦΥΕ ΑΚΑΔ. ΕΤΟΣ 007-008 Η ΕΡΓΑΣΙΑ Ημερομηνία παράδοςησ: Νοεμβρίου 007 (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 0 μονάδεσ θ κάκε μία) Άςκηςη α) Να υπολογιςκεί θ προβολι του πάνω ςτο διάνυςμα όταν: (.
Α2. το ςτιγμιότυπο αρμονικοφ μθχανικοφ κφματοσ του χιματοσ 1, παριςτάνονται οι ταχφτθτεσ ταλάντωςθσ δφο ςθμείων του.
ΘΕΜΑ Α. Στισ ερωτήςεισ Α1-Α4 να γράψετε ςτο τετράδιό ςασ τον αριθμό τησ ερϊτηςησ και, δίπλα, το γράμμα που αντιςτοιχεί ςτην επιλογή η οποία ςυμπληρϊνει ςωςτά την ημιτελή πρόταςη. Α1. τθ ςφνκεςθ δφο απλϊν
Φυσική Ι. Ενότητα 12 : Κύματα. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική Ι Ενότητα 12 : Κύματα Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Ορισμός και κατανόηση της έννοιας των κυμάτων Μαθηματική περιγραφή και εξισώσεις κύματος Επεξήγηση
Ψθφιακι Επεξεργαςία ιματοσ
Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Κδρυμα Ηπείρου Ψθφιακι Επεξεργαςία ιματοσ Ενότθτα 5 : Θεϊρθμα Shanon Κωνςταντίνοσ Αγγζλθσ 1 Ανοιχτά Ακαδημαϊκά Μαθήματα ςτο ΤΕΙ Ηπείρου Σμιμα Μθχανικϊν Πλθροφορικισ
ΧΕΔΙΑΜΟ ΠΡΟΪΟΝΣΩΝ ΜΕ Η/Τ
ΧΕΔΙΑΜΟ ΠΡΟΪΟΝΣΩΝ ΜΕ Η/Τ ΚΑΜΠΤΛΕ ΕΛΕΤΘΕΡΗ ΜΟΡΦΗ Χριςιμεσ για τθν περιγραφι ομαλών και ελεφκερων ςχθμάτων Αμάξωμα αυτοκινιτου, πτερφγια αεροςκαφών, ςκελετόσ πλοίου χιματα χαρακτιρων κινουμζνων ςχεδίων Περιγραφι
Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν:
Μζθοδος Simplex Η πλζον γνωςτι και περιςςότερο χρθςιμοποιουμζνθ μζκοδοσ για τθν επίλυςθ ενόσ γενικοφ προβλιματοσ γραμμικοφ προγραμματιςμοφ, είναι θ μζκοδοσ Simplex θ οποία αναπτφχκθκε από τον George Dantzig.
Πανεπιςτιμιο Κφπρου ΟΙΚ 223: Μακθματικά για οικονομολόγουσ ΙΙ Διδάςκων:
Πανεπιςτιμιο Κφπρου ΟΙΚ 3: Μακθματικά για οικονομολόγουσ ΙΙ Διδάςκων: Φάμπιο Αντωνίου τοιχεία Επικοινωνίασ: email: fantoniou@aueb.gr ; fabio@ucy.ac.cy Σθλ:893683 Προςωπικι Ιςτοςελίδα: fantoniou.wordpress.com
Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό. μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ
Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ Για τθν ανάδειξθ του κζματοσ κα λφνουμε κάποια προβλιματα
Φυσική IΙ. Ενότητα 8: Μαγνητισμός. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική IΙ Ενότητα 8: Μαγνητισμός Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Εξοικείωση με τις έννοιες του μαγνητισμού και του μαγνητικού πεδίου Κινούμενο φορτίο σε μαγνητικό
Γενικά Μαθηματικά ΙΙ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 7 η : Σφνκετεσ Συναρτιςεισ Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται
ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ 4.1
ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ 4. Να γίνει πρόγραμμα το οποίο να επιλφει το Διαγώνιο Σφςτθμα: A ι το ςφςτθμα : ι ςε μορφι εξιςώςεων το ςφςτθμα : Αλγόρικμοσ m(). Διαβάηουμε τθν τιμι του ( θ διάςταςθ του Πίνακα Α )..
Φυσική Ι. Ενότητα 11: Ταλαντώσεις. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική Ι Ενότητα 11: Ταλαντώσεις Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Εισαγωγή και ερμηνεία των ταλαντώσεων Διαφορική εξίσωση κι η λύση της στην περίπτωση του απλού
Φυσική Ι. Ενότητα 6: Έργο και κινητική ενέργεια. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική Ι Ενότητα 6: Έργο και κινητική ενέργεια Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Κατανόηση και ορισμός της έννοιας του έργου Κατανόηση της κινητικής ενέργειας
Άπειρεσ κροφςεισ. Τθ χρονικι ςτιγμι. t, ο δακτφλιοσ ςυγκροφεται με τον τοίχο με ταχφτθτα (κζντρου μάηασ) μζτρου
Άπειρεσ κροφςεισ Δακτφλιοσ ακτίνασ κυλάει ςε οριηόντιο δάπεδο προσ ζνα κατακόρυφο τοίχο όπωσ φαίνεται ςτο ςχιμα. Ο ςυντελεςτισ τριβισ ίςκθςθσ του δακτυλίου με το δάπεδο είναι, ενϊ ο τοίχοσ είναι λείοσ.
Φυσική Ι. Ενότητα 10: Σύνθετη κίνηση. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική Ι Ενότητα 10: Σύνθετη κίνηση Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Ανάλυση σύνθετων κινήσεων (υλικών σημείων και σωμάτων) σε μεταφορική και περιστροφική Ορισμός
ΜΑ032: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Εαρινό εξάμηνο , Διδάςκων: Γιώργοσ Γεωργίου ΕΝΔΙΑΜΕΗ ΕΞΕΣΑΗ, 21 Μαρτίου, 2012 Διάρκεια: 2 ώρεσ
ΜΑ: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Εαρινό εξάμηνο -, Διδάςκων: Γιώργοσ Γεωργίου ΕΝΔΙΑΜΕΗ ΕΞΕΣΑΗ, Μαρτίου, Διάρκεια: ώρεσ ΟΝΟΜΑ: Αρ. Πολ. Σαυτ. Πρόβλημα. Θεωροφμε τα διανφςματα u =,,,, v =,,,4, w =,,,, (α) Υπολογίςτε
Ψθφιακι Επεξεργαςία ιματοσ
Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακι Επεξεργαςία ιματοσ Ενότθτα 3 : Παρακφρωςθ Δεδομζνων Κωνςταντίνοσ Αγγζλθσ Ανοιχτά Ακαδημαϊκά Μαθήματα ςτο ΤΕΙ Ηπείρου Σμιμα Μθχανικών
Φυσική IΙ. Ενότητα 6: Πυκνωτές. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική IΙ Ενότητα 6: Πυκνωτές Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Ορισμός χωρητικότητας πυκνωτή Ανάλυση γεωμετρίας και χαρακτηριστικών μεγεθών επίπεδου πυκνωτή
Διαγώνισμα Φυσική ς Α Λυκει ου Έργο και Ενε ργεια
Διαγώνισμα Φυσική ς Α Λυκει ου Έργο και Ενε ργεια Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-4 και δίπλα το γράμμα που αντιςτοιχεί
Φυσική Ι. Ενότητα 3: Μηχανικές δυνάμεις. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική Ι Ενότητα 3: Μηχανικές δυνάμεις Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Περιγραφή και παρουσίαση μηχανικών δυνάμεων Βαρύτητα Τριβή (στατική και ολίσθησης) Τάση
Απάντηση ΘΕΜΑ1 ΘΕΜΑ2. t=t 1 +T/2. t=t 1 +3T/4. t=t 1 +T ΔΙΑΓΩΝΙΣΜΑ ΣΕ ΤΑΛΑΝΤΩΣΕΙΣ-ΚΥΜΑΤΑ 1) (Β), 2. (Γ), 3. (Γ), 4. (Γ), 5. (Δ).
Απάντηση ΘΕΜΑ1 1) (Β), 2. (Γ), 3. (Γ), 4. (Γ), 5. (Δ). ΘΕΜΑ2 Α)Ανάκλαςθ ςε ακίνθτο άκρο. Το προςπίπτον κφμα ςε χρόνο Τ/2 κα ζχει μετακινθκεί προσ τα δεξιά κατά 2 τετράγωνα όπωσ φαίνεται ςτο ςχιμα. Για
Φυσική IΙ. Ενότητα 2: Ηλεκτρικό πεδίο. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική IΙ Ενότητα 2: Ηλεκτρικό πεδίο Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Εισαγωγή στην έννοια του ηλεκτρικού πεδίου Ηλεκτρικό πεδίο φορτισμένης πηγής Ορισμός έντασης
ΜΕΣΑΔΟΗ ΘΕΡΜΟΣΗΣΑ. Μιςθρλισ Δθμιτριοσ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑ ΣΕ
ΜΕΣΑΔΟΗ ΘΕΡΜΟΣΗΣΑ Μιςθρλισ Δθμιτριοσ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑ ΣΕ 1 Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για εκπαιδευτικό υλικό, όπωσ
Smart Shop uu ss ii nn g g RR FF ii dd Παύλος ΚΚ ατ σσ αρ όό ς Μ Μ MM Ε Ε ΞΞ ΥΥ ΠΠ ΝΝ ΟΟ ΜΜ ΑΑ ΓΓ ΑΑ ΖΖ Ι Ι ΡΡ ΟΟ ΥΥ ΧΧ ΙΙ ΣΣ ΜΜ ΟΟ ΥΥ E E TT HH N N ΧΧ ΡΡ ΗΗ ΣΣ ΗΗ TT OO Y Y RR FF II DD Απευθύνεται σσ
Η γραφικι παράςταςθ τθσ ςυνάρτθςθσ f(x)=αx+β είναι μια ευκεία με εξίςωςθ y=αx+β θ οποία τζμνει τον άξονα των y ςτο ςθμείο Β(0,β) και ζχει κλίςθ λ=α.
ε καρτεςιανό ςφςτθμα ςυντεταγμζνων Οxy δίνεται ευκεία ε. Σί ονομάηουμε : α) γωνία που ςχθματίηει θ ευκεία ε με τον άξονα xϋx; β) ςυντελεςτι διευκφνςεωσ τθσ ευκείασ ε; ΑΠΑΝΤΗΣΗ α) Παρατιρθςθ β) Παρατιρθςθ
What happens when two or more waves overlap in a certain region of space at the same time?
Wave Superposition What happens when two or more waves overlap in a certain region of space at the same time? To find the resulting wave according to the principle of superposition we should sum the fields
Φυσική IΙ. Ενότητα 7: Ηλεκτρικό ρεύμα Νόμος του Ohm. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική IΙ Ενότητα 7: Ηλεκτρικό ρεύμα Νόμος του Ohm Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Κατανόηση της κίνησης του φορτίου μέσα σε αγωγούς με βάση τη διαφορά δυναμικού
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ. ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΕΡΙΒΑΛΛΟΝΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ (MSc)
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΕΡΙΒΑΛΛΟΝΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ (MSc) ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΠΣΕ60 Ακαδημαϊκό Έτος: 207-208 η Γραπτή Εργασία Επιβλέπων
ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες
ΔC= C - C. Μια γρήγορη επανάληψη. Αρτές λειηοσργίας
Αρτές λειηοσργίας Μια γρήγορη επανάληψη Αρχή λειτουργίασ H φυςικι αρχι ςτθν οποία βαςίηεται θ λειτουργία του αιςκθτιρα. (Ειδικότερα, το φυςικό μζγεκοσ ςτο οποίο βαςίηεται ο μετατροπζασ του αιςκθτιρα.)
Φυσική IΙ. Ενότητα 4: Ηλεκτρική δυναμική ενέργεια. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική IΙ Ενότητα 4: Ηλεκτρική δυναμική ενέργεια Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Ορισμός της ηλεκτρική δυναμικής ενέργειας. Σύγκριση με τη βαρυτική ενέργεια
Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ Λουκάσ Βλάχοσ Τμιμα Φυςικισ Α.Π.Θ. Θεςςαλονίκθ, 2014 Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ
ΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ ΘΔΜΑ Α ΘΔΜΑ Β
4 o ΔΙΓΩΝΙΜ ΠΡΙΛΙΟ 04: ΔΝΔΔΙΚΣΙΚΔ ΠΝΣΗΔΙ ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΤΔΥΘΥΝΣΗΣ 4 ο ΔΙΓΩΝΙΣΜ ΔΝΔΔΙΚΤΙΚΔΣ ΠΝΤΗΣΔΙΣ ΘΔΜ. β. β 3. α 4. γ 5. α.σ β.σ γ.λ δ.σ ε.λ. ΘΔΜ Β Σωςτι είναι θ απάντθςθ γ. Έχουμε ελαςτικι
17. Πολυδιάςτατοι πίνακεσ
Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων 17. Πολυδιάςτατοι πίνακεσ Ιωάννθσ Κατάκθσ Πολυδιάςτατοι πίνακεσ o Μζχρι τϊρα μιλοφςαμε για μονοδιάςτατουσ πίνακεσ ι int age[5]= 31,28,31,30,31; o Για παράλλθλουσ
Φυσική Ι. Ενότητα 8 : Περιστροφική κίνηση. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική Ι Ενότητα 8 : Περιστροφική κίνηση Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Εισαγωγή και ερμηνεία της περιστροφής στερεού και των σχετιζόμενων μεγεθών Ορισμός
Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων
Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Ενότητα 3: υςτιματα ουρϊν αναμονισ Κακθγθτισ Γιάννθσ Γιαννίκοσ χολι Οργάνωςθσ και Διοίκθςθσ Επιχειριςεων Σμιμα Διοίκθςθσ Επιχειριςεων Σκοποί ενότητασ Μελζτθ ςυςτθμάτων
ΘΕΡΜΟΔΤΝΑΜΙΚΗ Ι. Ενότθτα 1: Βαςικά χαρακτθριςτικά τθσ Θερμοδυναμικισ. ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν
ΘΕΡΜΟΔΤΝΑΜΙΚΗ Ι Ενότθτα 1: Βαςικά χαρακτθριςτικά τθσ Θερμοδυναμικισ ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν κοποί ενότθτασ κοπόσ τθσ ενότθτασ αυτισ είναι θ περιγραφι των οριςμϊν και και
Φυσική Ι. Ενότητα 5: Ορμή Ώθηση. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική Ι Ενότητα 5: Ορμή Ώθηση Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Κατανόηση της έννοιας της ορμής και της μεταβολής της Κατανόηση της έννοιας της ώθησης Σύνδεση
Συστήματα Αυτομάτου Ελέγχου Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ι Ενότητα #10: Σύστηματα και Απόκριση Συχνότητας - Λογαριθμικά Διαγράμματα BODE Δημήτριος Δημογιαννόπουλος
Δυναμική Μηχανών I. Διάλεξη 8. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ
Δυναμική Μηχανών I Διάλεξη 8 Χειμερινό Εξάμηνο 23 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Ανακοινώσεις To μάθημα MATLAB/simulink για όσους δήλωσαν συμμετοχή έως χθες θα γίνει στις 6//24: Office Hours: Δευτέρα -3 μμ,
Γενικά Μαθηματικά ΙΙ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 13 η : Επαναλθπτικι Ενότθτα Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται
Óå Ýíá ó ïëåßï óôçí ÁèÞíá
8 Eíüôçôá 1 Óå Ýíá ó ïëåßï óôçí ÁèÞíá speak about everyday activities school life ôá åëëçíéêü êé åìåßò... Παιδιά, αύριο θα είστε έτοιμοι αργότερα, γύρω στις δέκα. Στις έντεκα μας περιμένει η πρώτη τάξη
Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R
Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R Ενότητα 5 η : Η Μζθοδοσ Simplex Παρουςίαςη τησ μεθόδου Κων/νοσ Κουνετάσ, Επίκουροσ Κακθγθτισ Νίκοσ Χατηθςταμοφλου, Υπ. Δρ. Οικονομικισ Επιςτιμθσ
Μετατροπι Αναλογικοφ Σιματοσ ςε Ψθφιακό. Διάλεξθ 10
Μετατροπι Αναλογικοφ Σιματοσ ςε Ψθφιακό Διάλεξθ 10 Γενικό Σχιμα Μετατροπζασ Αναλογικοφ ςε Ψθφιακό Ψθφιακό Τθλεπικοινωνιακό Κανάλι Μετατροπζασ Ψθφιακοφ ςε Αναλογικό Τα αναλογικά ςιματα μετατρζπονται ςε
Κλασική Ηλεκτροδυναμική Ι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΤΕΧΝΙΚΕΣ ΥΠΟΛΟΓΙΣΜΟΥ ΗΛΕΚΤΡΙΚΟΥ ΔΥΝΑΜΙΚΟΥ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #3: Αρχή της Επέκτασης - Ασαφείς Σχέσεις. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #3: Αρχή της Επέκτασης - Ασαφείς Σχέσεις Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης
Από τις (1) και (2) έχουμε:
ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΚΑΝΟΝΙΚΗΣ ΕΞΕΤΑΣΤΙΚΗΣ 3 ΣΤΟ ΜΑΘΗΜΑ «ΔΙΗΛΕΚΤΡΙΚΕΣ, ΟΠΤΙΚΕΣ, ΜΑΓΝΗΤΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΥΛΙΚΩΝ» ΤΟΥ ΠΑΤΡΙΚ ΑΣΕΝΟΒ (OR STEVE HARRIS FOR MY FRIENDS FROM THE SHMMY FORUM) Θέμα ον : Έχουμε ιοντικό
Βαςικι Θεωρία των Δομικϊν υςτθμάτων
2016 Βαςικι Θεωρία των Δομικϊν υςτθμάτων 3.01 Περιεχόμενα 3.01.1 ΜΕΡΟ Α... 2 3.01.1.1 Εκπαιδευτικόσ ςτόχοσ/ Επικυμθτά Αποτελζςματα... 2 3.01.1.2 Θεμελιϊδεισ Αρχζσ τθσ Δομικισ τατικισ... 3 3.01.1.3 Θεωρία
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ ΚΑΘΗΓΗΤΗΣ κ. ΔΗΜΗΤΡΙΟΣ ΘΕΜΕΛΗΣ ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Η αυτεπαγωγή ενός δακτυλίου
Η αυτεπαγωγή ενός δακτυλίου Υποκζςτε ότι κρατάτε ςτο χζρι ςασ ζναν μεταλλικό δακτφλιο διαμζτρου πχ 5 cm. Ζνασ φυςικόσ πικανότθτα κα προβλθματιςτεί: τι αυτεπαγωγι ζχει άραγε; Νομίηω κα ιταν μια καλι ιδζα
ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση Συγγραφή:
Φυσική IΙ. Ενότητα 10: Ηλεκτρομαγνητική επαγωγή. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική IΙ Ενότητα 10: Ηλεκτρομαγνητική επαγωγή Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Εισαγωγή στην έννοια της μαγνητικής ροής και ορισμός του μαθηματικού τύπου της
Ε.Α.Υ. Υπολογιστική Όραση. Κατάτμηση Εικόνας
Ε.Α.Υ. Υπολογιστική Όραση Κατάτμηση Εικόνας Γεώργιος Παπαϊωάννου 2015 ΚΑΤΩΦΛΙΩΣΗ Κατωφλίωση - Γενικά Είναι η πιο απλή μέθοδος segmentation εικόνας Χωρίζουμε την εικόνα σε 2 (binary) ή περισσότερες στάθμες
Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη
Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR
Η θεωρία τησ ςτατιςτικήσ ςε ερωτήςεισ-απαντήςεισ Μέροσ 1 ον (έωσ ομαδοποίηςη δεδομένων)
1)Πώσ ορύζεται η Στατιςτικό επιςτόμη; Στατιςτικι είναι ζνα ςφνολο αρχϊν και μεκοδολογιϊν για: το ςχεδιαςμό τθσ διαδικαςίασ ςυλλογισ δεδομζνων τθ ςυνοπτικι και αποτελεςματικι παρουςίαςι τουσ τθν ανάλυςθ
Modellus 4.01 Συ ντομοσ Οδηγο σ
Νίκοσ Αναςταςάκθσ 4.01 Συ ντομοσ Οδηγο σ Περιγραφή Σο είναι λογιςμικό προςομοιϊςεων που ςτθρίηει τθν λειτουργία του ςε μακθματικά μοντζλα. ε αντίκεςθ με άλλα λογιςμικά (π.χ. Interactive Physics, Crocodile
Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R
Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R Ενότητα 6 η : Η Μζθοδοσ Μ και η Μζθοδοσ των Δφο Φάςεων Κων/νοσ Κουνετάσ, Επίκουροσ Κακθγθτισ Νίκοσ Χατηθςταμοφλου, Υπ. Δρ. Οικονομικισ Επιςτιμθσ
Φυσική IΙ. Ενότητα 12: To φως. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική IΙ Ενότητα 12: To φως Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Εισαγωγή στο φως και στη δυική φύση του (κυματική, σωματιδιακή) Ορισμός ηλεκτρομαγνητισμού, ιδιότητες
Ψθφιακι Επεξεργαςία ιματοσ
Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακι Επεξεργαςία ιματοσ Ενότθτα 4 : Μετατροπι Αναλογικοφ ιματοσ ςε Ψθφιακό Κωνςταντίνοσ Αγγζλθσ 1 Ανοιχτά Ακαδημαϊκά Μαθήματα ςτο ΤΕΙ Ηπείρου
ΕΓΚΑΣΑΣΑΕΙ ΚΛΙΜΑΣΙΜΟΤ ΙΙ ΚΟΝΤΟΣ ΟΔΥΣΣΕΑΣ ΠΕ12.04
ΕΓΚΑΣΑΣΑΕΙ ΚΛΙΜΑΣΙΜΟΤ ΙΙ ΚΟΝΤΟΣ ΟΔΥΣΣΕΑΣ ΠΕ12.04 1 κλιματιςμόσ χώρου ρφκμιςθ χαρακτθριςτικών αζρα: δθμιουργία ςυνκθκών άνεςησ Η ςωςτή ποςότητα του κλιματιςμζνου αζρα που τροφοδοτείται ςτο χώρο από τθν
Παπαδρακάκθσ Μανόλθσ Θζμα ΙI Στατικι ΙΙΙ Καρακίτςιοσ Παναγιϊτθσ. Εθνικό Μετςόβιο Πολυτεχνείο Ακαδημαϊκό ζτοσ χολή Πολιτικϊν Μηχανικϊν
Εθνικό Μετςόβιο Πολυτεχνείο Ακαδημαϊκό ζτοσ 2010-2011 χολή Πολιτικϊν Μηχανικϊν 6 ο εξάμηνο Σομζασ Δομοςτατικήσ Μάθημα: τατική ΙΙΙ (Ανάλυςη Ραβδωτϊν Φορζων φγχρονεσ Μζθοδοι) Παπαδρακάκησ Μανόλησ Καθηγητήσ
Καταςκευζσ Οπλιςμζνου Σκυροδζματοσ Ι
ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10: Παραδείγματα φορτίςεων δομικϊν ςτοιχείων Γεϊργιοσ Παναγόπουλοσ Τμιμα Πολιτικϊν Μθχανικϊν ΤΕ & Μθχανικϊν Τοπογραφίασ και Γεωπλθροφορικισ ΤΕ (Κατεφκυνςθ ΠΜ) Άδειεσ
Ενδεικτικζσ Λφςεισ Θεμάτων
c AM (t) x(t) ΤΕΙ Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σειρά Β Ειςηγητήσ: Δρ Απόςτολοσ Γεωργιάδησ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Ενδεικτικζσ Λφςεισ Θεμάτων Θζμα 1 ο (1 μον.) Ζςτω περιοδικό ςιμα πλθροφορίασ με περίοδο.
Φυσική IΙ. Ενότητα 9: Ο Νόμος του Ampere. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική IΙ Ενότητα 9: Ο Νόμος του Ampere Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Εισαγωγή και ερμηνεία του Νόμου του Ampere Χρήση και εφαρμογή του Νόμου του Ampere για
Φυσική Ι. Ενότητα 13: Ήχος. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική Ι Ενότητα 13: Ήχος Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Ορισμός και ερμηνεία της έννοιας του ήχου Η μεταβολής της πίεσης στη διάδοση του ήχου Ταχύτητα του
Αν η ςυνάρτηςη ƒ είναι ςυνεχήσ ςτο να προςδιορίςετε το α.
1 AΣΚΗΣΕΙΣ 1. Να υπολογιςθοφν τα παρακάτω όρια Ι. ΙΙ. ΙΙΙ. Ιν. ν. νι. νιι. νιιι. 2. Να βρεθοφν τα όρια Ι. ΙΙ. 3. Αν ƒ(χ)= α. Να βρείτε το πεδίο οριςμοφ Β. Να βρείτε τα όρια Ι. ΙΙ. 4. Δίνεται η ςυνάρτηςη
HY437 Αλγόριθμοι CAD
HY437 Αλγόριθμοι CAD Διδάςκων: Χ. Σωτηρίου http://inf-server.inf.uth.gr/courses/ce437/ 1 Περιεχόμενα Κανονικζσ Μορφζσ Οριςμόσ των Δυαδικών Διαγραμμάτων Αποφάςεων (Binary Decision Diagrams BDDs) Αναπαράςταςθ