Seminarska naloga iz fizike
|
|
- Αρμονία Βλαστός
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Seinaa naloga i fiie o: Teja Mže
2 Poee V ej nalogi bo pedaila fiialno oličino»gibalna oličina«(ibol je G, enoa pa g ). V piejai np. hiojo, ia a oličina poebno: pedalja neaj, a je eboano eleu, o e giblje in ni nje, ada elo iuje. Tao elja, da elo ebuje e eč gibalne oličine, či ečja je njegoa hio in či ečja je njegoa aa. Še neaj lanoi: - Ob u laho gibalna oličina pehaja i enega elea dugo, laho e poadeli udi na eč ele. Gibalno oličino pogoo poeujeo i. Naj bodo i elaični ali ne, pi ae u e ohani celona gibalna oličina iea eh delce, i o udeleženi pi u.: edno elja aon o ohanii gibalne oličine.
3 Gibalna oličina Delec ao e nee enuu giblje hiojo. Definiao gibalno oličino delca: G [ g ].Newono aon laho apišeo gibalno oličino: dg F d dg Fd G G dg G G Fd G Fd Definicija una ile I (ila F deluje čaone inealu ) : I Fd [ N g ] Če pi pee gibanju delca ao dolž oi x deluje alna ila F x čaone inealu, elja: F - o pi čee je o ačena, pa ončna hio. Sune ile čaone inealu (0, ) je ena peebi gibalne oličine e čaone inealu. Speeba gibalne oličine poljubne čaone inealu je enaa unu ile e čaone inealu.
4 FD i D i Slia : Sila F ni onanna, elio e peinja, e je onanna. Sune ile na inealu ed in je ena ploščini lia pod iuljo F(). I Fd 0 Slia : Gaf ile, i deluje na elo, odinoi od čaa ( une ile je poiien, ila je uejena deno ). Pie a. ae ča deloanja ečja aialna ila Pie b.daljši ča deloanja anjša aialna ila Pie c..gaf popečne ile na ie čaone inealu o pieu b V eh eh pieih je une ile ena. Ploščina pod ei ei iuljai (a), (b), in (c) je enaa.
5 Ohanie gibalne oličine Ko de elei delujea dugo na dugo ed o, elja: III. Newono aon: enao elii in napono uejeni ili pega elea na dugo in dugega na po Suna eh il na elei poljubne čaone inealu a enao elia in napona. Speebi gibalne oličine obeh ele a enai in naponi. (pie: deh biljadnih žog) F,, G I, F d F d,,, G I, I, F I, G G G G 0 Celona gibalna oličina iea obeh oglic e ohanja: G G G,,,, Celona gibalna oličina iea G je definiana o eoa oa gibalnih oličin ele ieu: G G G Zaon o ohanii gibalne oličine: Kada de elei učinujea ao ed eboj, je celona gibalna oličina onanna. G G Ko je eulana unanjih il na ie enaa nič, je celona gibalna oličina onanna.
6 Neelaični i Model iolianega iea: noanje ile o nogo očnejše od unanjih ( na pie: ao na ledeni cei). * celona ineična enegija po u je anjša od one ped o. Enegija e poabi a defoacijo ele. Popolnoa neelaični : elei in a po u pijei. Končni hioi a enai: Ie o ohanii gibalne oličine: ( ) Znane o ae in ačene hioi, iačunao ončno hio. Pie: elo na ačeu iuje ( 0) Kineična enegija ele ped in po u: ( ), E E E E Pi neelaičnih ih e ineična enegija anjša peoi e noanjo enegijo. Elaični i Lano elaičnih o: Sile pi u o oneaine, ohanjaa e ineična enegija in gibalna oličina Poeben pie a eni dieniji: elaični čelni deh oglic, pi čee duga oglica ped o iuje 0,,, Poglejo olišni a hioi oglic po u in. Velja ohanie ineične enegije in ohanie gibalne oličine.
7 Peuedio: ( ) ( )( ( ) ) I duge enačbe iaio in aio po: ( ) ( )( ) od od dobio, da je ončna hio pega delca: in dugega delca: Poebni piei: ) << : laha oglica e alei ežo -, O ) >> : eža oglica e alei laho, 3) : pa oglica e alei dugo enao ao O,
8 Naloge: ) Dalec ao 80 g da alno hiojo 5, o e nenadoa od ani njega alei dugi dalec ao 40 g. Hio dugega dalca ped o je bila 8 paooni ei na gibanje pega dalca. Ob u e dugi dalec opie pega. V aei ei in olišno hiojo dia oba dalca po u? 80 g, 5 40 g, 8 x e: G α 90 o G G G co α O G x G coϕ -ohanie x oponene gib. oličine ϕ? y e: G co α? G G y G inϕ -ohanie y oponene gib. oličine G co ϕ G in ϕ ( ) G (co ϕ in ϕ) G G 80 g 5 40 g 8 G 70 g y e: G in ϕ in α inα inϕ G ϕ 6,39 6 3`, ϕ G ( ) α G x G G y G 70g 6 0g
9 ) Top ao 00 g iuje na gladih odoanih leh. Nenadoa ieli odoani ei oglo ao 0 g. Hio ogle po ielii je 50. Kolišen je une ile, i jo pooči ogla na op ob ielii? Kolišna je hio opa po ielii?kolišen delež ineične enegije je ob ielii peela ogla in olišen delež op? 00 g 0 g, 50 I??,? Celona gib. oličina opa in ogle e ohanja: G G, G G op, - 0 g g Končna hio opa po ielii ogle: g 00g Kineična enegija opa:, 00g( 5 ) 50J Kineična enegija ogle:, 0g(50 ) 500J Kogla je peela dee-a eč ineične enegije o op: K, 500J 0 50J K,
10 3) De elaični oglici e gibljea duga poi dugi enaia hioa 0. Maa pe oglice je ia ečja od duge ( 30g, 0g ). T je cenalen, ao da e po u odbijea po ii či, o a pileeli. Kolišni a njuni ončni hioi? Kašno je aeje ineičnih enegij obeh oglic ped in po u? 0 30g 0g,?,? Sledeči enačbi eljaa a ončni hioi pe in duge oglice pi čelne elaične u ob gibanju deh ele eni dieniji: V naše pieu elja ao dobio nalednje ee: 0 0 0, ( ) ( ) ( ) ( ) J g J g J g J g 0 0,0 0 0, ,03,5 0 0,03
11 Lieaua: Fiedich Heann, M. Lauenann, L.Mingiulli, P. Moawie, P. Schälle:FIZIK, ENERGIJ, GILN KOLIČIN, ENTROPIJ, DZS, Ljubljana 994 Zapii Inene: hp:www-cp.ij.i~deanpedaanjagibalna.doc
!"!# ""$ %%"" %$" &" %" "!'! " #$!
" "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(
Kinetička energija: E
Pime 54 Za iem pikazan na lici odedii ubzanje eea mae m koji e keće naniže kao i ilu u užeu? Na homogeni doboš a dva nivoa koji e obće oko zgloba O dejvuje, zbog neidealnoi ležaja konanni momen opoa M
Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
Statično in kinetično trenje
Sila enja Sila enja: povzoči paske na koži, vpliva na speminjanje oblike elesa,... Po dugi sani pa nam omogoči, da hodimo po povšini, vozimo avomobile, plezamo po vveh,... Lasnosi sile enja: Sila enja
www.smarterglass.com 978 65 6190 sales@smarterglass.com &&$'()!"#$%$# !!"# "#$%&'! &"# $() &() (, -. #)/ 0-.#! 0(, 0-. #)/ 1!2#! 13#25 631% -. #)/ 013#7-8(,83%&)( 2 %! 1%!#!#2!9&8!,:!##!%%3#9&8!,:!#,#!%63
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
! " # " $ #% $ "! #&'() '" ( * / ) ",. #
Ψ ƒ! " # " $ #% $ "! #&'() '" ( * +",-.'!( / ) ",. # 0# $"!"#$%# Ψ 12/345 6),78 94. ƒ 9)")1$/):0;3;::9 >'= ( ? 9 @ '&( % A! &*?9 '( B+)C*%++ &*%++C 0 4 3'+C( D'+C(%E $B B - " % B
PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :
PRAVAC iješeni adaci od 8 Nađie aameaski i kanonski oblik jednadžbe aca koji olai očkama a) A ( ) B ( ) b) A ( ) B ( ) c) A ( ) B ( ) a) n a AB { } i ko A : j b) n a AB { 00 } ili { 00 } i ko A : j 0 0
O ITIKH 4-17. Ô ÎÔÈÓˆÓÈÎfi apple Î ÙÔ apple ÚÔ ÒÓ appleô ı ÂÍ ÁÁÂ ÏÂÈ Ô. apple Ó- Ú Ô ÛÙË.
B EK O H www.enet.gr 22 AY OY TOY 2010 ñ ºY O 1.698 ñ ÂÚ Ô Ô B 6. YNENTEY H. KAT E H «K ÎfiÁÔ ÛÙÔ È Ó È Û ÚÔ ÌÔ» H Ô ÚÁfi OÈÎÔÓÔÌ Î Ù ÁÁ ÏÏÂÈ Û ÌÊ ÚÔÓÙ Î È Û ÓÙÚÔÊÈÎ Ì ÈÚÒÌ Ù Ûˆ fi ÙÈ Ê Ì ÁÈ Â ÈΠÌÂÓÔ
Πίνακας ρυθμίσεων στο χώρο εγκατάστασης
1/8 Κατάλληλες εσωτερικές μονάδες *HVZ4S18CB3V *HVZ8S18CB3V *HVZ16S18CB3V Σημειώσεις (*5) *4/8* 4P41673-1 - 215.4 2/8 Ρυθμίσεις χρήστη Προκαθορισμένες τιμές Θερμοκρασία χώρου 7.4.1.1 Άνεση (θέρμανση) R/W
!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8
C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,
1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =
www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont
w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι
24o YNE PIO I O O IA 24th INTERNATIONAL CONFERENCE OF PHILOSOPHY
IE NH ETAIPEIA E HNIKH I O O IA 5, 17456 - H H YMMETOXH N 1 (N μ 29/02/2012 ) (.,,,,.): KATOIKIA : TH E NO TH E NO KATOIKIA : KINHTO TH E NO: NA META X TO : μ YNE PO AKPOATH KAI YNE PO PO O OY YNO EYEI
(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n
Z 6 D 3 G = {a, b, c,... } G a, b G a b = c c (a b) c = a (b c) e a e = e a = a a a 1 = a 1 a = e Q = {0, ±1, ±2,..., ±n,... } m, n m+n m + 0 = m m + ( m) = 0 Z N = {a n }, n = 1, 2... N N Z N = {1, ω,
O ÛÒ ˆÓ Â ÙfiÓ... ÙÔÓ ÈÛÙfi ÙË Ú ÓË T Ì ÛÙÈÎ ÁÈ ÌÈ
B EK O H Â «Ô ÙÈ» Ô Ú ÚÁ ÚÔ 25 A PI IOY 2010 ñ ºY O 1.681 ñ appleâú Ô Ô B www.enet.gr 2 ú (EÎ ÔÛË ÌÂ appleúôûêôú 4 ú ) E. 62 MIA PO ºOPA TH «K.E.» OI E I Tø EI A O THN PO ºY H TO MHXANI MO THPI H E OIKONOMIA,
H IA KEæH TH KO E XA H IA TO K IMA EKINA ME I E E I E KAI O E E IºY A EI H ÓÔ Ô ÙË MÂÁ ÏË ÁÓÒÌË
ÚÔ ÂÏÙ ˆÛË... Ì ÚÈ ÓÂˆÙ Ú A EK O H 6 EKEMBPIOY 2009 ñ ºY O 1.661 ñ appleâú Ô Ô B TIMH: E ÚÒ 2 (EÎ ÔÛË Ì appleúôûêôú  ÚÒ 4) E. 62 YNENTEY H ZAN-K ONT IOYNKEP. «YNI Tø Y OMONH KAI KOYPA IO TOY E HNE. XPEIAZONTAI
PREGLED FORMULA IZ MEHANIKE
PREGLED FORMULA IZ MEHAIKE KIEMATIKA. OSOVI POJMOVI KIEMATIKE. GIBAJE PO PRAVCU a Veo položaa b Bna c Aceleaca a Peđen pu e Paocno bane a f Jenolo paocno bane: on. a - peđen pu o enua Jenolo ubano (upoeno
KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
Gimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor
21 YNE PIO I O O IA 21st INTERNATIONAL CONFERENCE OF PHILOSOPHY
INTERNATIONAL ASSOCIATION FOR GREEK PHILOSOPHY 5, SIMONIDOU STR., 174 56 ALIMOS GREECE TEL: +30210-9956955, +30210-7277545, +30210-7277548 FAX: +30210-9923281, +30210-7248979 Website: http://www.hri.org/iagp,
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
*M * MEHANIKA NAVODILA ZA OCENJEVANJE SPOMLADANSKI IZPITNI ROK. Četrtek, 1. junij Državni izpitni center SPLOŠNA MATURA
Držani izpini cener *M7743* SPOMLDSKI IZPITI ROK MEHIK VODIL Z OCEJEVJE Čerek,. junij 07 SPLOŠ MTUR Držani izpini cener Ve praice pridržane. M7-74--3 IZPIT POL. naloga...3.4 3 F 7000 7000 0 k 7 k Izražena
VILJUŠKARI. 1. Viljuškar se koristi za utovar standardnih euro-pool paleta na drumsko vozilo u sistemu prikazanom na slici.
VILJUŠKARI 1. Viljuškar e korii za uoar andardnih euro-pool palea na druko ozilo u ieu prikazano na lici. PALETOMAT a) Koliko reba iljuškara da bi ree uoara kaiona u koji aje palea bilo anje od 6 in, ako
DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE
TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne
!" #$! '() -*,*( *(*)* *. 1#,2 (($3-*-/*/330%#& !" #$ -4*30*/335*
!" #$ %#&! '( (* + #*,*(**!',(+ *,*( *(** *. * #*,*(**( 0* #*,*(**(***&, 1#,2 (($3**330%#&!" #$ 4*30*335* ( 6777330"$% 8.9% '.* &(",*( *(** *. " ( : %$ *.#*,*(**." %#& 6 &;" * (.#*,*(**( #*,*(**(***&,
!"#$%& '!(#)& a<.21c67.<9 /06 :6>/ 54.6: 1. ]1;A76 _F -. /06 4D26.36 <> A.:4D6:6C C4/4 /06 D:43? C</ O=47?6C b*dp 12 :1?6:E /< D6 3:4221N6C 42 D:A6 O=
! " #$% & '( )*+, -. /012 3045/67 8 96 57626./ 4. 4:;74= 69676.36 D426C
ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:
2/4/2015. Διακίνηση νερού και θρεπτικών ουσιών στο φυτικό κύτταρο. Μεταφορά ουσιών παθητική ενεργητική
Δηµοκρίτειο Πανεπιστήµιο Θράκης Τµήµα Αγροτικής Ανάπτυξης Δοµή της µεµβράνης (µοντέλο του ρευστού µωσαϊκού) ΦΥΣΙΟΛΟΓΙΑ ΦΥΤΩΝ «Πρόσληψη και µεταφορά του νερού στα φυτά» Ορεστιάδα 2015 Ο ρόλος του νερού
SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov
Ruolf Klnik: Fizik z srenješolce Set elektrono in too Električno olje (11), gibnje elce električne olju Strn 55, nlog 1 Kolikšno netost or releteti elektron, se njego kinetičn energij oeč z 1 kev? Δ W
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Tretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
22o YNE PIO I O O IA 22nd INTERNATIONAL CONFERENCE OF PHILOSOPHY
IE NH ETAIPEIA E HNIKH I O O IA 5, 17456 - TEL: +30210 9956955, +30210 7277545, +30210 7277548 FAX: +30210 9923281, +30210 7248979 website: http://www.hri.org/iagp/, http://www.iagp.gr E-mail: kboud714@ppp.uoa.gr
K Î Ì ÓÙ Ù applefi Ú ÛÈ
K ÏÔÎ ÈÚ applefi M. ÌappleÙË 12 A PI IOY 2009 ñ ºY O 1.627 ñ appleâú Ô Ô B B EK O H TIMH: E ÚÒ 2 (EÎ ÔÛË ÌÂ appleúôûêôú Â ÚÒ 4) E. 62 8 MAPTIOY 2009 ñ ºY O 1.622 ñ appleâú Ô Ô YNENTEY H KPI TIN A KAPNT.
Veliine u mehanici. Rad, snaga i energija. Dinamika. Meunarodni sustav mjere (SI) 1. Skalari. 2. Vektori - poetak. 12. dio. 1. Skalari. 2.
Vele u ehc Rd, g eegj D. do. Sl. Veo 3. Tezo II. ed 4. Tezo IV. ed. Sl: 3 0 pod je jedc (ezo ulog ed). Veo: 3 3 pod je jedc (ezo pog ed) 3. Tezo dugog ed 3 9 pod je jedc 4. Tezoeog ed 3 4 8 pod je jedc
!"#$ "%&$ ##%&%'()) *..$ /. 0-1$ )$.'-
!!" !"# "%& ##%&%',-... /. -1.'- -13-',,'- '-...4 %. -5"'-1.... /..'-1.....-"..'-1.. 78::8
-! " #!$ %& ' %( #! )! ' 2003
-! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!
K È applefi A ÁÔ ÛÙÔ ÂÈÌÒÓ
Ù Î ÓÔÓÈÎ Ô Ú ÚÁ ÚÔ 9 AY OY TOY 2009 ñ ºY O 1.644 ñ appleâú Ô Ô B A EK O H TIMH: E ÚÒ 2 (EÎ ÔÛË ÌÂ appleúôûêôú Â ÚÒ 4) E. 46 8 MAPTIOY 2009 ñ ºY O 1.622 ñ appleâú Ô Ô KATAI I A OIKONOMIKøN METPøN B META
N Î ÒÓÈ ÌÂ ÙËÓ ÈÛfiÙËÙ
O Ú ÚÁ ÚÔ ÛÙ «Ë» 29 MAPTIOY 2009 ñ ºY O 1.625 ñ appleâú Ô Ô B A EK O H TIMH: E ÚÒ 2 (EÎ ÔÛË ÌÂ appleúôûêôú Â ÚÒ 4) E. 62 8 MAPTIOY 2009 ñ ºY O 1.622 ñ appleâú Ô Ô O B. INT A THN «K.E.». META B TI YNTA
Finite Integrals Pertaining To a Product of Special Functions By V.B.L. Chaurasia, Yudhveer Singh University of Rajasthan, Jaipur
Global Joal of Scece oe eeac Vole Ie 4 Veo Jl Te: Doble Bld Pee eewed Ieaoal eeac Joal Pble: Global Joal Ic SA ISSN: 975-5896 e Iegal Peag To a Podc of Secal co B VBL Caaa Ydee Sg e of aaa Ja Abac - A
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci
3 H 12.35 Y β Low 80 1 - - Betas: 19 (100%) 11 C 20.38 M β+, EC Low 400 1 5.97 13.7 13 N 9.97 M β+ Low 1 5.97 13.7 Positrons: 960 (99.7%) Gaas: 511 (199.5%) Positrons: 1,199 (99.8%) Gaas: 511 (199.6%)
βλέπει η τρόικα Ú ÙÂÙ Ì ÓË ÎÔÈÓˆÓÈÎ Ó Ù Ú, ÔÍÂ Â appleôïèùèî ÓÙÈ-
ENΘΕΤΑ» Τέχνη» Κόµικς» Βιβλιοθήκη» Υγεία και Eπιστήµη ΣABBATO 3 IOYΛIOY 2010 www.enet.gr ΕΤΟΣ 35ο Αρ. φύλλου 10.489 1,50 AΣΦAΛIΣTIKO OI TEΛIKEΣ ANATPOΠEΣ TPATO K Ó Ó ÛÙË Û ÓÙ ÍË appleúèó Ù 53 Mε κρατική
Kinematika materijalne toke. 2. Prirodni koordinatni sustav. 1. Vektorski nain definiranja gibanja. Krivocrtno gibanje materijalne toke
Kioco gibje meijle oke Kiemik meijle oke. dio ) Zje kiocog gibj b) Bi i ubje Položj meijle oke u skom euku eme možemo defiii slijedee ie:. Vekoski i defiij gibj (). Piodi i defiij gibj s s (). Vekoski
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
Im{z} 3π 4 π 4. Re{z}
! #"!$%& '(!*),+- /. '( 0 213. $ 1546!.17! & 8 + 8 9:17!; < = >+ 8?A@CBEDF HG
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
9. Osnove kvantne mehanike
9. Osnove vantne mehanie 9. NAČELA KVANTNE MEHANIKE 9.. Načelo statističnega opisa o Izida posusa s posameznim vantnim delcem ne moremo z gotovostjo napovedati (npr. ne moremo napovedati v ateri toči bo
TÔ appleâï ÙÔÏfiÁÈÔ ÙË ÂÊÔÚ
B EK O H «ÈÛÙ ÂÈ» Ó Î Ù ÂÈ Ô Ú ÚÁ ÚÔ 8 AY OY TOY 2010 ñ ºY O 1.696 ñ appleâú Ô Ô B www.enet.gr 2 ú (EÎ ÔÛË ÌÂ appleúôûêôú 4 ú ) E. 46 13. ME ANEIKA KI A YPI TA E INE TO EP O KATA O O ETAIPEIøN KAI PO ø
Η ΑΝΘΥΦΑΙΡΕΤΙΚΗ ΕΡΜΗΝΕΙΑ ΤΗΣ ΕΞΩΣΗΣ ΤΗΣ ΠΟΙΗΣΗΣ ΣΤΟ ΔΕΚΑΤΟ ΒΙΒΛΙΟ ΤΗΣ ΠΟΛΙΤΕΙΑΣ ΤΟΥ ΠΛΑΤΩΝΟΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ MΑΘΗΜΑΤΙΚΩΝ ΤΜΗΜΑ ΜΕΘΟΔΟΛΟΓΙΑΣ, ΙΣΤΟΡΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΕΠΙΣΤΉΜΩΝ ΑΓΩΓΉΣ & ΘΕΩΡΙΑΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΜΗΜΑ ΦΙΛΟΣΟΦΙΑΣ, ΠΑΙΔΑΓΩΓΙΚΗΣ &
! " #$% & '()()*+.,/0.
! " #$% & '()()*+,),--+.,/0. 1!!" "!! 21 # " $%!%!! &'($ ) "! % " % *! 3 %,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0 %%4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5
EΘ Aγωνιώδης προσπάθεια Παπανδρέου για εξαγγελίες. 10 πακέτα. χωρίς... φράγκο
HΠA 300.000 AKPO EΞIOI ΣHKΩΣAN TO «ΛABAPO» THΣ ΠOΛITIKHΣ «KAΘAPΣHΣ» /ΣΕΛ. 13 36Ô Ú. Ê ÏÏÔ 10.536 Àƒø 1,30 EYTEPA 30 AY OY TOY 2010 www.enet.gr EΘ Aγωνιώδης προσπάθεια Παπανδρέου για εξαγγελίες 10 πακέτα
GIBANJE (m h) giba miruje giba giba miruje miruje h 1000 :1000 h 1 h h :1000 1
GIBANJE ( h) gibnje gibnje ijel je projen položj ijel ili dijelo ijel u odnou pre neko drugo ijelu z koje o ujeno (dogoorno) uzeli d iruje U odnou n liječnik: gib iruje gib iruje gib gib iruje iruje gib
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
ΠΑΡΑΤΗΡΗΤΗΡΙΟ ΑΠΑΣΧΟΛΗΣΗΣ ΕΡΕΥΝΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ Α.Ε.
ΠΑΡΑΤΗΡΗΤΗΡΙΟ ΑΠΑΣΧΟΛΗΣΗΣ ΕΡΕΥΝΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ Α.Ε. ME ETH 1 2 3 4 5 6 7 8 9 10 A 2005 ME O O O IA PO IOPI MOY TH PO ºOPA & TH ZHTH H EI IKOTHTøN & E IOTHTøN THN E HNIKH A OPA EP A IA E TO IKO E I E
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
Identitet filter banke i transformacije transformacije sa preklapanjem
OASDSP: asoacije i ile bae asoacije disei sigala File bae Ideie ile bae i asoacije asoacije sa elaaje Uslov eee eosucije ovi Sad 6 saa OASDSP: asoacije i ile bae ovi Sad 6 saa DF: vadaa asoacija DF IF
! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.
! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$
Cenovnik spiro kanala i opreme - FON Inžinjering D.O.O.
Cenovnik spiro kanala i opreme - *Cenovnik ažuriran 09.02.2018. Spiro kolena: Prečnik - Φ (mm) Spiro kanal ( /m) 90 45 30 Muf/nipli: Cevna obujmica: Brza diht spojnica: Elastična konekcija: /kom: Ø100
4ETE KPEMI MA AappleÔÏ ÛÂÈ, Û ÓÙ ÍÈÔ ÔÙ ÛÂÈ, ÂıÂÏÔ Û ÛÙÔ ËÌfiÛÈÔ, ÂÍ ÛˆÛË ÌÈÛıÒÓ Ì ÙÔÓ È ÈˆÙÈÎfi
36Ô Ú. Ê ÏÏÔ 10.741 Àƒø 1,30 TETAPTH 18 MA OY 2011 www.enet.gr ƒπ ÚfiÓÈ ÛÙÔÓ appleúôı Ï ÌÔ ÙÔ ËÌÔÛ Ô ı apple Ú Ì ÓÔ Ó ÔÈ apple Ï- ÏËÏÔÈ ÙˆÓ, π, ÙÚ appleâ ÒÓ Î È ÔappleÈÎ ÙÔ ÈÔ ÎËÛË, appleô ı appleâ- Yπό
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
... E A MA KATA Y OYP øn
36Ô Ú. Ê ÏÏÔ 10.625 Àƒø 1,30 TPITH 14 EKEMBPIOY 2010 www.enet.gr M ÚÈ Û appleâúˆú Â Î È ÂappleÈ fiì Ù, appleô ÚˆÙÈÎ Û ÓÙ ÍÈÔ ÔÙ ÛÂÈ H øma A O OXøN... EPIKO H ÌÈÛıÒÓ Î È ÛÙÈ ÂÈÛËÁÌ Ó ÛÙÈ ÈÔÈÎ ÛÂÈ ÙÒÓ
IZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
!!"#$"%&'()%*$& !! )!+($,-./,0. !! )!"% $&)#$+($1$ !!2)%$34#$$)$ !!+(&%#(%$5$( #$%
!!"#$"%&'()%*$&!! )!+($,-./,0.!"#!! )!"% $&)#$+($1$!!2)%$34#$$)$!!+(&%#(%$5$( #$% & !"# $ $ % # &#$ '()*+, -,./ $* 0" 10#')230##445$&% ##* % 0# ' 4#, ) 0# $, 0# 6 7% % # #* # 8#10&29,:# )) )# )#
σ (otvorena cijev). (34)
DBLOSTJN POSUD CIJVI - UNUTARNJI ILI VANJSKI TLAK 8 "Dobo je htjeti, ali teba i znati." Z. VNUČC, 9. NAPRZANJA I POMACI DBLOSTJN POSUD ILI CIJVI NASTAVAK. Debelostjena osa oteećena ntanjim tlaom Debelostjena
Διαρκές το τούνελ ÎÈ Î ÓÂÈ
HMEPA ª ñ È ÓÓË OÈÎÔÓÔÌ Ë : Ô «ª ÈÚÔ Á ÏÙË» Ú ÂÙ È Û 5 Ì Ú ñ fiìèî :O Ó Ô Spirou ñmhna ª ƒø π O ƒ π O TOY MA OÀ ˆÙ ÚÈ appleúfiïë Ë ñ ÚÔÛÔ ÛÙ ÓÙÈ ÈÔÙÈÎ ÏÏËÓÈÎ ÏÔÁÔÙÂ Ó applefi ÙÔÓ OÌËÚÔ ÛÙÔÓ 20fi ÈÒÓ
Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34
transformacija j y i x x promatramo dva koordinatna sustava S i S sa zajedničkim ishodištem z z Homogene funkcije Ortogonalne transformacije
promatramo dva oordnatna sustava S S sa zaednčm shodštem z z y y x x blo o vetor možemo raspsat u baz, A = A x + Ay + Az = ( A ) + ( A ) + ( A ) (1) sto vred za ednčne vetore sustava S = ( ) + ( ) + (
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki:
NALOGA: Po cesi vozi ovornjak z hirosjo 8 km/h. Tovornjak je dolg 8 m, širok 2 m in visok 4 m in ima maso 4 on. S srani začne pihai veer z hirosjo 5 km/h. Ob nekem času voznik zaspi in ne upravlja več
για γάμους τραπεζών Eδειξε... H πρόταση Σάλλα για ATE-Tαµιευτήριο ανοίγει το παιχνίδι των συγχωνεύσεων Φλερτ 700 εκ.
ΠETPEΛAIOKHΛI A H MEΓAΛH «ΓENOKTONIA» TOY BYΘOY ΣTON KOΛΠO TOY MEΞIKOY /ΣΕΛ. 16 35Ô Ú. Ê ÏÏÔ 10.499 Àƒø 1,30 APA KEYH 16 IOY IOY 2010 www.enet.gr H πρόταση Σάλλα για ATE-Tαµιευτήριο ανοίγει το παιχνίδι
!"#$ %"&'$!&!"(!)%*+, -$!!.!$"("-#$&"%-
!"#$ %"&$!&!"(!)%*+, -$!!.!$"("-#$&"%-.#/."0, .1%"("/+.!2$"/ 3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333 4.)!$"!$-(#&!- 33333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333
SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia
SWOT 1 Analysis and Planning for Cross-border Co-operation in Central European Countries ISIGInstitute of International Sociology Gorizia ! " # $ % ' ( )!$*! " "! "+ +, $,,-,,.-./,, -.0",#,, 12$,,- %
Delovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
10. STABILNOST KOSINA
MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg
Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải.
Đường tròn cung dây tiếp tuyến BÀI 1 : Cho tam giác ABC. Đường tròn có đường kính BC cắt cạnh AB, AC lần lượt tại E, D. BD và CE cắt nhau tại H. chứng minh : 1. AH vuông góc BC (tại F thuộc BC). 2. FA.FH
Periodičke izmjenične veličine
EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
3/5/016 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΣΥΡΜΑΤΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Παραδείγματα Κεραιών Αθανάσιος Κανάτας Καθηγητής Παν/μίου Πειραιώς Δίπολο Hetz L d
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
TEHNIŠKA FIZIKA VS Strojništvo, 1. stopnja povzetek
TEHNIŠKA FIZIKA VS Srojnišo,. sopnja pozeek. KINEMATIKA Premo gibanje To je gibanje po premici. Na premici izberemo koordinano izhodišče (o je očko, ki ji pripišemo koordinao nič) in označimo poziino in
25η Mαρτίου η ηµεροµηνία-ορόσηµο για το σχέδιο στήριξης. Λάβαρο ΔNT. επισείει ο Γιώργος
AΦΓANIΣTAN OI EI IKEΣ YNAMEIΣ TΩN HΠA EN ΛOΓO OTOYΣAN ΣE KANENAN! /ΣΕΛ. 15 35Ô Ú. Ê ÏÏÔ 10.403 Àƒø 1,30 (Ì CD 3,00) TETAPTH 17 MAPTIOY 2010 www.enet.gr 25η Mαρτίου η ηµεροµηνία-ορόσηµο για το σχέδιο στήριξης
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Μανόλης Παπαδρακάκης Καθηγητής ΕΜΠ Εργαστήριο Στατικής & Αντισεισμικών Ερευνών 2007 2008 1 1 Ειδικά κεφάλαια μητρωικής ανάλυσης ραβδωτών φορέων Συνοριακές
A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N
I N F O T E K N I K V o l u m e 1 5 N o. 1 J u l i 2 0 1 4 ( 61-70) A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N N o v i
«\EÓ \EÎÎÏËÛ È ÂéÏÔÁÂÖÙ ÙfiÓ ÂfiÓ, K ÚÈÔÓ âî appleëááó \IÛÚ Ï» (æ ÏÌ. Zã 17)
«INA ANTE EN ø I, KA ø Y, ATEP, EN EMOI KA ø EN OI, INA KAI AYTOI EN HMIN EN ø IN» (( IøAN. IZã21)) O O H apple Ó Á È Ù Ú È Û Ô Ù Ú È Û apple Ô Û Ù Ù Ô Û ı Â Ô Û I X E Y A E Y A E I T H O ENAN Pø H A ANAPXO
EI A ø H TA AEI A O IEK, KO E IA
Δ 37Ô Ú. Ê ÏÏÔ 10.821 Àƒø 1,30 EYTEPA 22 AY OY TOY 2011 www.enet.gr OI ΔANEIOΛHΠTEΣ TΩN TPAΠEZΩN TΩPA ΔIKAIΩNONTAI Tα δικαστήρια διαγράφουν χρέη νοικοκυριών Δ ƒπ Ó Â ÈÎ ÛÙÈÎ appleôê ÛÂÈ applefi ÈÚËÓÔ ÈÎÂ,
HONDA. Έτος κατασκευής
Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V
#&' ()* #+#, 2 )' #$+34 4 )!' 35+,6 5! *,#+#26 37)*! #2#+#42 %8')* #44+#%$,)88) 9 #,6+-55 $)8) -53+2#5 #6) :&' 2#3+23- ##) :* 232+464 #-) ''7 465+436
! "#$$% #& ()* #+#, -./0*1 2 ) #$+34 4 )! 35+,6 5! *,#+#26 37)*! #2#+#42 %8)* #44+#%$,)88) 9 #,6+-55 $)8) -53+2#5 #6) :& 2#3+23- ##) :* 232+464 #-) 7 465+436 .* &0* 0!*07 ;< =! ))* *0*>!! #6&? @ 8 (? +
ΦΑΚΕΛΟΣ ΠΙΣΤΟΠΟΙΗΣΗΣ ΠΙΝΑΚΑ ΑΝΕΛΚΥΣΤΗΡΑ ISL_V4
ΦΑΚΕΛΟΣ ΠΙΣΤΟΠΟΙΗΣΗΣ ΠΙΝΑΚΑ ΑΝΕΛΚΥΣΤΗΡΑ IL_V VEION V (EV.8) ΕΡΓΟΣΤΑΣΙΟ: ΠΕΡΡΑΙΒΟΥ, ΘΕΣΣΑΛΟΝΙΚΗ, ΕΛΛΑΔΑ Τηλ. 0 99 email: info@istechnology.gr FAX. 0 99 UL: www.istechnology.gr Copyright I technology 00
COMPLICITY COLLECTION autumn / winter
COMP LI C I TY COLLE C TI ON a ut umn / winte r 2 0 1 7 1 8 «T o ρ ο ύ χ ο ε ί ν α ι τ ο σ π ί τ ι τ ο υ σ ώ μ ατ ο ς». Τ ο σ ώ μ α ν τ ύ ν ε τα ι μ ε φ υ σ ι κ ά ν ή μ ατα κ α ι υφά σ μ ατα α π ό τ η
Trigonometrijske nejednačine
Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja
Προσοµοίωση Π ρ ο µ ο ί ω Μ η χ α ν ο ί Ε λ έ γ χ ο υ τ ο υ Χ ρ ό ν ο υ Φάσεις σο ση ς ισµ ιδάσκων: Ν ικό λ α ο ς Α µ π α ζ ή ς Φάσεις τ η ς π ρ ο σο µ ο ί ω ση ς i. Κατασκευή το υ µ ο ν τέ λ ο υ π ρ ο
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu