Damage Constitutive Model of Mudstone Creep Based on the Theory of Fractional Calculus
|
|
- Εύφημη Παπαφιλίππου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Advaces i Peroleum Exploraio ad Developme Vol. 1, No. 2, 215, pp DOI:1.3968/773 ISSN X [Pri] ISSN [Olie] Damage Cosiuive Model of Mudsoe Creep Based o he Theory of Fracioal Calculus ZENG Jia [a],* ; ZHANG Ju [a] [a] Norheas Peroleum Uiversiy Peroleum Egieerig Isiue, Daqig, Chia. *Correspodig auhor. Received 18 Ocober 215; acceped 2 December 215 Published olie 31 December 215 Absrac Whe swellig mudsoe, is various mechaical parameers will chage sigificaly. Esablish mudsoe s fracioal calculus creep damage model srucure diagram, which describe he exe of damage i rock damage variable. Assumed ha he sress level of rock exceeded is he log-erm sregh ad uder he codiio of mudsoe acceleraed srai rae loadig, oliear damage model based o fracioal calculus heory was esablished. Therefore mudsoe creep cosiuive model cosiderig he acceleraed srai rae loadig codiios was obaied. The resuls of cosiuive model showed ha here appears o be a expoeial fucio bewee srai ad ime i he acceleraed creep sage. The creep es daa were used o verify he proposed model ad he resuls suggesed ha he fracioal order b was he irisic parameers of rock mass which could reflec is hardess. Durig he acceleraed creep sage, fracioal creep damage cosiuive model could describe he sress-srai relaioship well. Key words: Fracioal calculus; Sress-srai relaioship; Damage mechaics; Mudsoe acceleraed creep Zeg, J., & Zhag, J. (215). Damage cosiuive model of mudsoe creep based o he heory of fracioal calculus. Advaces i Peroleum Exploraio ad Developme, 1(2), Available from: URL: hp:// DOI: hp://dx.doi.org/1.3968/773 INTRODUCTION Rock creep is oe of he impora mechaical properies of rock ad also is oe of he impora reasos for egieerig wall rock deformaio isabiliy. Be esablished o fully reflec he acceleraed creep characerisics of mudsoe rock creep model is a impora subjec of curre research of rock creep properies. Rock creep characerisics showed hree disic phases i he log erm loads. Aeuaio creep sage, he creep rae decreases, showig a sigifica o-liear pheomea; whe eerig he seady-sae phase, creep rae remaied a a cosa value, showig a early liear feaures; whe he creep io he acceleraio phase, he deformaio rae bega o icrease, showig a edecy o icrease he oliear acceleraio, showig a more sigifica oliear characerisics. I rece years, may scholars have doe a lo of research o mudsoe creep. Bu durig he sudy, he mai cosideraio is he firs creep sage ad secod creep sage. I fac, i he process of rock creep, he hird sage of creep properies has more sigificace [1]. Krag e al. (1977) hrough es resuls, he volume of rock was ielasic srai reaches a criical value, acceleraig creep phase bega ad led o he fial desrucio of he specime, failure ime associaed wih sress. Geevois e al. (1979) hrough he experime daa of iformaio, ge a graph which is reflecig he relaioship bewee sress raio ad acceleraig creep ime; Drago e al. (1979) proposed a viscoplasic model of rock, ad assumed crack desiy parameer reaches a criical value, creep rae icreases rapidly lead o rock failure; Okubo e al. (1911) poied ou a acceleraig creep sage, he relaioship bewee srai rae ad rock is iversely proporioal o he icrease [2]. Deg e al [3]. iroduced a oliear viscous dampers, ad used viscous damper o esablished comprehesive rheological mechaics model, his model ca describe hree kids of creep deformaio a he same ime. Che e al. [4] pu forward wo kids of oliear eleme o se up composie rheological mechaics model, ad his model ca well describe he characerisics of sof rock acceleraig creep sage. Cao e al. [5] chaged viscous coefficie o oliear, i viscosiy model, ad improved 83 Copyrigh Caadia Research & Developme Ceer of Scieces ad Culures
2 Damage Cosiuive Model of Mudsoe Creep Based o he Theory of Fracioal Calculus Nishihara Masao model. This model ca reflec he oaeuaio creep properies of rocks. Wag e al. [6] based o he improved Nishihara model esablished parameric oliear creep model, which could reflec he rock specimes of he hree sages of creep process, especially i oliear acceleraig creep deformaio sage. Yi e al. [7] used he heory of fracioal order calculus, pu forward a kid of sofware compoe, which is used o simulae he geoechical maerials bewee ideal solid ad fluid. Alhough he combied model which is made up of sofware compoe ad classical liear mechaical compoes, ca describe he oliear behavior of he aeuaio of he rock creep ad seady creep of he rock creep, ca depic he acceleraio of rock creep properies. Based o he above research, esablish mudsoe s fracioal calculus creep damage model srucure diagram, which describe he exe of damage i rock damage variable. Assumed ha he sress level of rock exceeded is he log-erm sregh ad uder he codiio of mudsoe acceleraed srai rae loadig, oliear damage model based o fracioal calculus heory was esablished. Therefore mudsoe creep cosiuive model cosiderig he acceleraed srai rae loadig codiios was obaied. The resuls of cosiuive model showed ha here appears o be a expoeial fucio bewee srai ad ime i he acceleraed creep sage. The creep es daa were used o verify he proposed model. The Laplace rasform formula of fracioal order calculus is: L f (),p = p f ( p), L f (),p = p f ( p). (4) ( f () i he viciiy of = ca be iegral, 1) I Equaio - f (p) is a Laplace rasform of f (). Accordig o he classical heory of solid mechaics ad fluid mechaics, he cosiuive relaios of ideal solid should mee he Hooke s law () - ε(), ideal fluid should saisfy Newo law of viscosiy () - d 1 ε()/ 1. Fracioal order calculus is a mahemaical problem, which is sudy ay order differeial, iegral operaor feaures ad applicaios. If chage he () - ε() o () - d ε()/, he, he geoechical maerials which is bewee ideal solid ad fluid, is fracioal order differeial form of sress-srai relaio is d ε ( ) ( ) = ξ. (5) Whe < < 1, Equaio (5) describe he sae of maer ha is bewee ideal solid ad fluid; whe > 1, Equaio (5) describe he acceleraig rheological sae of maer, his paper maily sudies accelerae rheological maerial saus. Accordig o his arraive, we call i he sofware compoes whe > 1 (as show i Figure 1), ξ is viscoelasic coefficie, similar o he elasic modulus of Hooke s law, he ξ dimesio is [sress ime ]. 1. NONLINEAR MODELING 1.1 The Basic Compoes of Fracioal Calculus Fracioal order calculus is expaded he order of calculus io areas of fracio or eve egaive umber. The sofware compoes coais fracioal order calculus is regarded as a compoe model. The model is bewee he ideals of solid ad fluid ad ca well reflec he viscoelasic characerisics of geoechical maerials. This aricle uses he Riema-Liouville fracioal calculus operaor heory, for order iegral of fucio f(), is defied as: d f ( ) d ( ) = f () = f (). (1) Fracioal differeial is defied as: d f ( ) d ( ) = D f () = D f (). (2) I Equaios (1) & (2): >, moreover - 1 < ( is a posiive ieger). Γ() is he Gamma fucio, is defied as: Γ 1 ( ) = e ( Re( ) ) >. (3) Figure 1 Fracioal Order Calculus of he Viscoelasic Eleme Whe () = cos, ha is sress is a cosa value, o Equaio (5) o he basis of Riema-Liouville fracioal order operaor heory o carry o he iegral operaio is ε ( ) =. (6) ξ Γ ( 1+ ) I he case of cosa sress whe ake differe values, aalysis of he relaioship bewee srai ad ime ad heir chage red. Creep curve as show whe > 1, based o he fracioal order creep model, he curves of srai wih ime as show i Figure 2. Combied wih he characerisics of ypical rock creep deformaio. Accordig o derivae ad chage he fracioal heory model, we could use o simulae creep curve. > 1 (Sofware eleme) describe he viscoplasic deformaio ha is acceleraig rheological maerial saus. Copyrigh Caadia Research & Developme Ceer of Scieces ad Culures 84
3 ZENG Jia; ZHANG Ju (215). Advaces i Peroleum Exploraio ad Developme, 1(2), ε Figure 2 > 1 Curve Diagram Whe ε() = cos, hrough he fracioal order calculus deduce he relaxaio equaio is ( ) = ξ ε. (7) Γ( 1 ) ε is he iiial sress of he iiial srai. For differe maerials, adjus he parameers ad ξ of compoes o chage he creep curve or relaxaio curve, hus accuraely fiig maerial es resuls. 1.2 I he Process of Rock Creep Damage Rock creep damage sress hreshold is he log-erm sregh of rock, whe he load sress is greaer ha he log-erm sregh of rock mass iself, wih he icrease of ime rock begis o creep damage. Based o damage mechaics heory, o accou of he ieral micro cracks of rock mass expadig, ecrypio, icrease uder he acio of exeral loadig, he abiliy o resis damage ad disorio of rock mass decreases causig damage, ad led o he decrease of he mechaical parameers of rock mass, so he rock damage degree relaed o he size of he load sress ad ime. Accordig o he defiiio of damage variable mehod, his paper discussed damage variable of rock mass damage is defied by adopig he mehod of elasic modulus (, ) (, ) 1 E D =. (8) E I Equaio (8), E is he iiial elasic modulus of rock mass; D (,) is he damage variable of rock mass i ime; E (,) is he elasic modulus of he rock mass i ime, maily relaed o Ouside he load sress level a his mome. Afer damage due o creep, rock mass has o be capable of bearig, accordig o Liu Baoguo mudsoe creep damage experime research [8], defiiio of E(,) is defie E (,) = E exp[- - /b]. (9) I Equaio (9), is he log-erm sregh of rock maerial which ca be deermied by ess; b is rock maerial cosa; - is sep fucio, is defied as: ( ) ( ) =. (1) > Take he Equaio (9) io he Equaio (8) D (,) = 1 - exp[- - /b]. (11) Whe he exeral load sress is greaer ha log-erm sregh of rock mass by (11), ha is >,, D = 1, rock mass maerials compleely damage. Wih he icrease of he ime ad sress, maerial elasic modulus decay gradually, damage variable was gradually icreased. Accordig o he Equaio (11) damage variable D defie effecive sress 8 ad omial sress mee relaios 8 = 1 D (,. (12) ) I Equaio (12), 8 is effecive sress, is omial sress. Take he Equaio (7) io he Equaio (8) 8 = exp [ - /b]. (13) I Equaio (13), is he log-erm sregh of rock maerial, could be deermied by ess; b is rock maerial cosa; - is sep fucio. 1.3 Mudsoe Fracioal Order Damage Creep Model The iiial load, rock mass maerials exiss elasic deformaio. Acceleraed creep of rock mass characerisics is based o ime ad exeral load sress chage gradually, here is damage hreshold, so by referece fracioal order damage compoes which could reflec he creep damage process o describe he viscoplasic acceleraig deformaio process of rock mass, model srucure as show i Figure 3. Figure 3 Fracioal Order Damage Creep Model Whe he exeral load sress is greaer ha log-erm sregh of rock mass, ha is mudsoe acceleraed creep, accordig o he model diagram available = 1 = 2 = 3, ε = ε 1 + ε 2 + ε 3. (14) Amog hem 1 = Eε1 d ε 2 2 = ξ1. (15) d ε3 3 = + ξ2 I Equaio (15), whe he load sress is less ha log-erm sregh of rock mass codiios, ha is Creep 85 Copyrigh Caadia Research & Developme Ceer of Scieces ad Culures
4 Damage Cosiuive Model of Mudsoe Creep Based o he Theory of Fracioal Calculus sage Ⅰ ad Creep sage Ⅱ mudsoe viscoelasic deformaio, < < 1. Laplace rasform ad Laplace iverse rasform of he Equaio (15) ad ake io he Equaio (14), for he resulig oliear creep cosiuive equaio whe he load sress greaer ha log-erm sregh of rock mass is ha: ε = + + E ξ1 ξ2. (16) Because of he load sress greaer ha log-erm sregh of rock mass, ha is, rock mass will eer he sage of creep damage. The Equaio (16) ca be rewrie as % ε = + +. (17) E ξ1 ξ2 Takig he iiial codiios = ad = io Equaio (17) ad accordig o he Riema-Liouville fracioal order calculus, acquire he oliear creep cosiuive equaio %. (18) E ξ Γ 1+ ξ Γ 1+ ( ) ( ) 1 2 Takig he Equaio (13) io (18) acquire rock creep damage cosiuive model which is based o he heory of fracioal order calculus, ha is exp b. E ξ1 Γ ( 1+ ) ξ2 Γ ( 1+ ) (19) 2. ACCELERATE THE STRAIN RATE LOAD THE MUDSTONE CONSTITUTIVE MODEL Kow o accelerae creep sage based o he heory of fracioal calculus of Rock creep damage cosiuive model is exp b. E ξ1 Γ ( 1+ ) ξ2 Γ ( 1+ ) Accordig o he acual siuaio, assumig ha ε = ae ad akig io Equaio (19), ca be calculaed uder he codiio of accelerae he srai rae load. The sresssrai relaioship of mudsoe creep is (lε l a) exp (lε l a) b (lε l a) E ξ Γ + ξ Γ + ( 1 ) ( 1 ) 1 2. (2) I Equaio (2), a is cosa. By Equaio (2), ca be deduced accelerae he srai rae load fracioal order he mudsoe creep damage cosiuive model is 1 ( ) 2 ( ) 1 ( ) ( ) ( ) ( ) ( ) E ξ Γ 1+ ξ Γ 1+ ε + E ξ Γ 1 + (lε l a) =. (21) ξ 1 Γ 1 + ξ 2 Γ E ξ 2 Γ 1 + (l ε l a) + E ξ 1 Γ 1 + (l ε l a) exp (l ε l a) b Whe he ouer load sress is greaer ha log-erm sregh of rock mass, ha is, rock mass will eer E 1Γ ( 1+ ) 2Γ ( 1+ ) + E 1Γ ( 1 + )(l l a) ( ) ( ) ( ) ( ) he sage of creep damage, ha is exp[- - /b], he Equaio (21) could be wrie as ξ ξ ε ξ ε =. (22) ξ Γ 1 + ξ Γ E ξ Γ 1 + (l ε l a) + E ξ Γ 1 + (l ε l a) Figure 4 Rock Creep Sress-Srai Curve Diagram Accordig o he Equaio (22), fiig he sresssrai curve diagram uder he codiio of rock creep, as show i Figure 4. From he sress-srai curve diagram aalysis wih srai icrease gradually, sress icreases gradually, he srai rae also will icrease. Namely ha i he process of mudsoe creep, he greaer he srai, he greaer he sress also. Whe he value is o a he same ime, accordig o he Equaio (22). Describe he sress-srai curve of he maerial as show i Figure 5. I ca be see from he Figure 5, wih he icrease of value, sress icreasig ampliude decreases. The smaller he value of, he greaer he depede variable, he chage of sress more obvious. Copyrigh Caadia Research & Developme Ceer of Scieces ad Culures 86
5 ZENG Jia; ZHANG Ju (215). Advaces i Peroleum Exploraio ad Developme, 1(2), Figure 5 The Rock Creep Sress-Srai Curve Diagram Uder Differe Values 3. THE FRACTIONAL ORDER MUDSTONE CREEP DAMAGE CONSTITUTIVE MODEL VALIDATION Because he coveioal riaxial es is srai rae loadig es ha Srai could be corolled, hrough he es verify he fracioal order mudsoe creep damage cosiuive model. To verify he correcess ad he raioaliy of he model i his paper, he auhor carries o he riaxial compressio experime, sample ake from he souh area of Daqig oil field s oil ad waer wells casig damage zoe. Through he experime obaied rock mass mechaics parameers ad sress-srai curve, compared o he experimeal curves ad fiig curve from Equaio (18), as show i Figure 6. Figure 6 Sress-Srai Curves Accordig o he Figure 6, accelerae srai rae loadig fracioal order mudsoe creep damage cosiuive model s resul agree well wih experimeal daa fiig curve, resuls idicae ha he correcess of he cosiuive model is esablished i his paper. Wih he icrease of srai rae, all he value of is 1.13, so he fracioal order of he same kid of mudsoe do chage wih cofiig pressure, ad be able o reflec he hardess of mudsoe. CONCLUSION (a) Accordig o classical heory of solid ad fluid mechaics, based o he heory of fracioal order calculus, iroducig damage variable, esablish acceleraed srai rae loadig fracioal order mudsoe creep damage cosiuive model. The model ca beer reflec he mudsoe of sress-srai relaioship i he acceleraed srai rae loadig codiios. (b) By acceleraed srai rae loadig fracioal order mudsoe creep damage cosiuive model, he relaioship bewee srai ad ime is expoeial fucio i he acceleraed creep sage, srai icreases, he sress icreases ad he srai rae also icrease. Wih he icrease of value, sress icreasig ampliude decreases. The smaller he value of, he greaer he depede variable, he chage of sress more obvious. (c) Coveioal riaxial es of mudsoe (acceleraed srai rae loadig) is able o verify he accelerae srai rae loadig fracioal order mudsoe creep damage cosiuive model. The model s resul agrees well wih experimeal daa fiig curve. The fracioal orders of he same kid of mudsoe do chage wih cofiig pressure, ad be able o reflec he hardess of mudsoe. I his paper he iovaio lies i he acceleraed srai rae loadig sage, he resuls of cosiuive model showed ha here appears o be a expoeial fucio bewee srai ad ime. The mudsoe creep cosiuive model cosiderig he acceleraed srai rae loadig codiios was esablished based o he heory of fracioal order ca describe he relaio bewee sress ad srai. REFERENCES [1] Sog, Y. J., & Lei, S. Y. (213). Mechaical model of rock oliear creep damage based o fracioal calculus. Chiese Joural of Udergroud Space ad Egieerig, (9), [2] Zhag, Z. T., Wag, H., & Tao, Z. Y. (1996). The sudy of rock creep propery. Joural of Yagze River Scieific Research Isiue, S1, 2-6. [3] Deg, R. G., Zhou, D. P., & Zhag, Z. Y. (21). A ew rheological model for rocks. Chiese Joural of Rock Mechaics ad Egieerig, 2(6), [4] Che, Y. J., Pa, C. L., & Cao, P. (23). A ew mechaical model for sof rock rheology. Rock ad Soil Mechaics, 24(2), [5] Cao, S. G., Bia, J., & Li, P. (22). Rheologic cosiuive relaioship of rocks ad a modifical model. Chiese Joural of Rock Mechaics ad Egieerig, 21(5), [6] Wag, L. G., He, F., & Liu, X. F. (24). No-liear creep model ad sabiliy aalysis of rock. Chiese Joural of Rock Mechaics ad Egieerig, 23(1), [7] Yi, D. S., Re, J. J., & He, C. L. (29). Sress-sai relaio of sof soil based o fracioal calculus operaor s heory. Chiese Joural of Rock Mechaics ad Egieerig, 28, [8] Liu, B. G., & Cui, S. D. (21). Experimeal sudy of creep damage of mudsoe. Chiese Joural of Rock Mechaics ad Egieerig, 1(29), Copyrigh Caadia Research & Developme Ceer of Scieces ad Culures
APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES
APPENDIX A DERIVAION OF JOIN FAILRE DENSIIES I his Appedi we prese he derivaio o he eample ailre models as show i Chaper 3. Assme ha he ime ad se o ailre are relaed by he cio g ad he sochasic are o his
8. The Normalized Least-Squares Estimator with Exponential Forgetting
Lecure 5 8. he Normalized Leas-Squares Esimaor wih Expoeial Forgeig his secio is devoed o he mehod of Leas-Squares wih expoeial forgeig ad ormalizaio. Expoeial forgeig of daa is a very useful echique i
) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +
Techical Appedix o Hamig eposis ad Helpig Bowes: The ispaae Impac of Ba Cosolidaio (o o be published bu o be made available upo eques. eails of Poofs of Poposiios 1 ad To deive Poposiio 1 s exac ad sufficie
The Estimates of the Upper Bounds of Hausdorff Dimensions for the Global Attractor for a Class of Nonlinear
Advaces i Pure Mahemaics 8 8 - hp://wwwscirporg/oural/apm ISSN Olie: 6-384 ISSN Pri: 6-368 The Esimaes of he Upper Bouds of Hausdorff Dimesios for he Global Aracor for a Class of Noliear Coupled Kirchhoff-Type
Time Series Analysis Final Examination
Dr. Sevap Kesel Time Series Aalysis Fial Examiaio Quesio ( pois): Assume you have a sample of ime series wih observaios yields followig values for sample auocorrelaio Lag (m) ˆ( ρ m) -0. 0.09 0. Par a.
A Note on Saigo s Fractional Integral Inequalities
Turkish Joural of Aalysis ad Number Theory, 214, Vol 2, No 3, 65-69 Available olie a hp://pubssciepubcom/ja/2/3/2 Sciece ad Educaio Publishig DOI:112691/ja-2-3-2 A Noe o Saigo s Fracioal Iegral Iequaliies
Intrinsic Geometry of the NLS Equation and Heat System in 3-Dimensional Minkowski Space
Adv. Sudies Theor. Phys., Vol. 4, 2010, o. 11, 557-564 Irisic Geomery of he NLS Equaio ad Hea Sysem i 3-Dimesioal Mikowski Space Nevi Gürüz Osmagazi Uiversiy, Mahemaics Deparme 26480 Eskişehir, Turkey
Gradient Estimates for a Nonlinear Parabolic Equation with Diffusion on Complete Noncompact Manifolds
Chi. A. Mah. 36B(, 05, 57 66 DOI: 0.007/s40-04-0876- Chiese Aals of Mahemaics, Series B c The Ediorial Office of CAM ad Spriger-Verlag Berli Heidelberg 05 Gradie Esimaes for a Noliear Parabolic Equaio
Oscillations CHAPTER 3. ν = = 3-1. gram cm 4 E= = sec. or, (1) or, 0.63 sec (2) so that (3)
CHAPTER 3 Oscillaios 3-. a) gram cm 4 k dye/cm sec cm ν sec π m π gram π gram π or, ν.6 Hz () or, π τ sec ν τ.63 sec () b) so ha 4 3 ka dye-cm E 4 E 4.5 erg c) The maximum velociy is aaied whe he oal eergy
On Quasi - f -Power Increasing Sequences
Ieaioal Maheaical Fou Vol 8 203 o 8 377-386 Quasi - f -owe Iceasig Sequeces Maheda Misa G Deae of Maheaics NC College (Auooous) Jaju disha Mahedaisa2007@gailco B adhy Rolad Isiue of echoy Golahaa-76008
OSCILLATION CRITERIA FOR SECOND ORDER HALF-LINEAR DIFFERENTIAL EQUATIONS WITH DAMPING TERM
DIFFERENIAL EQUAIONS AND CONROL PROCESSES 4, 8 Elecroic Joural, reg. P375 a 7.3.97 ISSN 87-7 hp://www.ewa.ru/joural hp://www.mah.spbu.ru/user/diffjoural e-mail: jodiff@mail.ru Oscillaio, Secod order, Half-liear
Fourier Series. Fourier Series
ECE 37 Z. Aliyazicioglu Elecrical & Compuer Egieerig Dep. Cal Poly Pomoa Periodic sigal is a fucio ha repeas iself every secods. x() x( ± ) : period of a fucio, : ieger,,3, x() 3 x() x() Periodic sigal
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:
G Tuorial xlc3.oc / iear roblem i e C i e C ( ie ( Differeial equaio for C (3 Thi fir orer iffereial equaio ca eaily be ole bu he uroe of hi uorial i o how how o ue he iz-galerki meho o fi ou he oluio.
Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =
. (a). (b). (c) f() L L e i e Vidyalakar S.E. Sem. III [BIOM] Applied Mahemaic - III Prelim Queio Paper Soluio L el e () i ( ) H( ) u e co y + 3 3y u e co y + 6 uy e i y 6y uyy e co y 6 u + u yy e co y
16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.
SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he
Simulation of Singular Fourth- Order Partial Differential Equations Using the Fourier Transform Combined With Variational Iteration Method
Amirkabir Uiversi of Techolog (Tehra Polechic) Vol. 5, No., Sprig 3, pp. - 5 Amirkabir Ieraioal Joral of Sciece & Research (Modelig, Ideificaio, Simlaio & Corol) (AIJ - MISC) Simlaio of Siglar Forh- Order
Υπόδειγµα Προεξόφλησης
Αρτίκης Γ. Παναγιώτης Υπόδειγµα Προεξόφλησης Μερισµάτων Γενικό Υπόδειγµα (Geeral Model) Ταµειακές ροές από αγορά µετοχών: Μερίσµατα κατά την διάρκεια κατοχής των µετοχών Μια αναµενόµενη τιµή στο τέλος
Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)
Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as
Errata (Includes critical corrections only for the 1 st & 2 nd reprint)
Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y
INTEGRATION OF THE NORMAL DISTRIBUTION CURVE
INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose
( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential
Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a
1. For each of the following power series, find the interval of convergence and the radius of convergence:
Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.
J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]
Vol 36 ( 216 ) No 3 J of Mah (PR) 1, 2, 3 (1, 4335) (2, 4365) (3, 431) :,,,, : ; ; ; MR(21) : 35A1; 35A2 : O17529 : A : 255-7797(216)3-591-7 1 d d [x() g(, x )] = f(, x ),, (11) x = ϕ(), [ r, ], (12) x(
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
6.003: Signals and Systems
6.3: Signals and Sysems Modulaion December 6, 2 Communicaions Sysems Signals are no always well mached o he media hrough which we wish o ransmi hem. signal audio video inerne applicaions elephone, radio,
Lecture 12 Modulation and Sampling
EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.
hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p =
Περιεχόμενα διάλεξης
5η Διάλεξη Οπτικές ίνες Γ. Έλληνας, Διάλεξη 3, σελ. Περιεχόμενα διάλεξης Ιδιότητες οπτικών ινών Διασπορά (Dispersio) Τρόπων (Iermodal Dispersio) Χρωματική (Iramodal (Chromaic) Dispersio) Πόλωσης (Polarizaio
On Generating Relations of Some Triple. Hypergeometric Functions
It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade
L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Χρονοσειρές - Μάθημα 4
Χρονοσειρές - Μάθημα 4 Sysem is a se of ieracig or ierdeede comoes formig a iegraed whole. Fields ha sudy he geeral roeries of sysems iclude sysems heory, cybereics, dyamical sysems, hermodyamics ad comlex
Pro duction Technology and Technical Efficiency in ( k, y) Sp ace
15 5 Vol. 15 No. 5 006 10 OPERA TIONS RESEARCH AND MANA GEMEN T SCIENCE Oct. 006 ( 150001) : K L Y k ( L ) y ( K L Y) ( k y) ( k y) ( k y) ( K L Y) ( C R ) C R ( k y) : ; ;; : F4. 0 :A :100731 (006) 05007505
6.003: Signals and Systems. Modulation
6.3: Signals and Sysems Modulaion December 6, 2 Subjec Evaluaions Your feedback is imporan o us! Please give feedback o he saff and fuure 6.3 sudens: hp://web.mi.edu/subjecevaluaion Evaluaions are open
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m
Ψηφιακή Επεξεργασία Εικόνας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Random Attractors for Stochastic Reaction-Diffusion Equations with Distribution Derivatives on Unbounded Domains
Alied Maheaics 5 6 79-87 Published Olie Seeber 5 i SciRes h://wwwscirorg/oural/a h://dxdoiorg/436/a5659 Rado Aracors for Sochasic Reacio-Diffusio Equaios wih Disribuio Derivaives o Ubouded Doais Eshag
Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil
8 7 011 7 Journal of Highway and Transportation Research and Development Vol. 8 No. 7 Jul. 011 100-068 011 07-0014 - 05 1 1. 0009. 710064 k 0 Merchant 4 Merchant U416. 1 + 6 A Stress Relaxation Test and
ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ & ΕΛΕΓΧΟΥ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).
Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e 6 6 25 c L 2 ] ] L! + 25 e L 5 2 + 25] ] L 5 2 + 5 2 in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e 2 252 c L 3 8 4] 3L ] 8L
p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95
r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95
Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)
Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize
Outline. Detection Theory. Background. Background (Cont.)
Outlie etectio heory Chapter7. etermiistic Sigals with Ukow Parameters afiseh S. Mazloum ov. 3th Backgroud Importace of sigal iformatio Ukow amplitude Ukow arrival time Siusoidal detectio Classical liear
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Potential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and
On Certain Subclass of λ-bazilevič Functions of Type α + iµ
Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
arxiv: v1 [math.ap] 5 Apr 2018
Large-ime Behavior ad Far Field Asympoics of Soluios o he Navier-Sokes Equaios Masakazu Yamamoo 1 arxiv:184.1746v1 [mah.ap] 5 Apr 218 Absrac. Asympoic expasios of global soluios o he icompressible Navier-Sokes
α β
6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio
Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.
Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ Πρόγραμμα Μεταπτυχιακών Σπουδών «Ολοκληρωμένη Ανάπτυξη & Διαχείριση Αγροτικού Χώρου» ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ «Η συμβολή των Τοπικών Προϊόντων
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή Εργασία ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΑΝΔΡΕΟΥ ΣΤΕΦΑΝΙΑ Λεμεσός 2012 i ii ΤΕΧΝΟΛΟΓΙΚΟ
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω
Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,
On Inclusion Relation of Absolute Summability
It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com
Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil
J. Jpn. Soc. Soil Phys. No. +*0, p.- +*,**1 Eh * ** Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil Daisuke MURAKAMI* and Tatsuaki KASUBUCHI** * The United Graduate
IIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου
Σχολή Γεωτεχνικών Επιστημών και Διαχείρισης Περιβάλλοντος Μεταπτυχιακή διατριβή Κτίρια σχεδόν μηδενικής ενεργειακής κατανάλωσης :Αξιολόγηση συστημάτων θέρμανσης -ψύξης και ΑΠΕ σε οικιστικά κτίρια στην
Dr. D. Dinev, Department of Structural Mechanics, UACEG
Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents
TRM +4!5"2# 6!#!-!2&'!5$27!842//22&'9&2:1*;832<
TRM!"#$%& ' *,-./ *!#!!%!&!3,&!$-!$./!!"#$%&'*" 4!5"# 6!#!-!&'!5$7!84//&'9&:*;83< #:4
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
ω = radians per sec, t = 3 sec
Secion. Linear and Angular Speed 7. From exercise, =. A= r A = ( 00 ) (. ) = 7,00 in 7. Since 7 is in quadran IV, he reference 7 8 7 angle is = =. In quadran IV, he cosine is posiive. Thus, 7 cos = cos
A study on generalized absolute summability factors for a triangular matrix
Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş
No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A
7 2016 7 No. 7 Modular Machine Tool & Automatic Manufacturing Technique Jul. 2016 1001-2265 2016 07-0122 - 05 DOI 10. 13462 /j. cnki. mmtamt. 2016. 07. 035 * 100124 TH166 TG659 A Precision Modeling and
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)
8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r
Homework 4 (Lectures 17-21) / Κατ Οίκον Εργασία 4 (Διαλέξεις 17-21)
Homework 4 (Lecures 17-1) / Κατ Οίκον Εργασία 4 (Διαλέξεις 17-1) Due Dae / Ημερομηνία Παράδοσης: 7/1/018 Name/Όνομα: Dae/Ημερ.: You may eed some (or oe) of he followig equaios Μπορεί να χρειαστείτε κάποιες
K. Hausdorff K K O X = SDA. symbolic data analysis SDA SDA. Vol. 16 No. 3 Mar JOURNAL OF MANAGEMENT SCIENCES IN CHINA
16 3 013 3 JOURNAL OF MANAGEMENT SCIENCES IN CHINA Vol 16 No 3 Mar 013 1 K 30007 K Hausdorff K K K O1 4 A 1007-9807 013 03-001 - 08 0 3 X = 5 36 K SDA 1 symbolic data aalysis SDA 3 5 SDA 1 011-06 - 15
ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ
ΕΘΝΙΚΟ ΜΕΣΟΒΙΟ ΠΟΛΤΣΕΧΝΕΙΟ ΣΜΗΜΑ ΑΓΡΟΝΟΜΩΝ-ΣΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΣΟΜΕΑ ΣΟΠΟΓΡΑΦΙΑ ΕΡΓΑΣΗΡΙΟ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ
ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΚΑΙ ΚΟΙΝΩΝΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.
Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.
Modbus basic setup notes for IO-Link AL1xxx Master Block
n Modbus has four tables/registers where data is stored along with their associated addresses. We will be using the holding registers from address 40001 to 49999 that are R/W 16 bit/word. Two tables that
2002 Journal of Software
1000-9825/2002/13(02)0239-06 2002 Journal of Sofware Vol13, No2 -,, (, 100084) E-mail: shijing@mailssinghuaeducn; xingcx@singhuaeducn; dcszlz@singhuaeducn hp://dbgroupcssinghuaeducn : 10 12,, I/O -, -,,,
α ]0,1[ of Trigonometric Fourier Series and its Conjugate
aqartvelo mecierebata erovuli aademii moambe 3 # 9 BULLETIN OF THE GEORGIN NTIONL CDEMY OF SCIENCES vol 3 o 9 Mahemaic Some pproimae Properie o he Cezàro Mea o Order ][ o Trigoomeric Fourier Serie ad i
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ
Degenerate Perturbation Theory
R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
The Student s t and F Distributions Page 1
The Suden s and F Disribuions Page The Fundamenal Transformaion formula for wo random variables: Consider wo random variables wih join probabiliy disribuion funcion f (, ) simulaneously ake on values in
The Heisenberg Uncertainty Principle
Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?
Περίληψη (Executive Summary)
1 Περίληψη (Executive Summary) Η παρούσα διπλωματική εργασία έχει ως αντικείμενο την "Αγοραστική/ καταναλωτική συμπεριφορά. Η περίπτωση των Σπετσών" Κύριος σκοπός της διπλωματικής εργασίας είναι η διερεύνηση
ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης
Α.Τ.Ε.Ι. ΙΟΝΙΩΝ ΝΗΣΩΝ ΠΑΡΑΡΤΗΜΑ ΑΡΓΟΣΤΟΛΙΟΥ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Η διαμόρφωση επικοινωνιακής στρατηγικής (και των τακτικών ενεργειών) για την ενδυνάμωση της εταιρικής
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
MECHANICAL PROPERTIES OF MATERIALS
MECHANICAL PROPERTIES OF MATERIALS! Simple Tension Test! The Stress-Strain Diagram! Stress-Strain Behavior of Ductile and Brittle Materials! Hooke s Law! Strain Energy! Poisson s Ratio! The Shear Stress-Strain
Homework 4.1 Solutions Math 5110/6830
Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits