Damage Constitutive Model of Mudstone Creep Based on the Theory of Fractional Calculus

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Damage Constitutive Model of Mudstone Creep Based on the Theory of Fractional Calculus"

Transcript

1 Advaces i Peroleum Exploraio ad Developme Vol. 1, No. 2, 215, pp DOI:1.3968/773 ISSN X [Pri] ISSN [Olie] Damage Cosiuive Model of Mudsoe Creep Based o he Theory of Fracioal Calculus ZENG Jia [a],* ; ZHANG Ju [a] [a] Norheas Peroleum Uiversiy Peroleum Egieerig Isiue, Daqig, Chia. *Correspodig auhor. Received 18 Ocober 215; acceped 2 December 215 Published olie 31 December 215 Absrac Whe swellig mudsoe, is various mechaical parameers will chage sigificaly. Esablish mudsoe s fracioal calculus creep damage model srucure diagram, which describe he exe of damage i rock damage variable. Assumed ha he sress level of rock exceeded is he log-erm sregh ad uder he codiio of mudsoe acceleraed srai rae loadig, oliear damage model based o fracioal calculus heory was esablished. Therefore mudsoe creep cosiuive model cosiderig he acceleraed srai rae loadig codiios was obaied. The resuls of cosiuive model showed ha here appears o be a expoeial fucio bewee srai ad ime i he acceleraed creep sage. The creep es daa were used o verify he proposed model ad he resuls suggesed ha he fracioal order b was he irisic parameers of rock mass which could reflec is hardess. Durig he acceleraed creep sage, fracioal creep damage cosiuive model could describe he sress-srai relaioship well. Key words: Fracioal calculus; Sress-srai relaioship; Damage mechaics; Mudsoe acceleraed creep Zeg, J., & Zhag, J. (215). Damage cosiuive model of mudsoe creep based o he heory of fracioal calculus. Advaces i Peroleum Exploraio ad Developme, 1(2), Available from: URL: hp:// DOI: hp://dx.doi.org/1.3968/773 INTRODUCTION Rock creep is oe of he impora mechaical properies of rock ad also is oe of he impora reasos for egieerig wall rock deformaio isabiliy. Be esablished o fully reflec he acceleraed creep characerisics of mudsoe rock creep model is a impora subjec of curre research of rock creep properies. Rock creep characerisics showed hree disic phases i he log erm loads. Aeuaio creep sage, he creep rae decreases, showig a sigifica o-liear pheomea; whe eerig he seady-sae phase, creep rae remaied a a cosa value, showig a early liear feaures; whe he creep io he acceleraio phase, he deformaio rae bega o icrease, showig a edecy o icrease he oliear acceleraio, showig a more sigifica oliear characerisics. I rece years, may scholars have doe a lo of research o mudsoe creep. Bu durig he sudy, he mai cosideraio is he firs creep sage ad secod creep sage. I fac, i he process of rock creep, he hird sage of creep properies has more sigificace [1]. Krag e al. (1977) hrough es resuls, he volume of rock was ielasic srai reaches a criical value, acceleraig creep phase bega ad led o he fial desrucio of he specime, failure ime associaed wih sress. Geevois e al. (1979) hrough he experime daa of iformaio, ge a graph which is reflecig he relaioship bewee sress raio ad acceleraig creep ime; Drago e al. (1979) proposed a viscoplasic model of rock, ad assumed crack desiy parameer reaches a criical value, creep rae icreases rapidly lead o rock failure; Okubo e al. (1911) poied ou a acceleraig creep sage, he relaioship bewee srai rae ad rock is iversely proporioal o he icrease [2]. Deg e al [3]. iroduced a oliear viscous dampers, ad used viscous damper o esablished comprehesive rheological mechaics model, his model ca describe hree kids of creep deformaio a he same ime. Che e al. [4] pu forward wo kids of oliear eleme o se up composie rheological mechaics model, ad his model ca well describe he characerisics of sof rock acceleraig creep sage. Cao e al. [5] chaged viscous coefficie o oliear, i viscosiy model, ad improved 83 Copyrigh Caadia Research & Developme Ceer of Scieces ad Culures

2 Damage Cosiuive Model of Mudsoe Creep Based o he Theory of Fracioal Calculus Nishihara Masao model. This model ca reflec he oaeuaio creep properies of rocks. Wag e al. [6] based o he improved Nishihara model esablished parameric oliear creep model, which could reflec he rock specimes of he hree sages of creep process, especially i oliear acceleraig creep deformaio sage. Yi e al. [7] used he heory of fracioal order calculus, pu forward a kid of sofware compoe, which is used o simulae he geoechical maerials bewee ideal solid ad fluid. Alhough he combied model which is made up of sofware compoe ad classical liear mechaical compoes, ca describe he oliear behavior of he aeuaio of he rock creep ad seady creep of he rock creep, ca depic he acceleraio of rock creep properies. Based o he above research, esablish mudsoe s fracioal calculus creep damage model srucure diagram, which describe he exe of damage i rock damage variable. Assumed ha he sress level of rock exceeded is he log-erm sregh ad uder he codiio of mudsoe acceleraed srai rae loadig, oliear damage model based o fracioal calculus heory was esablished. Therefore mudsoe creep cosiuive model cosiderig he acceleraed srai rae loadig codiios was obaied. The resuls of cosiuive model showed ha here appears o be a expoeial fucio bewee srai ad ime i he acceleraed creep sage. The creep es daa were used o verify he proposed model. The Laplace rasform formula of fracioal order calculus is: L f (),p = p f ( p), L f (),p = p f ( p). (4) ( f () i he viciiy of = ca be iegral, 1) I Equaio - f (p) is a Laplace rasform of f (). Accordig o he classical heory of solid mechaics ad fluid mechaics, he cosiuive relaios of ideal solid should mee he Hooke s law () - ε(), ideal fluid should saisfy Newo law of viscosiy () - d 1 ε()/ 1. Fracioal order calculus is a mahemaical problem, which is sudy ay order differeial, iegral operaor feaures ad applicaios. If chage he () - ε() o () - d ε()/, he, he geoechical maerials which is bewee ideal solid ad fluid, is fracioal order differeial form of sress-srai relaio is d ε ( ) ( ) = ξ. (5) Whe < < 1, Equaio (5) describe he sae of maer ha is bewee ideal solid ad fluid; whe > 1, Equaio (5) describe he acceleraig rheological sae of maer, his paper maily sudies accelerae rheological maerial saus. Accordig o his arraive, we call i he sofware compoes whe > 1 (as show i Figure 1), ξ is viscoelasic coefficie, similar o he elasic modulus of Hooke s law, he ξ dimesio is [sress ime ]. 1. NONLINEAR MODELING 1.1 The Basic Compoes of Fracioal Calculus Fracioal order calculus is expaded he order of calculus io areas of fracio or eve egaive umber. The sofware compoes coais fracioal order calculus is regarded as a compoe model. The model is bewee he ideals of solid ad fluid ad ca well reflec he viscoelasic characerisics of geoechical maerials. This aricle uses he Riema-Liouville fracioal calculus operaor heory, for order iegral of fucio f(), is defied as: d f ( ) d ( ) = f () = f (). (1) Fracioal differeial is defied as: d f ( ) d ( ) = D f () = D f (). (2) I Equaios (1) & (2): >, moreover - 1 < ( is a posiive ieger). Γ() is he Gamma fucio, is defied as: Γ 1 ( ) = e ( Re( ) ) >. (3) Figure 1 Fracioal Order Calculus of he Viscoelasic Eleme Whe () = cos, ha is sress is a cosa value, o Equaio (5) o he basis of Riema-Liouville fracioal order operaor heory o carry o he iegral operaio is ε ( ) =. (6) ξ Γ ( 1+ ) I he case of cosa sress whe ake differe values, aalysis of he relaioship bewee srai ad ime ad heir chage red. Creep curve as show whe > 1, based o he fracioal order creep model, he curves of srai wih ime as show i Figure 2. Combied wih he characerisics of ypical rock creep deformaio. Accordig o derivae ad chage he fracioal heory model, we could use o simulae creep curve. > 1 (Sofware eleme) describe he viscoplasic deformaio ha is acceleraig rheological maerial saus. Copyrigh Caadia Research & Developme Ceer of Scieces ad Culures 84

3 ZENG Jia; ZHANG Ju (215). Advaces i Peroleum Exploraio ad Developme, 1(2), ε Figure 2 > 1 Curve Diagram Whe ε() = cos, hrough he fracioal order calculus deduce he relaxaio equaio is ( ) = ξ ε. (7) Γ( 1 ) ε is he iiial sress of he iiial srai. For differe maerials, adjus he parameers ad ξ of compoes o chage he creep curve or relaxaio curve, hus accuraely fiig maerial es resuls. 1.2 I he Process of Rock Creep Damage Rock creep damage sress hreshold is he log-erm sregh of rock, whe he load sress is greaer ha he log-erm sregh of rock mass iself, wih he icrease of ime rock begis o creep damage. Based o damage mechaics heory, o accou of he ieral micro cracks of rock mass expadig, ecrypio, icrease uder he acio of exeral loadig, he abiliy o resis damage ad disorio of rock mass decreases causig damage, ad led o he decrease of he mechaical parameers of rock mass, so he rock damage degree relaed o he size of he load sress ad ime. Accordig o he defiiio of damage variable mehod, his paper discussed damage variable of rock mass damage is defied by adopig he mehod of elasic modulus (, ) (, ) 1 E D =. (8) E I Equaio (8), E is he iiial elasic modulus of rock mass; D (,) is he damage variable of rock mass i ime; E (,) is he elasic modulus of he rock mass i ime, maily relaed o Ouside he load sress level a his mome. Afer damage due o creep, rock mass has o be capable of bearig, accordig o Liu Baoguo mudsoe creep damage experime research [8], defiiio of E(,) is defie E (,) = E exp[- - /b]. (9) I Equaio (9), is he log-erm sregh of rock maerial which ca be deermied by ess; b is rock maerial cosa; - is sep fucio, is defied as: ( ) ( ) =. (1) > Take he Equaio (9) io he Equaio (8) D (,) = 1 - exp[- - /b]. (11) Whe he exeral load sress is greaer ha log-erm sregh of rock mass by (11), ha is >,, D = 1, rock mass maerials compleely damage. Wih he icrease of he ime ad sress, maerial elasic modulus decay gradually, damage variable was gradually icreased. Accordig o he Equaio (11) damage variable D defie effecive sress 8 ad omial sress mee relaios 8 = 1 D (,. (12) ) I Equaio (12), 8 is effecive sress, is omial sress. Take he Equaio (7) io he Equaio (8) 8 = exp [ - /b]. (13) I Equaio (13), is he log-erm sregh of rock maerial, could be deermied by ess; b is rock maerial cosa; - is sep fucio. 1.3 Mudsoe Fracioal Order Damage Creep Model The iiial load, rock mass maerials exiss elasic deformaio. Acceleraed creep of rock mass characerisics is based o ime ad exeral load sress chage gradually, here is damage hreshold, so by referece fracioal order damage compoes which could reflec he creep damage process o describe he viscoplasic acceleraig deformaio process of rock mass, model srucure as show i Figure 3. Figure 3 Fracioal Order Damage Creep Model Whe he exeral load sress is greaer ha log-erm sregh of rock mass, ha is mudsoe acceleraed creep, accordig o he model diagram available = 1 = 2 = 3, ε = ε 1 + ε 2 + ε 3. (14) Amog hem 1 = Eε1 d ε 2 2 = ξ1. (15) d ε3 3 = + ξ2 I Equaio (15), whe he load sress is less ha log-erm sregh of rock mass codiios, ha is Creep 85 Copyrigh Caadia Research & Developme Ceer of Scieces ad Culures

4 Damage Cosiuive Model of Mudsoe Creep Based o he Theory of Fracioal Calculus sage Ⅰ ad Creep sage Ⅱ mudsoe viscoelasic deformaio, < < 1. Laplace rasform ad Laplace iverse rasform of he Equaio (15) ad ake io he Equaio (14), for he resulig oliear creep cosiuive equaio whe he load sress greaer ha log-erm sregh of rock mass is ha: ε = + + E ξ1 ξ2. (16) Because of he load sress greaer ha log-erm sregh of rock mass, ha is, rock mass will eer he sage of creep damage. The Equaio (16) ca be rewrie as % ε = + +. (17) E ξ1 ξ2 Takig he iiial codiios = ad = io Equaio (17) ad accordig o he Riema-Liouville fracioal order calculus, acquire he oliear creep cosiuive equaio %. (18) E ξ Γ 1+ ξ Γ 1+ ( ) ( ) 1 2 Takig he Equaio (13) io (18) acquire rock creep damage cosiuive model which is based o he heory of fracioal order calculus, ha is exp b. E ξ1 Γ ( 1+ ) ξ2 Γ ( 1+ ) (19) 2. ACCELERATE THE STRAIN RATE LOAD THE MUDSTONE CONSTITUTIVE MODEL Kow o accelerae creep sage based o he heory of fracioal calculus of Rock creep damage cosiuive model is exp b. E ξ1 Γ ( 1+ ) ξ2 Γ ( 1+ ) Accordig o he acual siuaio, assumig ha ε = ae ad akig io Equaio (19), ca be calculaed uder he codiio of accelerae he srai rae load. The sresssrai relaioship of mudsoe creep is (lε l a) exp (lε l a) b (lε l a) E ξ Γ + ξ Γ + ( 1 ) ( 1 ) 1 2. (2) I Equaio (2), a is cosa. By Equaio (2), ca be deduced accelerae he srai rae load fracioal order he mudsoe creep damage cosiuive model is 1 ( ) 2 ( ) 1 ( ) ( ) ( ) ( ) ( ) E ξ Γ 1+ ξ Γ 1+ ε + E ξ Γ 1 + (lε l a) =. (21) ξ 1 Γ 1 + ξ 2 Γ E ξ 2 Γ 1 + (l ε l a) + E ξ 1 Γ 1 + (l ε l a) exp (l ε l a) b Whe he ouer load sress is greaer ha log-erm sregh of rock mass, ha is, rock mass will eer E 1Γ ( 1+ ) 2Γ ( 1+ ) + E 1Γ ( 1 + )(l l a) ( ) ( ) ( ) ( ) he sage of creep damage, ha is exp[- - /b], he Equaio (21) could be wrie as ξ ξ ε ξ ε =. (22) ξ Γ 1 + ξ Γ E ξ Γ 1 + (l ε l a) + E ξ Γ 1 + (l ε l a) Figure 4 Rock Creep Sress-Srai Curve Diagram Accordig o he Equaio (22), fiig he sresssrai curve diagram uder he codiio of rock creep, as show i Figure 4. From he sress-srai curve diagram aalysis wih srai icrease gradually, sress icreases gradually, he srai rae also will icrease. Namely ha i he process of mudsoe creep, he greaer he srai, he greaer he sress also. Whe he value is o a he same ime, accordig o he Equaio (22). Describe he sress-srai curve of he maerial as show i Figure 5. I ca be see from he Figure 5, wih he icrease of value, sress icreasig ampliude decreases. The smaller he value of, he greaer he depede variable, he chage of sress more obvious. Copyrigh Caadia Research & Developme Ceer of Scieces ad Culures 86

5 ZENG Jia; ZHANG Ju (215). Advaces i Peroleum Exploraio ad Developme, 1(2), Figure 5 The Rock Creep Sress-Srai Curve Diagram Uder Differe Values 3. THE FRACTIONAL ORDER MUDSTONE CREEP DAMAGE CONSTITUTIVE MODEL VALIDATION Because he coveioal riaxial es is srai rae loadig es ha Srai could be corolled, hrough he es verify he fracioal order mudsoe creep damage cosiuive model. To verify he correcess ad he raioaliy of he model i his paper, he auhor carries o he riaxial compressio experime, sample ake from he souh area of Daqig oil field s oil ad waer wells casig damage zoe. Through he experime obaied rock mass mechaics parameers ad sress-srai curve, compared o he experimeal curves ad fiig curve from Equaio (18), as show i Figure 6. Figure 6 Sress-Srai Curves Accordig o he Figure 6, accelerae srai rae loadig fracioal order mudsoe creep damage cosiuive model s resul agree well wih experimeal daa fiig curve, resuls idicae ha he correcess of he cosiuive model is esablished i his paper. Wih he icrease of srai rae, all he value of is 1.13, so he fracioal order of he same kid of mudsoe do chage wih cofiig pressure, ad be able o reflec he hardess of mudsoe. CONCLUSION (a) Accordig o classical heory of solid ad fluid mechaics, based o he heory of fracioal order calculus, iroducig damage variable, esablish acceleraed srai rae loadig fracioal order mudsoe creep damage cosiuive model. The model ca beer reflec he mudsoe of sress-srai relaioship i he acceleraed srai rae loadig codiios. (b) By acceleraed srai rae loadig fracioal order mudsoe creep damage cosiuive model, he relaioship bewee srai ad ime is expoeial fucio i he acceleraed creep sage, srai icreases, he sress icreases ad he srai rae also icrease. Wih he icrease of value, sress icreasig ampliude decreases. The smaller he value of, he greaer he depede variable, he chage of sress more obvious. (c) Coveioal riaxial es of mudsoe (acceleraed srai rae loadig) is able o verify he accelerae srai rae loadig fracioal order mudsoe creep damage cosiuive model. The model s resul agrees well wih experimeal daa fiig curve. The fracioal orders of he same kid of mudsoe do chage wih cofiig pressure, ad be able o reflec he hardess of mudsoe. I his paper he iovaio lies i he acceleraed srai rae loadig sage, he resuls of cosiuive model showed ha here appears o be a expoeial fucio bewee srai ad ime. The mudsoe creep cosiuive model cosiderig he acceleraed srai rae loadig codiios was esablished based o he heory of fracioal order ca describe he relaio bewee sress ad srai. REFERENCES [1] Sog, Y. J., & Lei, S. Y. (213). Mechaical model of rock oliear creep damage based o fracioal calculus. Chiese Joural of Udergroud Space ad Egieerig, (9), [2] Zhag, Z. T., Wag, H., & Tao, Z. Y. (1996). The sudy of rock creep propery. Joural of Yagze River Scieific Research Isiue, S1, 2-6. [3] Deg, R. G., Zhou, D. P., & Zhag, Z. Y. (21). A ew rheological model for rocks. Chiese Joural of Rock Mechaics ad Egieerig, 2(6), [4] Che, Y. J., Pa, C. L., & Cao, P. (23). A ew mechaical model for sof rock rheology. Rock ad Soil Mechaics, 24(2), [5] Cao, S. G., Bia, J., & Li, P. (22). Rheologic cosiuive relaioship of rocks ad a modifical model. Chiese Joural of Rock Mechaics ad Egieerig, 21(5), [6] Wag, L. G., He, F., & Liu, X. F. (24). No-liear creep model ad sabiliy aalysis of rock. Chiese Joural of Rock Mechaics ad Egieerig, 23(1), [7] Yi, D. S., Re, J. J., & He, C. L. (29). Sress-sai relaio of sof soil based o fracioal calculus operaor s heory. Chiese Joural of Rock Mechaics ad Egieerig, 28, [8] Liu, B. G., & Cui, S. D. (21). Experimeal sudy of creep damage of mudsoe. Chiese Joural of Rock Mechaics ad Egieerig, 1(29), Copyrigh Caadia Research & Developme Ceer of Scieces ad Culures

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES APPENDIX A DERIVAION OF JOIN FAILRE DENSIIES I his Appedi we prese he derivaio o he eample ailre models as show i Chaper 3. Assme ha he ime ad se o ailre are relaed by he cio g ad he sochasic are o his

Διαβάστε περισσότερα

8. The Normalized Least-Squares Estimator with Exponential Forgetting

8. The Normalized Least-Squares Estimator with Exponential Forgetting Lecure 5 8. he Normalized Leas-Squares Esimaor wih Expoeial Forgeig his secio is devoed o he mehod of Leas-Squares wih expoeial forgeig ad ormalizaio. Expoeial forgeig of daa is a very useful echique i

Διαβάστε περισσότερα

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + + Techical Appedix o Hamig eposis ad Helpig Bowes: The ispaae Impac of Ba Cosolidaio (o o be published bu o be made available upo eques. eails of Poofs of Poposiios 1 ad To deive Poposiio 1 s exac ad sufficie

Διαβάστε περισσότερα

The Estimates of the Upper Bounds of Hausdorff Dimensions for the Global Attractor for a Class of Nonlinear

The Estimates of the Upper Bounds of Hausdorff Dimensions for the Global Attractor for a Class of Nonlinear Advaces i Pure Mahemaics 8 8 - hp://wwwscirporg/oural/apm ISSN Olie: 6-384 ISSN Pri: 6-368 The Esimaes of he Upper Bouds of Hausdorff Dimesios for he Global Aracor for a Class of Noliear Coupled Kirchhoff-Type

Διαβάστε περισσότερα

Time Series Analysis Final Examination

Time Series Analysis Final Examination Dr. Sevap Kesel Time Series Aalysis Fial Examiaio Quesio ( pois): Assume you have a sample of ime series wih observaios yields followig values for sample auocorrelaio Lag (m) ˆ( ρ m) -0. 0.09 0. Par a.

Διαβάστε περισσότερα

A Note on Saigo s Fractional Integral Inequalities

A Note on Saigo s Fractional Integral Inequalities Turkish Joural of Aalysis ad Number Theory, 214, Vol 2, No 3, 65-69 Available olie a hp://pubssciepubcom/ja/2/3/2 Sciece ad Educaio Publishig DOI:112691/ja-2-3-2 A Noe o Saigo s Fracioal Iegral Iequaliies

Διαβάστε περισσότερα

Intrinsic Geometry of the NLS Equation and Heat System in 3-Dimensional Minkowski Space

Intrinsic Geometry of the NLS Equation and Heat System in 3-Dimensional Minkowski Space Adv. Sudies Theor. Phys., Vol. 4, 2010, o. 11, 557-564 Irisic Geomery of he NLS Equaio ad Hea Sysem i 3-Dimesioal Mikowski Space Nevi Gürüz Osmagazi Uiversiy, Mahemaics Deparme 26480 Eskişehir, Turkey

Διαβάστε περισσότερα

Gradient Estimates for a Nonlinear Parabolic Equation with Diffusion on Complete Noncompact Manifolds

Gradient Estimates for a Nonlinear Parabolic Equation with Diffusion on Complete Noncompact Manifolds Chi. A. Mah. 36B(, 05, 57 66 DOI: 0.007/s40-04-0876- Chiese Aals of Mahemaics, Series B c The Ediorial Office of CAM ad Spriger-Verlag Berli Heidelberg 05 Gradie Esimaes for a Noliear Parabolic Equaio

Διαβάστε περισσότερα

Oscillations CHAPTER 3. ν = = 3-1. gram cm 4 E= = sec. or, (1) or, 0.63 sec (2) so that (3)

Oscillations CHAPTER 3. ν = = 3-1. gram cm 4 E= = sec. or, (1) or, 0.63 sec (2) so that (3) CHAPTER 3 Oscillaios 3-. a) gram cm 4 k dye/cm sec cm ν sec π m π gram π gram π or, ν.6 Hz () or, π τ sec ν τ.63 sec () b) so ha 4 3 ka dye-cm E 4 E 4.5 erg c) The maximum velociy is aaied whe he oal eergy

Διαβάστε περισσότερα

On Quasi - f -Power Increasing Sequences

On Quasi - f -Power Increasing Sequences Ieaioal Maheaical Fou Vol 8 203 o 8 377-386 Quasi - f -owe Iceasig Sequeces Maheda Misa G Deae of Maheaics NC College (Auooous) Jaju disha Mahedaisa2007@gailco B adhy Rolad Isiue of echoy Golahaa-76008

Διαβάστε περισσότερα

OSCILLATION CRITERIA FOR SECOND ORDER HALF-LINEAR DIFFERENTIAL EQUATIONS WITH DAMPING TERM

OSCILLATION CRITERIA FOR SECOND ORDER HALF-LINEAR DIFFERENTIAL EQUATIONS WITH DAMPING TERM DIFFERENIAL EQUAIONS AND CONROL PROCESSES 4, 8 Elecroic Joural, reg. P375 a 7.3.97 ISSN 87-7 hp://www.ewa.ru/joural hp://www.mah.spbu.ru/user/diffjoural e-mail: jodiff@mail.ru Oscillaio, Secod order, Half-liear

Διαβάστε περισσότερα

Fourier Series. Fourier Series

Fourier Series. Fourier Series ECE 37 Z. Aliyazicioglu Elecrical & Compuer Egieerig Dep. Cal Poly Pomoa Periodic sigal is a fucio ha repeas iself every secods. x() x( ± ) : period of a fucio, : ieger,,3, x() 3 x() x() Periodic sigal

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form: G Tuorial xlc3.oc / iear roblem i e C i e C ( ie ( Differeial equaio for C (3 Thi fir orer iffereial equaio ca eaily be ole bu he uroe of hi uorial i o how how o ue he iz-galerki meho o fi ou he oluio.

Διαβάστε περισσότερα

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) = . (a). (b). (c) f() L L e i e Vidyalakar S.E. Sem. III [BIOM] Applied Mahemaic - III Prelim Queio Paper Soluio L el e () i ( ) H( ) u e co y + 3 3y u e co y + 6 uy e i y 6y uyy e co y 6 u + u yy e co y

Διαβάστε περισσότερα

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral. SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he

Διαβάστε περισσότερα

Simulation of Singular Fourth- Order Partial Differential Equations Using the Fourier Transform Combined With Variational Iteration Method

Simulation of Singular Fourth- Order Partial Differential Equations Using the Fourier Transform Combined With Variational Iteration Method Amirkabir Uiversi of Techolog (Tehra Polechic) Vol. 5, No., Sprig 3, pp. - 5 Amirkabir Ieraioal Joral of Sciece & Research (Modelig, Ideificaio, Simlaio & Corol) (AIJ - MISC) Simlaio of Siglar Forh- Order

Διαβάστε περισσότερα

Υπόδειγµα Προεξόφλησης

Υπόδειγµα Προεξόφλησης Αρτίκης Γ. Παναγιώτης Υπόδειγµα Προεξόφλησης Μερισµάτων Γενικό Υπόδειγµα (Geeral Model) Ταµειακές ροές από αγορά µετοχών: Μερίσµατα κατά την διάρκεια κατοχής των µετοχών Μια αναµενόµενη τιµή στο τέλος

Διαβάστε περισσότερα

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1) Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as

Διαβάστε περισσότερα

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

Errata (Includes critical corrections only for the 1 st & 2 nd reprint) Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y

Διαβάστε περισσότερα

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose

Διαβάστε περισσότερα

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8] Vol 36 ( 216 ) No 3 J of Mah (PR) 1, 2, 3 (1, 4335) (2, 4365) (3, 431) :,,,, : ; ; ; MR(21) : 35A1; 35A2 : O17529 : A : 255-7797(216)3-591-7 1 d d [x() g(, x )] = f(, x ),, (11) x = ϕ(), [ r, ], (12) x(

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

6.003: Signals and Systems

6.003: Signals and Systems 6.3: Signals and Sysems Modulaion December 6, 2 Communicaions Sysems Signals are no always well mached o he media hrough which we wish o ransmi hem. signal audio video inerne applicaions elephone, radio,

Διαβάστε περισσότερα

Lecture 12 Modulation and Sampling

Lecture 12 Modulation and Sampling EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v. hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p =

Διαβάστε περισσότερα

Περιεχόμενα διάλεξης

Περιεχόμενα διάλεξης 5η Διάλεξη Οπτικές ίνες Γ. Έλληνας, Διάλεξη 3, σελ. Περιεχόμενα διάλεξης Ιδιότητες οπτικών ινών Διασπορά (Dispersio) Τρόπων (Iermodal Dispersio) Χρωματική (Iramodal (Chromaic) Dispersio) Πόλωσης (Polarizaio

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Χρονοσειρές - Μάθημα 4

Χρονοσειρές - Μάθημα 4 Χρονοσειρές - Μάθημα 4 Sysem is a se of ieracig or ierdeede comoes formig a iegraed whole. Fields ha sudy he geeral roeries of sysems iclude sysems heory, cybereics, dyamical sysems, hermodyamics ad comlex

Διαβάστε περισσότερα

Pro duction Technology and Technical Efficiency in ( k, y) Sp ace

Pro duction Technology and Technical Efficiency in ( k, y) Sp ace 15 5 Vol. 15 No. 5 006 10 OPERA TIONS RESEARCH AND MANA GEMEN T SCIENCE Oct. 006 ( 150001) : K L Y k ( L ) y ( K L Y) ( k y) ( k y) ( k y) ( K L Y) ( C R ) C R ( k y) : ; ;; : F4. 0 :A :100731 (006) 05007505

Διαβάστε περισσότερα

6.003: Signals and Systems. Modulation

6.003: Signals and Systems. Modulation 6.3: Signals and Sysems Modulaion December 6, 2 Subjec Evaluaions Your feedback is imporan o us! Please give feedback o he saff and fuure 6.3 sudens: hp://web.mi.edu/subjecevaluaion Evaluaions are open

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Random Attractors for Stochastic Reaction-Diffusion Equations with Distribution Derivatives on Unbounded Domains

Random Attractors for Stochastic Reaction-Diffusion Equations with Distribution Derivatives on Unbounded Domains Alied Maheaics 5 6 79-87 Published Olie Seeber 5 i SciRes h://wwwscirorg/oural/a h://dxdoiorg/436/a5659 Rado Aracors for Sochasic Reacio-Diffusio Equaios wih Disribuio Derivaives o Ubouded Doais Eshag

Διαβάστε περισσότερα

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil 8 7 011 7 Journal of Highway and Transportation Research and Development Vol. 8 No. 7 Jul. 011 100-068 011 07-0014 - 05 1 1. 0009. 710064 k 0 Merchant 4 Merchant U416. 1 + 6 A Stress Relaxation Test and

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ & ΕΛΕΓΧΟΥ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t). Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e 6 6 25 c L 2 ] ] L! + 25 e L 5 2 + 25] ] L 5 2 + 5 2 in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e 2 252 c L 3 8 4] 3L ] 8L

Διαβάστε περισσότερα

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95 r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

Outline. Detection Theory. Background. Background (Cont.)

Outline. Detection Theory. Background. Background (Cont.) Outlie etectio heory Chapter7. etermiistic Sigals with Ukow Parameters afiseh S. Mazloum ov. 3th Backgroud Importace of sigal iformatio Ukow amplitude Ukow arrival time Siusoidal detectio Classical liear

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

On Certain Subclass of λ-bazilevič Functions of Type α + iµ Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

arxiv: v1 [math.ap] 5 Apr 2018

arxiv: v1 [math.ap] 5 Apr 2018 Large-ime Behavior ad Far Field Asympoics of Soluios o he Navier-Sokes Equaios Masakazu Yamamoo 1 arxiv:184.1746v1 [mah.ap] 5 Apr 218 Absrac. Asympoic expasios of global soluios o he icompressible Navier-Sokes

Διαβάστε περισσότερα

α β

α β 6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ Πρόγραμμα Μεταπτυχιακών Σπουδών «Ολοκληρωμένη Ανάπτυξη & Διαχείριση Αγροτικού Χώρου» ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ «Η συμβολή των Τοπικών Προϊόντων

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή Εργασία ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΑΝΔΡΕΟΥ ΣΤΕΦΑΝΙΑ Λεμεσός 2012 i ii ΤΕΧΝΟΛΟΓΙΚΟ

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil J. Jpn. Soc. Soil Phys. No. +*0, p.- +*,**1 Eh * ** Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil Daisuke MURAKAMI* and Tatsuaki KASUBUCHI** * The United Graduate

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου Σχολή Γεωτεχνικών Επιστημών και Διαχείρισης Περιβάλλοντος Μεταπτυχιακή διατριβή Κτίρια σχεδόν μηδενικής ενεργειακής κατανάλωσης :Αξιολόγηση συστημάτων θέρμανσης -ψύξης και ΑΠΕ σε οικιστικά κτίρια στην

Διαβάστε περισσότερα

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Dr. D. Dinev, Department of Structural Mechanics, UACEG Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents

Διαβάστε περισσότερα

TRM +4!5"2# 6!#!-!2&'!5$27!842//22&'9&2:1*;832<

TRM +4!52# 6!#!-!2&'!5$27!842//22&'9&2:1*;832< TRM!"#$%& ' *,-./ *!#!!%!&!3,&!$-!$./!!"#$%&'*" 4!5"# 6!#!-!&'!5$7!84//&'9&:*;83< #:4

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

ω = radians per sec, t = 3 sec

ω = radians per sec, t = 3 sec Secion. Linear and Angular Speed 7. From exercise, =. A= r A = ( 00 ) (. ) = 7,00 in 7. Since 7 is in quadran IV, he reference 7 8 7 angle is = =. In quadran IV, he cosine is posiive. Thus, 7 cos = cos

Διαβάστε περισσότερα

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A 7 2016 7 No. 7 Modular Machine Tool & Automatic Manufacturing Technique Jul. 2016 1001-2265 2016 07-0122 - 05 DOI 10. 13462 /j. cnki. mmtamt. 2016. 07. 035 * 100124 TH166 TG659 A Precision Modeling and

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

Homework 4 (Lectures 17-21) / Κατ Οίκον Εργασία 4 (Διαλέξεις 17-21)

Homework 4 (Lectures 17-21) / Κατ Οίκον Εργασία 4 (Διαλέξεις 17-21) Homework 4 (Lecures 17-1) / Κατ Οίκον Εργασία 4 (Διαλέξεις 17-1) Due Dae / Ημερομηνία Παράδοσης: 7/1/018 Name/Όνομα: Dae/Ημερ.: You may eed some (or oe) of he followig equaios Μπορεί να χρειαστείτε κάποιες

Διαβάστε περισσότερα

K. Hausdorff K K O X = SDA. symbolic data analysis SDA SDA. Vol. 16 No. 3 Mar JOURNAL OF MANAGEMENT SCIENCES IN CHINA

K. Hausdorff K K O X = SDA. symbolic data analysis SDA SDA. Vol. 16 No. 3 Mar JOURNAL OF MANAGEMENT SCIENCES IN CHINA 16 3 013 3 JOURNAL OF MANAGEMENT SCIENCES IN CHINA Vol 16 No 3 Mar 013 1 K 30007 K Hausdorff K K K O1 4 A 1007-9807 013 03-001 - 08 0 3 X = 5 36 K SDA 1 symbolic data aalysis SDA 3 5 SDA 1 011-06 - 15

Διαβάστε περισσότερα

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ ΕΘΝΙΚΟ ΜΕΣΟΒΙΟ ΠΟΛΤΣΕΧΝΕΙΟ ΣΜΗΜΑ ΑΓΡΟΝΟΜΩΝ-ΣΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΣΟΜΕΑ ΣΟΠΟΓΡΑΦΙΑ ΕΡΓΑΣΗΡΙΟ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ

Διαβάστε περισσότερα

ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ

ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΚΑΙ ΚΟΙΝΩΝΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.

Διαβάστε περισσότερα

Modbus basic setup notes for IO-Link AL1xxx Master Block

Modbus basic setup notes for IO-Link AL1xxx Master Block n Modbus has four tables/registers where data is stored along with their associated addresses. We will be using the holding registers from address 40001 to 49999 that are R/W 16 bit/word. Two tables that

Διαβάστε περισσότερα

2002 Journal of Software

2002 Journal of Software 1000-9825/2002/13(02)0239-06 2002 Journal of Sofware Vol13, No2 -,, (, 100084) E-mail: shijing@mailssinghuaeducn; xingcx@singhuaeducn; dcszlz@singhuaeducn hp://dbgroupcssinghuaeducn : 10 12,, I/O -, -,,,

Διαβάστε περισσότερα

α ]0,1[ of Trigonometric Fourier Series and its Conjugate

α ]0,1[ of Trigonometric Fourier Series and its Conjugate aqartvelo mecierebata erovuli aademii moambe 3 # 9 BULLETIN OF THE GEORGIN NTIONL CDEMY OF SCIENCES vol 3 o 9 Mahemaic Some pproimae Properie o he Cezàro Mea o Order ][ o Trigoomeric Fourier Serie ad i

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

Degenerate Perturbation Theory

Degenerate Perturbation Theory R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

The Student s t and F Distributions Page 1

The Student s t and F Distributions Page 1 The Suden s and F Disribuions Page The Fundamenal Transformaion formula for wo random variables: Consider wo random variables wih join probabiliy disribuion funcion f (, ) simulaneously ake on values in

Διαβάστε περισσότερα

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?

Διαβάστε περισσότερα

Περίληψη (Executive Summary)

Περίληψη (Executive Summary) 1 Περίληψη (Executive Summary) Η παρούσα διπλωματική εργασία έχει ως αντικείμενο την "Αγοραστική/ καταναλωτική συμπεριφορά. Η περίπτωση των Σπετσών" Κύριος σκοπός της διπλωματικής εργασίας είναι η διερεύνηση

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης Α.Τ.Ε.Ι. ΙΟΝΙΩΝ ΝΗΣΩΝ ΠΑΡΑΡΤΗΜΑ ΑΡΓΟΣΤΟΛΙΟΥ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Η διαμόρφωση επικοινωνιακής στρατηγικής (και των τακτικών ενεργειών) για την ενδυνάμωση της εταιρικής

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

MECHANICAL PROPERTIES OF MATERIALS

MECHANICAL PROPERTIES OF MATERIALS MECHANICAL PROPERTIES OF MATERIALS! Simple Tension Test! The Stress-Strain Diagram! Stress-Strain Behavior of Ductile and Brittle Materials! Hooke s Law! Strain Energy! Poisson s Ratio! The Shear Stress-Strain

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα