arxiv: v1 [math.ap] 5 Apr 2018
|
|
- Ἑρμοκράτης Παπαγεωργίου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Large-ime Behavior ad Far Field Asympoics of Soluios o he Navier-Sokes Equaios Masakazu Yamamoo 1 arxiv: v1 [mah.ap] 5 Apr 218 Absrac. Asympoic expasios of global soluios o he icompressible Navier-Sokes equaio as eds o ifiiy wih high-order is sudied ad large-ime behavior of he expasio is clarified. Furhermore, far field asympoics also is derived. Those expasios are provided wihou mome codiios o he iiial velociy. The Bio-Savard law ogeher wih he reormalizaio for he voriciy equaios yields hose expasios. 1. Iroducio We cosider decay properies of soluios o he icompressible Navier-Sokes equaios i. I several precedig works, asympoic expasio of a soluio is provided. Those expasios require he fas decay for a iiial velociy. O he oher had, i is well kow ha a soluio o he Navier-Sokes equaio has a slow decay-rae as x. This special srucure of he Navier-Sokes equaio disurbs o derive he asympoic expasio wih high-order. I his paper, we ivesigae he asympoic expasio wih high-order wihou he srog assumpio for a iiial velociy as x. Here we sudy he followig iiial-value problem: 1.1 uu u = u p, >, x, u =, >, x, u,x = ax, x, where 2 ad a = a 1,...,a is a iiial velociy. Throughou his paper we assume he soleoidal codiio ha a =. Uiqueess, smoohess ad global exisece o ime of soluios are very impora quesio for his problem for hose quesios, see for example [8, 1 12, 15, 16, 24] ad refereces herei. Now we rea a smooh ad global soluio u which saisfies ha 1.2 u L q C q 1 2 for 1 q. This esimae is cofirmed uder several frameworks cf. [2,14,18,19,22,23,25,26], ad gives he upper boud of he decay-rae of he soluio. The lower boud of he decay-rae as is provided by he asympoic expasio. For he hea equaio, we see ha he decay propery of a soluio as x is iheried from a iiial daa. Thus, for he hea equaio, we ca derive he asympoic expasio wih arbirary high order if we assume he fas decay for he iiial daa. Whereas for 1.1, decay of u as x is o corolled by a. Namely, eve if a C, he 1.3 u,x = O x 1 as x for ay fixed > cf. [3]. Moreover, poiwise decay of he soluio is sudied by may auhors see for example [1, 2]. Whe we ry o iroduce a asympoic expasio wih high-order of he similar form as i he precedig works, i is ecessary ha u decays as x sufficiely fas. Hece he polyomial decay 1.3 is cumbersome. Furhermore, we are ieresed o far field asympoics of he soluio. The similar problem is appearig i several dissipaive equaios wih aomalous diffusio. The lower boud of he decay-rae as x of soluios o a semi-liear aomalous diffusio equaio is sudied see [4,27]. To solve behavior as x for he velociy, we employ he voriciy esor. The voriciy esor ω ij = i u j j u i for 1 i,j fulfills ha 1.4 ω ij ω ij i ω hj u h j ω hi u h =, 1 Graduae School of Sciece ad Techology, Niigaa Uiversiy, Niigaa , Japa 1
2 2 where u i is he i-h compoe of he velociy. Moreover ω gives he velociy hrough he Bio-Savard law: 1.5 u j = k 1 ω kj. Ideed, sice u =, we see kω kj = u j j u = u j. We emphasize ha decay of ω as x is corolled by a iiial voriciy. Therefore a asympoic expasio of ω as x wih arbirary high-order ca be defied. This fac ogeher wih he Bio-Savard law derive a asympoic expasio for u wih high-order. Those idea firsly are esablished by Kukavica ad Reis [17], ad hey showed he followig esimae: For 2 q, m 2 ad µ < m1 1 q, x µ u j 2 α m = O 2 11 q 1 2 µ 2 α k 1 G y α ω kj,ydy L q as. This esimae gives he asympoic expasio of u as x wih arbirary high-order. However behavior of he coefficies R y α ω,xdx as is o clear, ad he lower boud of he decay rae as is o derived. Our goal is o clarify asympoic profiles of u as. Furhermore we derive he decay-rae of he soluio respec o boh he space ad he ime variables. From 1.4 ad 1.5, he voriciy saisfies ha 1.6 ω ij =G ω ij j Gs ω hi u h sds i Gs ω hj u h sds, where ω ij = i a j j a i. The op erm of he oliear erm as is vaishig sice ω hi u h s,ydy = h u i i u h u h s,ydy = ui u 1 2 i u 2 dy =. Applyig he Bio-Savard law o 1.6, we see ha 1.7 u j =G a j R k R j Gs ω hk u h sds k, Gs ω hj u h sds, where R k = k 1/2 is he Riesz rasform. The erm of he iiial velociy is represeed by G a j = R k 1/2 G ω kj. The velociy ofe is give by 1.8 u j = G a j h Gs P jk u h u k sds, k, where P jk is he Helmholz-Fujia-Kao projecio. Before cosiderig he behavior of he soluio, we cofirm ha his equaio ad 1.7 are equivale. Ideed, from he soleoidal codiio, he oliear erm of 1.8 is covered o he followig: h Gs P jk u h u k sds k, = = 1 2 k, k, R k R j Gs u h h u k ds R k R j Gs u h ω hk ds R k R j k Gs u 2 sds 1 2 Gs u h h u j ds Gs u h ω hj ds j Gs u 2 sds.
3 The las wo erms are caceled sice R k R j k ϕ = [ ] F 1 iξk iξ j ξ ξ iξ kˆϕ = F 1 [iξ jˆϕ] = j ϕ for ay suiable fucio ϕ. Throughou his paper we deoe he velociy by 1.7. The asympoic expasio of u as wih lower-order is give by U j;m = α R k 1/2 G y α ω kj ydy ad α =m1 U T j;m = 2l β =m 2l β =mk, l β G l β R k R j G s l y β ω hj u h s,ydyds s l y β ω hk u h s,ydyds 3 for 1 m. Namely, U m = U j;m j=1 ad UT m = U T j;m j=1 imply ha U m L q = 2 11 q m 2 U m 1 L q ad U T m L q = 2 11 q m 2 U T m 1 L q for 1 q ad >. Furhermore he followig esimae holds. Proposiio 1.1. Le 2, ω L 1 L ad x 1 ω L 1, ad a soluio u of 1.1 wih a j = R k 1/2 ω kj saisfy 1.2. The u Uk Uk T L = o q 2 11 q 2 as holds for 1 q. I addiio, if x 2 ω L 1, he u Uk Uk T L = O q 2 11 q log2 as. Proposiio 1.1 is a represeaio of he asserio i he precedig works via Carpio [5], ad Fujigaki ad Miyakawa [9]. I wo dimesioal case, he similar esimae is provided wihou he mome codiio o he iiial daa, ad he coefficies o he expasio are clarified see [21]. Moreover, i his precedig work, he similar esimaes o he Hardy space draw a spaial decay of he soluio. Here we choose he oher way o lead he spaial decay, i.e., we sudy he esimae wih he polyomial weigh. To his we iroduce he followig fucios for 1 m : Uj;m S = l β R k R j G s l y β ω hk u h s,ydyds. 2l β =mk, Behavior of he coefficies R s l y β ω hk u h s,ydyds as are o clear. However, for Um S = US j;m j=1, we see ha 1.9 U T m Um S L q C 2 11 q for 1 q see he seeces uder he proof of Proposiio 2.1 i Secio 2. Furhermore his fucio fulfills he followig weighed esimae.
4 4 Proposiio 1.2. Le 2, ω L 1 L ad x 2 ω L 1, ad a soluio u of 1.1 wih a j = R k 1/2 ω kj saisfy 1.2. The 1.1 x µ u Uk Uk S = O 2 11 q µ 2 log2 L q as holds for q = 1 ad µ 1, ad for 1 < q ad µ. Proposiio 1.2 provides behavior of he velociy as x. Ideed x µ U k Uk S L q may diverge o ifiiy for large µ ad small q for he deails of his argume, see [4]. The asserio 1.1 wih µ < 1 1 q 1 also provides he spaial profile of he velociy cf. [6]. However, o describe he far field asympoics, we should choose µ ad q such ha µ 1 1 q 1. Proposiios 1.1 ad 1.2 give he asympoic expasio wih -h order. The reormalizaio yields oe wih higher-order, ad his mehod requires asympoic behavior of ω. Here we give he asympoic expasio of ω of he Escobedo-Zuazua [7] ype. For 2 m 1, le 1.11 Ω hk;m = α =m α G 2l β =m1 j=1 2l β =m1 j=1 y α ω hk ydy l β k G l β h G s l y β ω jh u j s,ydyds s l y β ω jk u j s,ydyds ad Ω m = Ω hk;m h,, he we have ha Ω m L q = 2 11 q m 2 Ω m 1 L q for 1 q ad >. We defie he esor I p = I hk;p,x h, for 1 p 2 by p2 Ωhk;pi Uh;i U T h;i, 3 p 2, I hk;p = i=1, 1 p 2. The λ 2p I p λ 2,λx = I p,x for λ >, ad hus 1.12 x µ I p L q = 2 11 q 2 p 2 µ 2 x µ I p 1 L q for 1 q ad µ, ad 1.13 x β I p,xdx = 2 p 2 β 2 x β I p 1,xdx for β Z. The fucios I hk;p build a approximaio of ω hk u h see 2.9 ad 2.1. By usig I p, we iroduce some fucios for 1 m : α R k 1/2 G U j;m = y α ω kj ydy U T j;m = α =m1 2l β =m l β G I hj;m2 1s,y dyds, l β R k R j G 2l β =mk, s l y β ω hj u h s,y I hk;m2 1s,y dyds, m1 s l y β ω hk u h s,y I hj;p s,y m1 I hk;p s,y
5 K j;m = V j;m = 2l β =mk, 2l β =m m1 2l β =1 m1 Vj;m T = Ṽ j;m = Ṽ T j;m = 2l β =1 l β G l β R k R j G 2 2 m 2 l β 2 l β G m2l β 2 2 m 2 l β 2 m2l β 2l β =m2 l β G s l 1s 2 m 2 1 β 2 ds 1 l y β I hk;m2 1,ydy s l 1s 2 m 2 1 β 2 ds k, l β R k R j G 1 l y β I hj;m 1,ydy, 2l β =m2k, l β R k R j G 1 l y β I hj;m2 1,ydy, 1 l y β I hj;m2 1,ydy, s l 1s 2 m 2 β 1 l y β I hk;m 1,ydy, J j;m = R k R j Gs,xy k, I hk;m2 s,ydyds Gs,xy m 2l β = 1 l y β I hk;m2 1,ydy, 2 s 2 m 2 β 2 s l 1s 2 m 2 β m 2l β = ds 2 s 2 m 2 β 2 ds l β R k R j G,x s l y β l β G,x s l y I β hj;m2 s,ydyds Here Ṽj;m = Ṽ j;m T = for 1 m 2 sice I hj;m =. Thus hose wo fucios are defied oly i he case 3. Those fucios are well-defied i C, ;L 1 L ad saisfy ha U m L q = 2 11 q 2 m 2 U m 1 L q, U T m L q = 2 11 q 2 m 2 U T m 1 L q, J m L q = 2 11 q 2 m 2 J m 1 L q, V T m L q = 2 11 q 2 m 2 V T m 1 L q, 1.14 V m L q = 2 11 q 2 m 2 V m 1 L q for 1 q ad >, ad 1.15 Ṽ m L q Ṽ m T L q = O 2 11 q 2 m 2 ad 1.16 K m L q = O 2 11 q 2 m 2 log2 as for 1 q. We cofirm hem laer see he las seeces of Secio 2. Therefore large-ime behavior of hem are sraighforward. Our mai asserio is esablished i he followig heorem. Theorem 1.3. Le 2, 1 m, ω L 1 L, x m1 ω L 1 ad a soluio u of 1.1 wih a j = R k 1/2 ω kj saisfy 1.2. The u m = o 2 11 q 2 m 2 Uk Uk T m Kk V k Vk T J k m k=3 Ṽk ṼT k L q 5
6 6 as holds for 1 q. This heorem yields he asympoic expasio as of 2-h order. The form of our expasio is complicaed. Now we emphasize ha he decay-rae of ay erms o he expasio wih respec o boh he space ad he ime variables is clear. The reormalizaio applied as i [13] provides he asympoic expasio of plai form. However he large-ime behavior of he expasio obaied by his mehod is covered. Remark 1.4. Upo he codiio for he iiial velociy ha a L 1 L ad x m a L 1, we also derive a asympoic expasio of 2-h order. To describe far field asympoics, we defie he followig fucios for 1 m : U S j;m = 2l β =mk, ad U S m = US j;m j=1. The 1.17 l β R k R j G I hk;m2 1s,y dyds s l y β ω hk u h s,y U T m U S m L q C 2 11 q 2 m m1 I hk;p s,y for 1 q ad >. We cofirm 1.17 uder he proof of Proposiio 2.3 i Secio 2. We esablish he space-ime asympoics of he velociy wih high-order i he followig heorem. Theorem 1.5. Le 2, 1 m, ω L 1 L, x m1 ω L 1 ad a soluio u of 1.1 wih a j = R k 1/2 ω kj saisfy 1.2. The 1.18 x µ u m Uk Uk S m m Kk V k J k = o 2 11 q 2 m 2 µ 2 k=3 Ṽ k LqR as holds for q = 1 ad µ m1, ad for 1 < q ad µ m. Remark 1.6. Large-ime behavior of he coefficie of Uk S is o sraighforward bu is implied by 1.9 ad Remark 1.7. Upo he addiioal codiio x m2 ω L 1, he sharp esimae for 1.18 is give by O 2 11 q 2 m µ 2L m log2 as, where { 1, 1 m 1, 1.19 L m = log2, m =. The reormalizaio ogeher wih Theorem 1.5 gives a asympoic expasio wih 3-h order. By repeaig his procedure, we ca derive a asympoic expasio wih arbirary high order. However, largeime behavior of erms o hem should be complicaed. Noaios. For a vecor ad a esor, we abbreviae hem by usig a same leer, for example, a = a j j=1, b = b ij i,j=1. For x = x 1,...,x ad y = y 1,...,y, we deoe x y = j=1 x jy j, x 2 = x x. I a ewlie, a produc of scalars is described by -symbol. We symbolize ha = /, j = / x j 1 j, = 1,..., ad = j=1 2 j. The legh of a muli-idex α = α 1,...,α Z = N {} is give by α = α 1 α. We abbreviae ha = j=1 α j!, x α = j=1 xα j j ad α = j=1 α j j. We defie he Fourier rasform ad is iverse by ˆϕξ = F[ϕ]ξ = 2π /2 R ϕxe ix ξ dx ad ˇϕx = F 1 [ϕ]x = 2π /2 R ϕξe ix ξ dξ, respecively, where i = 1. For 1 q, L q deoes he Lebesgue space ad L q is is orm. Various cosas are simply deoed by C.
7 7 2. Prelimiaries To prove our asserios, some esimaes for he voriciy are required. Proposiio 2.1. Le ω L 1 L, x 2 ω L 1 ad a soluio u of 1.7 wih a j = R k 1/2 ω kj saisfy 1.2. The a soluio ω of 1.6 fulfills 2.1 ω L q C q 1 for 1 q. I addiio, le k Z ad x k ω L 1. The x k ω L q C 2 11 q 1 1k 2. for 1 q. Proof. The L p -L q esimae for 1.6 ogeher wih 1.2 gives ha ω L q C q. From R ω ij dy =, R y k ω ij dy = R y k i a j j a i dy = R δ kj a i δ ki a j dy = ad R ω hj u h dy = R h u j j u h u h dy = R u j udy =, 1.6 is represeed by ω ij = G,xy α G,xy ω α ij ydy 2.2 α 1 j Gs,xy j Gs,xω hi u h s,ydyds i Gs,xy i Gs,xω hj u h s,ydyds. From he mea value heorem, he firs ad he secod erms are covered o G,xy 1 ad = α 1 /2 α G,xy α ω ij ydy = α =2 j Gs,xy j Gs,xω hi u h s,ydyds R 1 y j Gs,xλyω hi u h s,ydλdyds R /2 j Gs,xy j Gs,xω hi u h s,ydyds, α G,xλy λy α ω ij ydλdy respecively. The hird erm also is covered o he similar form. Hece, by he Hausdorf-Youg iequaliy ad he decay of he Gauss kerel, ωij L q C 2 11 q 1 x 2 ω ij L C C /2 /2 s 2 11 q 1 x ω hi s L 1 x ω hj s L 1 u h s L ds s 1 2 For k 1, we see from 2.2 ha x k ω ij = 2.4 α =2 y x /2 ωhi s L q ωhj s L q y x /2 1 uh s L ds. G,xy α G,xy x α k ω ij ydy α 1 x k α G,xλy λy α ω ij ydλdy
8 8 β =1 β =1 y x /2 y x /2 j Gs,xy j Gs,x x k ω hi u h s,ydyds y x /2 1 x k β j Gs,xλyy β ω hi u h s,ydλdyds i Gs,xy i Gs,x x k ω hj u h s,ydyds y x /2 1 x k β i Gs,xλyy β ω hj u h s,ydλdyds. Applyig he mea value heorem o he firs erm wih k = 1, we have ha G,xy α G,xy x ω α ij ydy y x /2 α 1 L q C G L q x 2 ω L ij 1 C 2 11 q 1 2 x 2 ω L ij 1. For k 1, his erm fulfills ha G,xy α G,xy x α k ω ij ydy y x /2 α 1 L q C G L q x G L q x k ω ij L 1 C 2 11 q x k ω ij L 1. The secod erm of 2.4 saisfies ha 1 x k α G,xλy λy α ω ij ydλdy y x /2 L q C 2 11 q 1k 2 x 2 ω L ij 1. We remark ha, whe k = 1, his orm is esimaed by C 2 11 q By usig 1.2, we see for he hird ad he fourh erms of 2.4 ha j Gs,xy j Gs,x x k ω hi u h s,ydyds C C C y x /2 /2 /2 /2 s 2 11 q 1 2 x k ω hi u h s L 1 dsc s 2 11 q 1 21s x k ω hi s L 1 ds s 1 21s x k ω hi s L q ds /2 L q s 1 2 x k ω hi u h s L q ds ad C C y x /2 /2 /2 C 1 x k β j Gs,xλyy β ω hi u h s,ydλdyds s 2 11 q 1k 2 x ωhi u h s L 1 dsc s 2 11 q 1k 21s x ωhi s L 1 ds /2 s 1k 21s x ωhi s L q ds, /2 L q s 1k 2 x ωhi u h s L q ds
9 respecively. We rea he fifh ad he las erms of 2.4 by he similar argume, he we obai ha x k ω ij L q x C 2 11 q 1 1k 2 2 ω L ij 1 x k ω L ij 1 C 2 11 q 1k 2 x 2 ω L ij 1 /2 x C s 2 11 q 1 21s k ω hi s L 1 x k ω hj s L ds C C C /2 /2 /2 x s 1 21s k ω hi s L q x k ω hj s L ds q s 2 11 q 1k 21s s 1k 21s x ω hi s L 1 x ω hjs L 1 ds x ω hi s L q x ω hjs L q ds. Whe k = q = 1, sice he sigulariy of he secod erm a = is removable, he Grawall esimae says ha x ω L 1 for >, ad x ω ij L 1 C11 2 x ω ij L 1 x 2 ω L ij 1 i,j=1 C sup <σ< h,i,j=1 i,j=1 x ω hi σ L 1 x ω hjσ L 1 s 1 21s 2 1 2ds. Thus we coclude ha x ω L 1 C1 1 2 ad cofirm 2.1 from 2.3. We use his esimae io 2.5 wih k = 1 ad 1 q, he 2 11 q x ωij /2 L q C11 2 C 2 11 q s 2 11 q 1 21s 2 1 ds where i,j=1 A q,k = CA q,1 s 1 2 1s ds, /2 sup <σ< h,i=1 σ 2 11 q x k ω hi σ L. q Hece x ω L q C 2 11 q Similarly 2.5 wih his esimae leads ha x k ω L 1 C1 1k 2 for k 2. Applyig hose esimaes io 2.5 wih k 2 ad 1 q, we see ha 2 11 q x k ω ij /2 L q C11k 2 C 2 11 q s 2 11 q 1 21s k 2ds i,j=1 /2 C 2 11 q s 2 11 q 1k 21s 2 1 dsc 2 11 q s 1k 2s 2 11 q 1s 2 1 ds CA q,k /2 s 1 2 1s ds /2 9 ad he x k ω L q C 2 11 q 1 1k 2. Thisproposiioadhedecaypropery1.2 guaraeehaω m1, U m, U T m, US m adi m for1 m are well-defied. They also lead 1.9. Moreover, we see ha K m, V m, V T m, Ṽ m, Ṽ T m ad J m employed i our mai resuls also are well-defied. However J m eeds a special reame see he las seeces i his secio. We cofirm he Escobedo-Zuazua ype esimae for ω.
10 1 Proposiio 2.2. Le 1 q, 1 m, ω L 1 L q ad x m2 ω L 1. The m1 ω Ω p C 2 11 q m L m, L q where Ω p ad L m are defied by 1.11 ad 1.19, respecively. p=2 Proof. This proposiio is show by he same procedure as i [7]. Reader may skip his seece. Employig similar argume as i he proof of Proposiio 2.1, we see ha 2.6 m1 ω ij Ω ij;p p=2 = G,xy m1 α = j Gs,xy i Gs,xy α G y ω α ij ydy m 2l β = m 2l β = l β j G,x s l y ω β hi u h s,ydyds l β i G,x s l y ω β hj u h s,ydyds. The esimae for he firs erm is sraighforward. For N = max{l Z 2l m}1, he secod erm is covered o m l j Gs,xy β j G,x s l y ω β hi u h s,ydyds = = /2 m 2l= /2 /2 m /2 j Gs,xy 2l β = m 2l= l j G,xy l! j Gs,xy 1 l j G,xy s ω l hi u h s,ydyds l! m2l β = m 2l β =1 l β j G,x y s β l ω hi u h s,ydyds l β j G,x s l y ω β hi u h s,ydyds N jgλs,xy λ N1 s N ω hi u h s,ydλdyds N! /2 1 l β j G,xλy λ m2l s l y β ω hi u h s,ydλdyds 2l= β =m12l /2 j Gs,xy m 2l β =1 l β j G,x s l y ω β hi u h s,ydyds. Hece, by he Hausdorf-Youg iequaliy, 1.2 ad 2.1, we have ha m l j Gs,xy β j G,x s l y ω β hi u h s,ydyds C 2 11 q N1 2 /2 C 2 11 q m 2 1 m 2l= 2l β = s N ω hi u h s L 1 ds /2 L q s l y m12l ω hi u h s L 1 dsc s 1 2 ωhi u h s L q ds /2
11 C m 2l β =1 C 2 11 q N1 2 C / q l β /2 /2 s l y β ω hi u h s L 1 ds /2 1s N dsc 2 11 q m 2 1 1s 2 1m 2 ds s 1 2s 2 11 q m 2 1 dsc m 2l β = q l β /2 s l β 2 ds 11 C 2 11 q m 2 1 L m. Similar reame provides he esimae for he las erm o 2.6. Now we see ha 2.7 I m,xdx = for 3 m 2 ad >. Ideed, for m = 3, if we assume R I hj;3,xdx for some 1 h,j, he ω hj u h I hj;3,xdx = I hj;3,xdx = I hj;3 1,xdx. O he oher had 1.2 ad Proposiios 1.1, 2.1 ad 2.2 say ha ω hj u h I hj;3,xdx ωhj u h I hj;3 L = o as. They are coradicory. Iducively, if R I hj;m,xdx, he m ω hk u h I hj;p,xdx = I hj;m,xdx = 2 m 2 I hj;m 1,xdx. However ω hk u h m I hj;p,xdx ω hk u h m I hj;p L 1 = o 2 m 2 as. Therefore I hj;m,xdx = for ay 1 h,j. We prepare he followig weighed esimae. Proposiio 2.3. Le 1 m, 1 x m1 ω L 1, 1 q ad µ m1. The m1 ω x µ Ω p C 2 11 q m µ 2 1 m µ L m, p=2 L q where Ω p ad L m are defied by 1.11 ad 1.19, respecively. Proof. Proposiio 2.1 ad he defiiio of Ω p immediaely gives m1 ω x µ Ω p C 2 11 q 1µ 2 1 m µ 2 p=2 L q We firsly choose µ = m1. We rea he righ had side of 2.6. The firs erm is separaed o m1 α G G,xy y ω α ij ydy α = = G,xy y x /2 α =m2 y x /2 1 m1 α = α G,xy α ω ij ydy α G,xλy λ m1 y α ω ij ydλdy..
12 12 The x m1 m1 G,xy α = α G y ω α ij ydy L q G m1 C L q x m1 ω L ij 1 x α α G L q x m1 α x α ω L ij 1 C α =m2 α = x m1 α G L x α ω L q ij 1 C 2 11 q For he secod erm of 2.6, we spli he domai, o 2.8 Q 1 =,/2] {y y > x /2}, Q 2 =, {y y x /2}, Q 3 = /2, {y y > x /2}, Q 4 = Q 2, Q 5 = Q 1 Q 3. The where ρ k = j Gs,xy Q k m 2l= m 2l β = j Gs,xy Q k The Taylor heorem leads ha /2 ρ 1 = ad ρ 2 = l β j G,x s l y ω β hi u h s,ydyds = ρ 1 ρ 5, m 2l= m2l l j G,xy l! y > x /2 y x /2 1 1 l j G,xy s ω l hi u h s,ydyds, k = 1,2,3, l! β = l β j G,x y s β l ω hi u h s,ydyds, k = 4,5. N jgλs,xy λ N1 s N ω hi u h s,ydλdyds N! N jgλs,xy λ N1 s N ω hi u h s,ydλdyds N! for N = max{l Z 2l m}1. Hece, from 1.2 ad Proposiio 2.1, ad x m1 ρ 1 /2 L q C s 2 11 q N1 2s N x m1 ω hi u h s L 1 ds C /2 s 2 11 q N1 2s N 1s 1m 2 ds C 2 11 q 1 2 m 2 x m1 ρ 2 /2 L q C s 2 11 q N 2 m 2 s N ω hi u h s L 1 ds C C /2 /2 C s N 2 m 2 s N ω hi u h s L q ds s 2 11 q N 2 m 2 s N 1s ds /2 s N 2 m 2 s N 1s 2 11 q 2 3 2ds C 2 11 q m 2 L m.
13 By 1.2 ad Proposiio 2.1, we have ha x m1 ρ 3 L q C Sice we obai ha C C /2 s 1 2 m 2l= /2 y m1 ω hi u h s L q ds 2 11 q l1 2 /2 s 1 2s 2 11 q 1s 1m 2 dsc s l y m1 ω hi u h s L 1 ds m 2l= C 2 11 q m 2 C 2 11 q x m1 ρ 4 = The las erm fulfills ha m 2l= β =m2l1 y x /2 1 λ m2l s l y β ω hi u h s,ydλdyds, x m1 ρ 4 L q C 2 11 q x m1 ρ 5 m L q C C 2l= m 2l= 2 11 q l1 2 /2 x m1 l β j G,xλy C 2 11 q 1 2 2L m. s l 1s 2 1lm 2 ds 2 11 q 1 2 l s l y m1 ω hi u h s L 1 ds 13 s l 1s 1m 2 ds m 2 11 q 1 2 l s l 1s 1m 2 ds C 2 11 q l= The las erm of 2.6 is reaed by he similar esimaes. Therefore we ge he desired esimae wih µ = m1. The couplig of his ad Proposiio 2.2 complees he proof. Proposiio 2.3 ever give far field asympoics of ω sice x µ Ω p L q is iegrable for ay large µ. This proposiio is prepared o prove our mai asserios. The above iequaliies lead for 1 m ad 1 q ha m2 ω L m hku h I hk;p ω hk L q uh U h;i Uh;i T L q 2.9 C 2 11 q 2 m 2 m ωhk i=1 m2i p=2 i=1 Ω L hk;p Uh;i U T q h;i C 2 11 q 2 m L m. L Upo he codiio x m1 ω L 1, we have for µ m1 ha m2 L ω x µ hk u h I hk;p x µ m ω L hk q u h h;i Uh;i q i=1u T L m m2i x µ ω hk Ω L hk;p Uh;i U T h;i L i=1 p=2 q 1µ 2 1 1µ L m.
14 14 We relieve he sigulariy a = by usig he Mikowski iequaliy ogeher wih 1.2, Proposiio 2.1 ad 1.13, he 2.1 Sice ω x µ hk u h m2 I hk;p L q C 2 11 q 2 m 2 1µ L m. m1 m2 ω hk u h I hk;p I hk;m2 1 = ω hk u h I hk;p 1 I hk;m2 λdλ, I hk;p,x = p 2 1 I hk;p 1, 1 2x, ad I hk;p 1,x L q for 1 q, we see ha m1 ω x µ hk u h I hk;p I hk;m2 1 C 2 11 q 2 m µ m µ 2 L q 1 1 L m. Those iequaliies play impora role i he proof of our asserios. Moreover hey guaraee ha U m, Um T ad Um S for 1 m are well-defied i L 1 L, ad 1.17 holds. We show ha J m is well-defied. Ideed, by he similar calculus as i he proof of Proposiio 2.2, he firs erm of J m is represeed by /2 = m R k R j Gs,xy 1 2l= β =m12l 1 /2 m 2l β =1 m 2l β = l β R k R j G,x s l y I β hk;m2 s,ydyds N R k R j Gλs,xy λ N1 s N I hk;m2 s,ydλdyds N! /2 1 l β R k R j G,xλy λ m2l s l y β I hk;m2 s,ydλdyds R k R j Gs,xλy yi hk;m2 s,ydλdyds l β R k R j G,x /2 s l y β I hk;m2 s,ydyds, where N = max{l Z 2l m}1. Here we used 2.7. Hece, by 1.12, we see for 1 q ha m l R k R j Gs,xy β R k R j G,x s l y I β hk;m2 s,ydyds C C /2 /2 2l β = s 2 11 q N s 2 m 2 1N dsc 2 11 q 2 m s 1 2 s 2 11 q 2 m 2 1 2dsC m 2l β = q l β 2 /2 /2 s 1 2ds s 2 m 2 1l β 2 ds. L q The righ had side is iegrable for ay fixed >. The secod erm of J m is reaed i he similar way. Therefore J m also is well-defied i L 1 L. The decay properies 1.14 are comig from he scalig propery of hose fucios. The esimaes 1.15 ad 1.16 are sraighforward. 3. Proof of mai resuls I his secio, we firsly prove Theorem 1.5. This proof also show Proposiio , ad 3.3 wih m = immediaely gives his proposiio.
15 Proof of Theorem 1.5. Firsly, we derive he asympoic expasio. Sice ω hk u h dx =, u deoed by 1.7 is expaded o where r, = r 1, = r 2, = r 3, = u j = U j;m Uj;m S r,r 1, r 2, r 3,, m=1 R k 1/2 G ω kj k, 2l β =1 1 α = R k R j Gs,xy ω hk u h s,ydyds, Gs,xy l β G 2l β = α R k 1/2 G 2l β = y α ω kj ydy, l β R k R j G,x s l y β l β G,x s l y ω β hj u h s,ydyds, s l y β ω hj u h s,ydyds. Moreover, from 1.13, r,,...,r 3, are spli o r, = r 1, = α =2 k, U S j;1 r 1,1, r 2, = α R k 1/2 G R k R j Gs,xy 2l β =1k, 2l β =1 2l β =1 r 2,1, l r 3, = β G 2l β =1 Gs,xy l β G,x l β G,x =V j;1 r 3,1, l β R k R j G,x y α ω kj ydy r,1, 1 2l β = 1 2l β = l β R k R j G,x s l y I β hk;3 s,ydyds s l 1s β 2 ds 1 l y β I hk;3 1,ydy l β G,x s l y I β hj;3 s,ydyds s l y β ω hj u h s,yi hj;3 1s,ydyds s l 1s β 2 ds 1 l y β I hj;3 1,ydy s l y β I hj;3 s,ydydsr 3,1 where r,1 = R k 1/2 G ω kj 2 α = α R k 1/2 G y α ω kj ydy,
16 16 r 1,1 = r 2,1 = r 3,1 = Therefore k, 2l β =1 2l β =1 R k R j Gs,xy 1 2l β = l β R k R j G,x s l y β ω hk u h I hk;3 s,ydyds, 1 l Gs,xy β G,x s l y ω β hj u h I hj;3 s,ydyds l β G l β G,x 2l β = s l y β ω hj u h s,yi hj;3 1s,ydyds, s l y β ω hj u h I hj;3 s,ydyds. r, r 3, = K j;1 U j;1 U S j;1 V j;1 J j;1 r,1 r 3,1. We repea his procedure, he r 1,1 = 2l β =2k, Uj;2 S r 2,1 = where k, r 1,2, 2l β =2 2l β =2 2l β =1 r 1,2 = r 2,2 = l β R k R j G R k R j Gs,xy l β G l β G s l 1s 2 2 β 2 ds 1 l y β I hk;4 1,ydy 2 2l β = s l 1s 2 2 β 2 ds I hj;4 1s,y dyds Gs,xy l β G k, 2l β =2 2 2l β = l β R k R j G,x s l y I β hk;4 s,ydyds 1 l y β I hj;4 1,ydy s l y β ω hj u h s,yi hj;3 s,y l β G,x s l y β hj;4 s,ydyds I 1 l y β I hj;4 1,ydy r 2,2, R k R j Gs,xy 2 2l β = l β R k R j G,x s l y β ω hk u h I hk;3 I hk;4 s,ydyds, l β G s l y β ω hj u h s,yi hj;3 s,y I hj;4 1s,y dyds
17 Gs,xy 2 2l β = ω hj u h I hj;3 I hj;4 s,ydyds 2l β =1 2l β =1 l β G l β G l β G,x s l y β s l y β ω hj u h I hj;3 I hj;4 s,ydyds s l 1s β 1 l y β I hj;3 1,ydy. 2 s β 2 ds 17 For he las erm, 1.13 leads ha r 3,1 = 2l β = l β 2 l β G 22l β 1 l y β I hj;4 1,ydy r 3,2, where r 3,2 = 2l β =1 l β G s l y β ω hj u h I hj;3 I hj;4 s,ydyds. Therefore r,1 r 3,1 =K j;2 U j;2 U S j;2 V j;2 J j;2 r,2 r 3,2. We expad he firs erm of r 2,2, he, from 1.13, = = 2l β =2 2l β =2 2l β =2 2l β =2 2l β =2 2l β =2 2l β =2 l β G l β G l β G l β G l β G l β G l β G s l y β ω hj u h s,yi hj;3 s,yi hj;4 1s,y dyds s l y β I hj;5 s,ydyds s l y β I hj;4 1s,yI hj;4 s,y dyds s l y β ω hj u h 5 I hj;p s,ydyds 1 l y β I hj;5 1,ydy s l 1s 2 2 β 2 s 2 2 β 2 s l y β ω hj u h ds 5 I hj;p s,ydyds. 1 l y β I hj;4 1,ydy
18 18 For he secod erm of r 2,2, we see 2 Gs,xy = = 2l β =3 2l β =3 2l β =3 2l β =3 l β G Gs,xy l β G l β G Gs,xy Gs,xy l β G For he hird erm of r 2,2, 2l β =1 = 2l β =1 2l β =1 2l β =2 2l β = l β G,x s l y β 3 2l β = ω hj u h ω hj u h 4 I hj;p s,ydyds 4 I hj;p s,ydyds l β G,x s l y β ω hj u h s l 1s β 2 ds l β G 3 2l β = 3 2l β = s l y β 4 I hj;p s,ydyds 1 l y β I hj;5 1,ydy ω hj u h s,y 4 l β G,x s l y β hj;5 s,ydyds I I hj;p s,yi hj;5 1s,y dyds l β G,x 5 s l y β ω hj u h I hj;p s,ydyds 4 s l y β ω hj u h s,y I hj;p s,yi hj;5 1s,y dyds. 1 l β G l β G s l y β ω hj u h 4 I hj;p s,ydyds 1 l y β I hj;5 1,ydy s l y β ω hj u h The las erm of r 2,2 is Ṽj;3. Hece l r 2,2 = β G 1 l y β I hj;5 1,ydy 2l β =3 2l β =3 2l β =1 l β G l β G Gs,xy 1 l β G s l 1s β 2 ds 3 2l β = s l y β 5 I hj;p s,ydyds. 1 l y β I hj;5 1,ydy ω hj u h s,y 4 l β G,x s l y β hj;5 s,ydyds I 1 l y β I hj;5 1,ydy Ṽ j;3 r 2,3, I hj;p s,yi hj;5 1s,y dyds
19 19 where r 2,3 = Similarly, 2 2l β =1 2l β =2 r 1,2 = 2l β =3 l β G Gs,xy l β G l β G 2l β =3k, k, r 1,3, s l y β ω hj u h s,y 4 I hj;p s,y I hj;5 1s,y s,ydyds 3 l β G,x 5 s l y β ω hj u h I hj;p s,ydyds 2l β = 5 s l y β ω hj u h I hj;p s,ydyds s l 1s 2 2 β 2 s 2 2 β 2 ds 1 l y β I hj;4 1,ydy. l β R k R j G R k R j Gs,xy s l 1s β 2 ds 1 l y β I hk;5 1,ydy Uj;3 S 3 2l β = l β R k R j G,x s l y I β hk;5 s,ydyds where r 1,3 = k, ω hk u h R k R j Gs,xy 5 I hk;p s,ydyds. 3 2l β = l β R k R j G,x s l y β A las, from 1.13, r 3,2 = 2l β = l β 2 l β G 32l β 1 l y β I hj,5 1,ydy r 3,3, where r 3,3 = 2l β =1 l β G s l y β ω hj u h 5 I hj,p s,ydyds. Thus r,2 r 3,2 =K j;3 U j;3 U S j;3 V j;3 J j;3 Ṽj;3 r,3 r 3,3. Geerally, for 1 m, le r,m = m1 R k 1/2 G ω kj α = α R k 1/2 G y α ω kj ydy,
20 2 r 1,m = r 2,m = r 3,m = k, 2l β =m R k R j Gs,xy m 2l β = m2 ω hk u h I hk;p s,ydyds, l β G s l y β ω hj u h s,y 2l β = l β R k R j G,x s l y β m1 I hj;m2 1s,y dyds m l Gs,xy β G,x s l y β ω hj u h m1 2l β =1 2l β =m1 2l β =1 m2 l β G I hj;p s,ydyds l β G s l y β 1 l y β I hj;m1 1,ydy, l β G I hj;p s,y m2 ω hj u h I hj;p s,ydyds s l 1s 2 m β 2 s 2 m β 2 ds s l y β m2 ω hj u h I hj;p s,ydyds, he, for 1 m 1, 3.2 r,m r 3,m =K j;m1 U j;m1 U S j;m1 V j;m1 J j;3 Ṽj;m1 r,m1 r 3,m1. We already cofirmed i for m = 1 ad 2. Iducively, for 3 m 1, we expad r 2,m, he, for he firs ad he secod erms, we see from 1.13 ha = = 2l β =m l β G s l y β ω hj u h s,y m1 I hj;p s,y I hj;m2 1s,y dyds l β G s l y β I hj;m3 s,ydyds l β G s l y β I hj;m2 1s,yI hj;m2 s,ydyds 2l β =m 2l β =m 2l β =m 2l β =m l β G l β G s l y β m3 ω hj u h I hj;p s,ydyds 1 l y β I hj;m3 1,ydy
21 ad = 2l β =m 2l β =m 2l β =m1 2l β =m1 2l β =m1 l β G l β G Gs,xy l β G l β G s l 1s 2 m 2 1 β 2 s 2 m 2 1 β 2 ds m 2l β = s l y β m3 ω hj u h I hj;p s,ydyds l β G,x s l y β ω hj u h s l 1s 2 m β 2 ds I hj;m3 1s,y dyds m1 Gs,xy 2l β = m1 Gs,xy l β G 2l β = I hj;m3 1s,y dyds. s l y β ω hj u h s,y I hj;m2 1,ydy m2 I hj;p s,ydyds 1 l y β I hj;m3 1,ydy m2 I hj;p s,y l β G,x s l y β hj;m3 s,ydyds I l β G,x s l y β ω hj u h s l y β ω hj u h s,y m2 m3 I hj;p s,y I hj;p s,ydyds 21 For he hird erm of r 2,m, we have ha = = m1 2l β =1 m1 2l β =1 m1 2l β =1 m1 2l β =1 m1 2l β =1 l β G l β G l β G s l y β 2 2 m l β 2 l β G m12l β l β G m2 ω hj u h I hj;p s,ydyds s l y β I hj;m3 s,ydyds m3 s l y β ω hj u h I hj;p s,ydyds j 1 l y β I hj;m3 1,ydy m3 s l y β ω hj u h I hj;p s,ydyds. The las erm of r 2,m is Ṽj;m1. The oher erms r 1,m ad r 3,m are expaded as r 1,m = 2l β =m1k, U S j;m1 l β R k R j G j s l 1s 2 m β 2 ds 1 l y β I hk;m3 1,ydy
22 22 k, r 1,m1 m1 R k R j Gs,xy 2l β = l β R k R j G,x s l y I β hk;m3 s,ydyds ad r 3,m = 2l β =1 2 2 m l β 2 l β G m12l β 1 l y β I hj;m3 1,ydy r 3,m1, respecively. Hece we coclude 3.2 ad u j = m Uj,k Uj,k m S K j,k V j,k J j,k r,m r 3,m m Ṽ j,k k=3 for 1 m. Nex, we show ha 3.3 x µ r,m L q x µ r 3,m L q = o 2 11 q 2 m 2 µ 2 as for q = 1 ad µ m1, ad for 1 < q ad µ m. For some posiive fucio R = R wih R = o 1/2 as, r,m is spli as r,m = Thus α =m2 α =m1 α =m1 α =2 m1 α =2 y x /2 x µ r,m L 1 CR y mi x /2,R 1 R< y x /2 1 α R k 1/2 G,x 1 α R k 1/2 G C C α R k 1/2 G,xλy λ m1 y α ω kj ydλdy α R k 1/2 G,xλy λ m y α ω kj ydλdy R< y x /2 y α ω kj ydy α R k 1/2 G,xλy λy α ω kj ydλdy α =m2 α =m1 m1 α =2 y x /2 y α ω kj ydy. x µ α R k 1/2 G L x m1 ω L 1 kj 1 x µ α R k 1/2 G L 1 y >R y α ω kj y dy x α 2 α R k 1/2 G L x µ2 α x α ω L 1 kj 1
23 23 for µ m1. Similarly, sice r,m = α =m2 α =m1 α =m1 α =1 m1 α =1 y x /2 y mi x /2,R 1 R< y x /2 1 α R k 1/2 G 1 α R k 1/2 G we have for 1 < q ad µ m ha x µ r,m L q CR C C α R k 1/2 G,xλy λ m1 y α ω kj ydλdy α R k 1/2 G,xλy λ m y α ω kj ydλdy R< y x /2 y α ω kj ydy α R k 1/2 G,xλy y α ω kj ydλdy α =m2 α =m1 m1 α =1 y x /2 y α ω kj ydy, x µ α R k 1/2 G L q x m1 ω L kj 1 x µ α R k 1/2 G L q y >R y m1 ω kj y dy x α 1 α R k 1/2 G L q x µ1 α x α ω L kj 1. Therefore x µ r,m L q = o 2 11 q 2 m 2 µ 2 as for q = 1 ad µ m1, ad for 1 < q ad µ m. Nex we derive 3.3 for r 1,m,...,r 3,m. We show his for large µ for a sar. We employ Q 1,...,Q 5 defied by 2.8, he r 1,m = r 1,1,m r 1,5,m, where r 1,i,m = k, m Q i 2l= k, m R k R j Gs,xy Le N = max{l Z 2l m}1, he r 1,1,m = k, Q i ω hk u h 2l= m2 l R k R j G,xy l! /2 lr kr j G,xy s l l! I hk;p s,ydyds, i = 1,2,3, m2l β = m2 l β R k R j G,x y β s ω l hk u h I hk;p s,ydyds, i = 4,5. y x /2 1 N R k R j Gλs,xy λ N1 N! m2 s ω N hk u h I hk;p s,ydλdyds.
24 24 Thus, by 2.1, C C Similarly, x µ r 1,1,m L q k, /2 1 /2 1 N R k R j Gλs L q λn1 s N x ω µ hk u h m2 λs 2 11 q N λ N1 s 2 m 2 1µ 2 N 1s 1 2 Lm sdλds C 2 11 q 2 m µ 2L m. r 1,2,m = k, y x /2 1 NR kr j Gλs,xy λ N1 N! m2 s ω N hk u h I hk;p s,ydλdyds. Sice 2N 4 < µ < 2N whe q = 1 ad m2 < µ m1, x µ r 1,2,m L 1 C C k, 1 1 x µ N R kr j Gλs L 1 λn1 s ω N hk u h m2 I hk;p s L 1 R dλds I hk;p s L 1 R dλds λs Nµ 2λ N1 s 2 m 2 1N 1s 1 2L m sdλds C 2 m µ 2L m. Here we remark ha, sice N µ 2 > 2, λsnµ 2 is iegrable i s,λ,,1. Ideed, for a > 2, Whe a 1, /2 1 λs a dλds = 1a 1 1/2 1 1λs a dλds. 1 1/2 1 The las erm saisfies 1 1/2 Whe a = 1, 1 1/2 1 1λs a dλds = 1 1 s 1s1a ds 2 1λs 1 dλds = 1 1/2 1 1/2 1 s = 1 1a 1/2 1 1s log2 λ a dλds = 1 1a 1 1/2 1 1/2 1 s 1s1a ds 1 11s 1a ds s. 1s 1a ds = 2 [ 1s 2a ] 1 2a 1/2 = a 2 2a. 1 1 dλ 1 s 1s λ ds = 1/2 log1s 1 ds 2 log1sds = log21. s 1/2
25 For 1 < q, we choose some q 1 ad q 2 wih 1 1 q = 1 q 1 1 q 2 ad 1 < q 1 < 1, he for m1 µ m, we see ha x µ r 1,2,m L q /2 1 C x µ N R kr j Gλs m2 L q λn1 s ω N hk u h I hk;p s L 1 R dλds C k, C k, /2 /2 1 C 1 /2 1 x µ N R k R j Gλs L q 1 λn1 s ω N hk u h λs 2 11 q Nµ 2λ N1 s 2 m 2 1N 1s 1 2 Lm sdλds m2 λs q 1 N µ 2 λ N1 s q 2 2 m 2 1N 1s 1 2 Lm sdλds C 2 11 q 2 m µ 2L m. I hk;p s L q 2R dλds Here we ca choose q 1 such ha q 1 N µ 2 > 2, hus λs q 1 N µ 2 is iegrable i s,λ /2,,1. Moreover r 1,3,m = k, /2 y > x /2 1 m R k R j Gλs,xydλs m2 ω hk u h I hk;p s,ydyds. 2l=2 R l k R j G,xy s l l! 25 Hece x µ r 1,3,m L 1 C C /2 /2 s s 1 m R k R j Gλs L 1 dλ ω x µ hk u h 1 λs 1 dλ m2 2l=2 2l=2 I hk;p s L 1 R ds s l l R k R j G L 1 s l s l 2 m 2 1µ 21s 1 2L m sds = o 2 m 2 µ 2 as. For 1 < q, we choose q 1 ad q 2 such ha 1 1 q = 1 q 1 1 q 2 ad 1 2 < 1 q 1 < 1, he x µ r 1,3,m L q C /2 m C l R kr j G L q 2l= C /2 R k R j Gs L q 1 ω x µ hk u h /2 m2 m2 s l x ω µ hk u h I hk;p s L 1 R ds s q 1 s q 2 2 m 2 1µ 2 1s 1 2L m sds m 2l= 2 11 q l /2 C 2 11 q 2 m 2 µ L m. s 2 m 2 1lµ 21s 1 2L m sds I hk;p s L q 2R ds
26 26 From he Taylor heorem, Hece m r 1,4,m = 2l= β =m2l1k, x µ r 1,4,m m L q C y x /2 1 l β R k R j G,xλy m2 s l y ω β hk u h I hk;p s,ydλdyds. 2l= β =m2l1k, x µ l β R k R j G L q m2 s l y ω β hk u h I hk;p s L 1 R ds C 2 11 q 2 m µ 2 s 1 2 1s 1 2 Lm sds C 2 11 q 2 m µ 2L m log2. The las erm of r 1,m is represeed for l 1 = 1 ad 2 ha 3.4 r 1,5,m = m k, y > x /2 β =l 1 1 m2 ω hk u h I hk;p s,ydyds 2l=2 k, y > x /2 β R k R j G,xλy β! l R k R j G,xy m2 s ω l hk u h I hk;p s,ydyds. l! m2l β = y β λ l1 dλ m β R k R j G,x β! β =l 1 l β R k R j G,x y β y β We employ 3.4 wih l 1 = 1 for he case 1 < q ad m1 < µ m, he x µ r 1,5,m L q C C m β =1k, m 2l=2 m2l β = C 2 11 q 1 2 C m 2l=2 x β 1 β R k R j G L q ω x µ1 hk u h k, 2 11 q l m2 x β l β R k R j G L q sl x ω µ hk u h s 2 m µ 21s 1 2L m sds I hk;p s L 1 R ds m2 s 2 m 2 1lµ 2 1s 1 2 Lm sds = o 2 11 q 2 m 2 µ 2 I hk;p s L 1 R ds
27 27 as. For m2 < µ m1, we use 3.4 wih l 1 = 2, he x µ r 1,5,m L 1 C C m β =2k, m 2l=2 m2l β = x β 2 β R k R j G L 1 ω x µ2 hk u h k, C 1 s 2 m 2 µ 21s 1 2L m sdsc = o 2 m 2 µ 2 m2 x β l β R k R j G L 1 sl x ω µ hk u h m 2l=2 I hk;p s L 1 R ds m2 I hk;p s L 1 R ds l s 2 m 2 1lµ 21s 1 2L m sds as. We esimae he secod erm of r 2,m by he same way. The reame for he oher erms of r 2,m ad r 3,m is sraighforward. A he las we show 3.3 wih µ =. The esimae for r,m is already derived, ad 2.1 reas r 3,m. For N = max{l Z 2l m}1, r 1,m = k, m /2 1 2l= β =m2l1k, /2 m 2l β =1 N m2 R k R j Gλs,xy λ N1 dλs ω N hk u h I hk;p s,ydyds N! /2 l β R k R j G,xλy m2 s l y ω β hk u h I hk;p s,ydyds 1 y R k R j Gs,xλydλ ω hk u h l β R k R j G,x /2 s l y β λ m2l dλ m2 I hk;p s,ydyds m2 ω hk u h I hk;p s,ydyds. Hece r 1,m /2 L q C s 2 11 q N s 2 m 2 1N 1s 1 2L m sds C 2 11 q 2 m C C /2 m 2l β =1 /2 s 1 2 1s 1 2 Lm sds s 1 2 s 2 11 q 2 m s 1 2 Lm sds 2 11 q l β 2 /2 C 2 11 q 2 m 2 1 2L m log2 s 2 m 2 1l β 2 1s 1 2L m sds
28 28 for 1 q. We apply he similar esimae o he secod erm of r 2,m, he 2.1 gives ha r 2,m L q R C 2 11 q 2 m 2 C m1 2l β =1 C 2 11 q 2 m s 1 21s 1 L m sdsc 2 11 q 2 m 2 1 2L m log q l β 2 2l β =m1 C 2 11 q 2 m 2 1 2L m log2 s 2 m 2 1l β 2 1s 1 2 Lm sds s l 1s 2 m β 2 s 2 m β 2 ds for 1 q. Therefore we obai 3.3 wih µ =. The Hölder iequaliy complees he proof. Nex, we show Theorem 1.3. Proof of Theorem 1.3. From 3.1, we expad u as u j = Uj;m Uj;m T r, r 1, r 2, r 3, r 4,, m=1 where r,,...,r 3, are defied as i he proof of Theorem 1.5, ad r 4, = U S j;m Uj;m T l = β R k R j G m=1 2l β =1k, Moreover, we expad r 1, ad r 4,, he, from 1.13, r 1, = k, Uj;1 T k,2l β =1 R k R j Gs,xy l β R k R j G,x r 1,1 r1,1 T, l r 4, = β R k R j G where 2l β =1k, r1,1 T = US j;1 UT j;1 l = β R k R j G,x r 4,1 = 2l β =1k, 2l β =1k, l β R k R j G 1 2l β = s l y β ω hk u h s,ydyds. l β R k R j G,x s l y I β hk;3 s,ydyds s l 1s β 2 ds 1 l y β I hk;3 1,ydy s l y β I hk;3 s,ydydsr 4,1, s l y β ω hk u h s,yi hk;3 1s,ydyds, s l y β ω hk u h s,yi hk;3 s,ydyds. The oher erms r,,r 2, ad r 3, are reaed as i he proof of Theorem 1.5, hece we see for 1 m ha 3.5 u j = m Uj,k U T j,k m Kj,k V j,k V T j,k J j,k m r,m r 1,m r T 1,m r 2,mr 3,m r 4,m, k=3 Ṽ T j,k
29 29 where r T 1,m =U S j;mu T j;m r 4,m = m1 2l β =1k, 2l β =m1k, 2l β =1k, l β R k R j G l β R k R j G 1 l y β I hk;m1 1,ydy, l β R k R j G s l y β m2 ω hk u h I hk;p s,ydyds s l 1s 2 m β 2 s 2 m β 2 ds s l y β Ideed, for 1 m 1, he firs erm of r1,m T is spli o Uj;m S UT j;m l = β R k R j G = 2l β =mk, s l y β ω hk u h s,y m2 ω hk u h I hk;p s,ydyds. m1 I hk;m2 1s,y dyds l β R k R j G 1 l y β I hk;m3 1,ydy 2l β =mk, 2l β =mk, 2l β =mk, l β R k R j G l β R k R j G We spli he secod erm of r T 1,m, he = m1 2l β =1k, m1 2l β =1k, m1 2l β =1k, I hk;p s,y s l 1s 2 m 2 1 β 2 s 2 m 2 1 β 2 ds I hk;m2 1,ydy l β R k R j G s l y β s l y β m3 ω hk u h I hk;p s,ydyds. m2 ω hk u h I hk;p s,ydyds 2 2 m l β 2 l β R k R j G 1 l y β I hk;m3 1,ydy m12l β l β R k R j G The las erm of r1,m T is Ṽ j;m1 T. Moreover, from 1.13, r 4,m = 2l β =1k, r 4,m1. m3 s l y β ω hk u h I hk;p s,ydyds. 2 2 m l β 2 l β R k R j G m12l β j 1 l y β I hk;m3 1,ydy The oher erms are reaed i he similar way as i he proof of Theorem 1.5. Thus r,m r T 1,m r 1,m r 4,m =K j;m1 U j;m1 U T j;m1 V j;m1 V T j;m1 ṼT j;m1 J j;m1 r,m1 r T 1,m1 r 1,m1 r 4,m1
30 3 for 1 m 1, ad 3.5 holds. Similar esimaes for r 2,m ad r 3,m as i he proof of Theorem 1.5 provide ha r T 1,m L q r4,m L q = o 2 11 q 2 m 2 as for 1 q. We already reaed he oher erms r,m,...,r 3,m i he proof of Theorem 1.5. Therefore we complee he proof. Refereces [1] Amrouche, C., Giraul, V., Schobek, M.E., Poiwise decay of soluios ad of higher derivaives o Navier-Sokes equaios, SIAM J. Mah. Aal. 31 2, [2] Bradolese, L., Space-ime decay of Navier-Sokes flows ivaria uder roaios, Mah. A , [3] Bradolese, L., Vigero, F., New asympoic profiles of osaioary soluios of he Navier-Sokes sysem, J. Mah. Pures Appl , [4] Bradolese, L., Karch, G., Far field asympoics of soluios o covecio equaio wih aomalous diffusio, J. Evol. Equ. 8 28, [5] Carpio, A., Large-ime behavior i icompressible Navier-Sokes equaio, SIAM J. Mah. Aal , [6] Choe, H.J, Ji, B.J., Weighed esimae of he asympoic profiles of he Navier-Sokes flow i, J. Mah. Aal. Appl , [7] Escobedo, M., Zuazua, E., Large ime behavior for covecio-diffusio equaio i, J. Fuc. Aal., , doi:1.116/ e [8] Farwig, R., Kozoo, H., Sohr, H., Crieria of local i ime regulariy of he Navier-Sokes equaios beyod Serri s codiio, Parabolic ad Navier-Sokes equaios, Par 1, , Baach Ceer Publ., 81, Par1, Polish Acad. Sci. Is. Mah., Warsaw, 28. [9] Fujigaki, Y., Miyakawa, T., Asympoic profiles of osaioary icompressible Navier-Sokes flows i he whole space, SIAM J. Mah. Aal , [1] Fujia, H., Kao, T., O he Navier-Sokes iiial value problem. I., Arch. Raioal Mech. Aal , [11] Giga, Y., Miyakawa, T., Navier-Sokes flow i R 3 wih measures as iiial voriciy ad Morrey spaces, Comm. Parial Differeial Equaios , [12] Giga, Y., Miyakawa, T., Osada, H., Two-dimesioal Navier-Sokes flow wih measures as iiial voriciy, Arch. Raioal Mech. Aal , [13] Ishige, K., Kawakami, T., Kobayashi, K., Asympoics for a oliear iegral equaio wih a geeralized hea kerel, J. Evol. Equ , [14] Kao, T., Srog L p -soluios of he Navier-Sokes equaio i R m, wih applicaios o weak soluios, Mah. Z , [15] Kozoo, H., Global L -soluio ad is decay propery for he Navier-Sokes equaios i half-space, J. Differeial Equaios , [16] Kozoo, H., Ogawa, T., Taiuchi, Y., The criical Sobolev iequaliies i Besov spaces ad regulariy crierio o some semi-liear evoluio equaios, Mah. Z , [17] Kukavica, I., Reis, E., Asympoic expasio for soluios of he Navier-Sokes equaios wih poeial forces, J. Differeial Equaios , [18] Lerey, Sur le mouveme d u liquide visqueux emplissa l espace, Aca Mah , [19] Miyakawa, T., Applicaio of Hardy space echiques o he ime-decay problem for icompressible Navier-Sokes flows i, Fukcial. Ekvac , [2] Miyakawa, T., Noes o space-ime decay properies of osaioary icompressible Navier-Sokes flows i, Fukcial. Ekvac , [21] Okabe, T., Space-ime asympoics of he wo dimesioal Navier-Sokes flow i he whole space, J. Differeial Equaios , [22] Schobek, M.E., Large ime behavior of soluios o he Navier-Sokes equaios, Comm. Parial Differeial Equaios , [23] Schobek, M.E., Lower bouds of raes of decay for soluios o he Navier-Sokes equaios, J. Amer. Mah. Soc , [24] Weissler, F.B., The Navier-Sokes iiial value problem i L p, Arch. Raioal Mech. Aal , [25] Wieger, M., Decay resuls for weak soluios of he Navier-Sokes equaios o, J. Lodo Mah. Soc , [26] Wieger, M., Decay of he L -orm of soluios of Navier-Sokes equaios i ubouded domais, Mahemaical problems for Navier-Sokes equaios, Aca Appl. Mah , [27] Yamamoo, M., Asympoic expasio of soluios o he oliear dissipaive equaio wih he aomalous diffusio, J. Mah. Aal. Appl ,
OSCILLATION CRITERIA FOR SECOND ORDER HALF-LINEAR DIFFERENTIAL EQUATIONS WITH DAMPING TERM
DIFFERENIAL EQUAIONS AND CONROL PROCESSES 4, 8 Elecroic Joural, reg. P375 a 7.3.97 ISSN 87-7 hp://www.ewa.ru/joural hp://www.mah.spbu.ru/user/diffjoural e-mail: jodiff@mail.ru Oscillaio, Secod order, Half-liear
The Estimates of the Upper Bounds of Hausdorff Dimensions for the Global Attractor for a Class of Nonlinear
Advaces i Pure Mahemaics 8 8 - hp://wwwscirporg/oural/apm ISSN Olie: 6-384 ISSN Pri: 6-368 The Esimaes of he Upper Bouds of Hausdorff Dimesios for he Global Aracor for a Class of Noliear Coupled Kirchhoff-Type
Gradient Estimates for a Nonlinear Parabolic Equation with Diffusion on Complete Noncompact Manifolds
Chi. A. Mah. 36B(, 05, 57 66 DOI: 0.007/s40-04-0876- Chiese Aals of Mahemaics, Series B c The Ediorial Office of CAM ad Spriger-Verlag Berli Heidelberg 05 Gradie Esimaes for a Noliear Parabolic Equaio
Intrinsic Geometry of the NLS Equation and Heat System in 3-Dimensional Minkowski Space
Adv. Sudies Theor. Phys., Vol. 4, 2010, o. 11, 557-564 Irisic Geomery of he NLS Equaio ad Hea Sysem i 3-Dimesioal Mikowski Space Nevi Gürüz Osmagazi Uiversiy, Mahemaics Deparme 26480 Eskişehir, Turkey
8. The Normalized Least-Squares Estimator with Exponential Forgetting
Lecure 5 8. he Normalized Leas-Squares Esimaor wih Expoeial Forgeig his secio is devoed o he mehod of Leas-Squares wih expoeial forgeig ad ormalizaio. Expoeial forgeig of daa is a very useful echique i
) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +
Techical Appedix o Hamig eposis ad Helpig Bowes: The ispaae Impac of Ba Cosolidaio (o o be published bu o be made available upo eques. eails of Poofs of Poposiios 1 ad To deive Poposiio 1 s exac ad sufficie
Errata (Includes critical corrections only for the 1 st & 2 nd reprint)
Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y
Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =
. (a). (b). (c) f() L L e i e Vidyalakar S.E. Sem. III [BIOM] Applied Mahemaic - III Prelim Queio Paper Soluio L el e () i ( ) H( ) u e co y + 3 3y u e co y + 6 uy e i y 6y uyy e co y 6 u + u yy e co y
APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES
APPENDIX A DERIVAION OF JOIN FAILRE DENSIIES I his Appedi we prese he derivaio o he eample ailre models as show i Chaper 3. Assme ha he ime ad se o ailre are relaed by he cio g ad he sochasic are o his
Random Attractors for Stochastic Reaction-Diffusion Equations with Distribution Derivatives on Unbounded Domains
Alied Maheaics 5 6 79-87 Published Olie Seeber 5 i SciRes h://wwwscirorg/oural/a h://dxdoiorg/436/a5659 Rado Aracors for Sochasic Reacio-Diffusio Equaios wih Disribuio Derivaives o Ubouded Doais Eshag
On Quasi - f -Power Increasing Sequences
Ieaioal Maheaical Fou Vol 8 203 o 8 377-386 Quasi - f -owe Iceasig Sequeces Maheda Misa G Deae of Maheaics NC College (Auooous) Jaju disha Mahedaisa2007@gailco B adhy Rolad Isiue of echoy Golahaa-76008
A Note on Saigo s Fractional Integral Inequalities
Turkish Joural of Aalysis ad Number Theory, 214, Vol 2, No 3, 65-69 Available olie a hp://pubssciepubcom/ja/2/3/2 Sciece ad Educaio Publishig DOI:112691/ja-2-3-2 A Noe o Saigo s Fracioal Iegral Iequaliies
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
Fourier Series. Fourier Series
ECE 37 Z. Aliyazicioglu Elecrical & Compuer Egieerig Dep. Cal Poly Pomoa Periodic sigal is a fucio ha repeas iself every secods. x() x( ± ) : period of a fucio, : ieger,,3, x() 3 x() x() Periodic sigal
On Generating Relations of Some Triple. Hypergeometric Functions
It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade
J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]
Vol 36 ( 216 ) No 3 J of Mah (PR) 1, 2, 3 (1, 4335) (2, 4365) (3, 431) :,,,, : ; ; ; MR(21) : 35A1; 35A2 : O17529 : A : 255-7797(216)3-591-7 1 d d [x() g(, x )] = f(, x ),, (11) x = ϕ(), [ r, ], (12) x(
α ]0,1[ of Trigonometric Fourier Series and its Conjugate
aqartvelo mecierebata erovuli aademii moambe 3 # 9 BULLETIN OF THE GEORGIN NTIONL CDEMY OF SCIENCES vol 3 o 9 Mahemaic Some pproimae Properie o he Cezàro Mea o Order ][ o Trigoomeric Fourier Serie ad i
1. For each of the following power series, find the interval of convergence and the radius of convergence:
Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.
Time Series Analysis Final Examination
Dr. Sevap Kesel Time Series Aalysis Fial Examiaio Quesio ( pois): Assume you have a sample of ime series wih observaios yields followig values for sample auocorrelaio Lag (m) ˆ( ρ m) -0. 0.09 0. Par a.
Solve the difference equation
Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y
Degenerate Perturbation Theory
R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The
n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)
8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:
G Tuorial xlc3.oc / iear roblem i e C i e C ( ie ( Differeial equaio for C (3 Thi fir orer iffereial equaio ca eaily be ole bu he uroe of hi uorial i o how how o ue he iz-galerki meho o fi ou he oluio.
The Heisenberg Uncertainty Principle
Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?
Oscillations CHAPTER 3. ν = = 3-1. gram cm 4 E= = sec. or, (1) or, 0.63 sec (2) so that (3)
CHAPTER 3 Oscillaios 3-. a) gram cm 4 k dye/cm sec cm ν sec π m π gram π gram π or, ν.6 Hz () or, π τ sec ν τ.63 sec () b) so ha 4 3 ka dye-cm E 4 E 4.5 erg c) The maximum velociy is aaied whe he oal eergy
Bessel function for complex variable
Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {
Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)
Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as
L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.
hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p =
The one-dimensional periodic Schrödinger equation
The one-dmensonal perodc Schrödnger equaon Jordan Bell jordan.bell@gmal.com Deparmen of Mahemacs, Unversy of Torono Aprl 23, 26 Translaons and convoluon For y, le τ y f(x f(x y. To say ha f : C s unformly
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log
Lecture 17: Minimum Variance Unbiased (MVUB) Estimators
ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Ψηφιακή Επεξεργασία Εικόνας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
On Certain Subclass of λ-bazilevič Functions of Type α + iµ
Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad
hp-bem for Contact Problems and Extended Ms-FEM in Linear Elasticity
hp-bem for Coac Problems ad Exeded Ms-FEM i Liear Elasiciy Vo der Fakulä für Mahemaik ud Physik der Gofried Wilhelm Leibiz Uiversiä aover zur Erlagug des Grades Dokor der Naurwisseschafe Dr. rer. a. geehmige
Lecture 12 Modulation and Sampling
EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion
Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.
Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis
Managing Production-Inventory Systems with Scarce Resources
Managing Producion-Invenory Sysems wih Scarce Resources Online Supplemen Proof of Lemma 1: Consider he following dynamic program: where ḡ (x, z) = max { cy + E f (y, z, D)}, (7) x y min(x+u,z) f (y, z,
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
α β
6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales
Oscillaion Crieria for Nonlinear Damped Dynamic Equaions on ime Scales Lynn Erbe, aher S Hassan, and Allan Peerson Absrac We presen new oscillaion crieria for he second order nonlinear damped delay dynamic
( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential
Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a
A study on generalized absolute summability factors for a triangular matrix
Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)
Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize
= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).
Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e 6 6 25 c L 2 ] ] L! + 25 e L 5 2 + 25] ] L 5 2 + 5 2 in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e 2 252 c L 3 8 4] 3L ] 8L
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
1. Functions and Operators (1.1) (1.2) (1.3) (1.4) (1.5) (1.6) 2. Trigonometric Identities (2.1) (2.2) (2.3) (2.4) (2.5) (2.6) (2.7) (2.8) (2.
ECE 3 Mh le Sprig, 997. Fucio d Operor, (. ic( i( π (. ( β,, π (.3 Im, Re (.4 δ(, ; δ( d, < (.5 u( 5., (.6 rec u( + 5. u( 5., > rc( β /, π + rc( β /,
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES
CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.
COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES
Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN 78-7763 COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Dr Neetu Vishwakarma a Dr M S Chauha Sagar Istitute of
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Damage Constitutive Model of Mudstone Creep Based on the Theory of Fractional Calculus
Advaces i Peroleum Exploraio ad Developme Vol. 1, No. 2, 215, pp. 83-87 DOI:1.3968/773 ISSN 1925-542X [Pri] ISSN 1925-5438 [Olie] www.cscaada.e www.cscaada.org Damage Cosiuive Model of Mudsoe Creep Based
On Inclusion Relation of Absolute Summability
It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com
Oscillation criteria for two-dimensional system of non-linear ordinary differential equations
Elecronic Journal of Qualiaive Theory of Differenial Equaions 216, No. 52, 1 17; doi: 1.14232/ejqde.216.1.52 hp://www.mah.u-szeged.hu/ejqde/ Oscillaion crieria for wo-dimensional sysem of non-linear ordinary
( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω
Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with
Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m
On Strong Product of Two Fuzzy Graphs
Inernaional Journal of Scienific and Research Publicaions, Volume 4, Issue 10, Ocober 014 1 ISSN 50-3153 On Srong Produc of Two Fuzzy Graphs Dr. K. Radha* Mr.S. Arumugam** * P.G & Research Deparmen of
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case
J. Math. Sci. Uiv. Tokyo 8 (2, 397 427. Uiform Estimates for Distributios of the Sum of i.i.d. om Variables with Fat Tail i the Threshold Case By Keji Nakahara Abstract. We show uiform estimates for distributios
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Linear singular perturbations of hyperbolic-parabolic type
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Number 4, 3, Pages 95 11 ISSN 14 7696 Linear singular perurbaions of hyperbolic-parabolic ype Perjan A. Absrac. We sudy he behavior of soluions
Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations
J. Mah. Anal. Appl. 321 (2006) 553 568 www.elsevier.com/locae/jmaa Necessary sufficien condiions for oscillaion of firs order nonlinear neural differenial equaions X.H. ang a,, Xiaoyan Lin b a School of
Presentation of complex number in Cartesian and polar coordinate system
1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:
ON LOCAL MOTION OF A COMPRESSIBLE BAROTROPIC VISCOUS FLUID WITH THE BOUNDARY SLIP CONDITION. Marek Burnat Wojciech M. ZajĄczkowski. 1.
opological Mehods in Nonlinear Analysis Journal of he Juliusz Schauder Cener Volume 1, 1997, 195 223 ON LOCAL MOION OF A COMPRESSIBLE BAROROPIC VISCOUS FLUID WIH HE BOUNDARY SLIP CONDIION Marek Burna Wojciech
Derivation of Optical-Bloch Equations
Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be
1. Matrix Algebra and Linear Economic Models
Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
ω = radians per sec, t = 3 sec
Secion. Linear and Angular Speed 7. From exercise, =. A= r A = ( 00 ) (. ) = 7,00 in 7. Since 7 is in quadran IV, he reference 7 8 7 angle is = =. In quadran IV, he cosine is posiive. Thus, 7 cos = cos
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
LAD Estimation for Time Series Models With Finite and Infinite Variance
LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite
Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.
Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces
Approximation of the Lerch zeta-function
Approximaion of he Lerch zea-funcion Ramūna Garunkši Deparmen of Mahemaic and Informaic Vilniu Univeriy Naugarduko 4 035 Vilniu Lihuania ramunagarunki@mafvul Abrac We conider uniform in parameer approximaion
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4,
Nonlinear Analysis: Modelling and Conrol, 23, Vol. 8, No. 4, 493 58 493 Exisence and uniqueness of soluions for a singular sysem of higher-order nonlinear fracional differenial equaions wih inegral boundary
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Solutions: Homework 3
Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10
Universiy of Washingon Deparmen of Chemisry Chemisry 553 Spring Quarer 1 Homework Assignmen 3 Due 4/6/1 v e v e A s ds: a) Show ha for large 1 and, (i.e. 1 >> and >>) he velociy auocorrelaion funcion 1)
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
The Neutrix Product of the Distributions r. x λ
ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Riesz ( ) Vol. 47 No u( x, t) 5 x u ( x, t) + b. 5 x u ( x, t), 5 x = R D DASSL. , Riesz. , Riemann2Liouville ( R2L ) = a
47 () Vo. 47 No. 008 Joura of Xiame Uiversiy (Na ura Sciece) Ja. 008 Riesz, 3 (., 36005 ;.,,400, ) : Riesz. Iic,Liu, Riesz. Riesz.,., Riesz.. : Riesz ; ; ; ; :O 4. 8 :A :04380479 (008) 000005,, [ - 3 ].,.
Bounding Nonsplitting Enumeration Degrees
Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,