SIMILITUDINE SI MODELE
|
|
- Κυβηλη Μανωλάς
- 7 χρόνια πριν
- Προβολές:
Transcript
1 SIMILITUDINE SI MODELE
2 SIMILITUDINE SIMILITUDINEA se ocupa cu relatiile dintre sistemele fizice de diverse marimi, in scopul transpunerii: - la scara mai mare; - la scara mai mica; a proceselor: fizice chimice biochimice
3 MODELE Sensul general al termenului: O CONSTRUCTIE MATERIALA SAU SPIRITUALA CARE, FUNCTIE DE SCOPUL URMARIT, ARE O ASEMANARE SAU COMPORTARE SIMILARA CU A OBIECTULUI MODELAT. Simplificare a originalului, care pastreaza doar elemente esentiale, semnificative.
4 MODELARE = reducerea originalului la o forma simplificata si eficient operabila; MODELARE = cuprinderea originalului in expresii matematice; Scopul MODELARII = studierea fenomenelor; SIMULARE = studiu efectuat pe modele.
5 MODEL PROTOTIP
6 PROTOTIP MODEL
7 INCONVENIENTELE MODELARII 1. De multe ori este dificila stabilirea elementelor ESENTIALE pt. conceperea modelului; 2. Un rol important ii revine IMAGINATIEI, care are caracter SUBIECTIV; 3. Adoptarea programelor de simulare se bazeaza adesea pe relatii FORMALE.
8 TIPURI DE MODELE MODELE CONCEPTUALE reproduc originale inca neconcepute (EX: modelul structurii atomului) MODELE REPRODUCTIVE imagini ale unor utilaje, procese, cunoscute, utile pentru simulare
9 CLASIFICAREA MODELELOR FIZICE (materiale) artificiale naturale - calitative; - analoge; - de scara; MODELE GRAFO- ANALITICE VERBALE - schematice (iconice); - matematice; - analitice; - experimentale; - analiticoexperimentale;
10 EXEMPLE DE MODELE MODELE FIZICE - Naturale: animale si plante de experienta; - Artificiale: * Calitative: machete * Analoge: bazate pe identitatea ecuatiilor matematice ale unor fenomene total diferite * De scara: modele experimentale, care respecta de regula similitudinea geometrica
11 EXEMPLE DE MODELE MODELE GRAFO-ANALITICE - SCHEMATICE: obiecte, regiuni, ecuatii, procese fizice. EX: harti, planuri de constructii, formule chimice, graficul parabolei; - MATEMATICE: sisteme de ecuatii algebrice si/sau diferentiale care descriu (cu diverse grade de precizie) un fenomen, comportarea unui obiect etc.
12 EXEMPLE DE MODELE MODELE VERBALE: Nu se pot reproduce sub forma de obiecte, grafice, ecuatii. EX: modelul de dezvoltare a unei societati.
13 MODELE IN INGINERIA PROCESELOR MODELE FIZICE DE SCARA utile in studiul proceselor simple; MODELE MATEMATICE pt. simularea proceselor complexe (impun obligatoriu verificarea experimentala a validitatii modelului).
14 SIMILITUDINE MODEL - PROTOTIP Două fenomene (procese), M (model) şi P (prototip) sunt similare dacă ele sunt guvernate de aceleaşi legităţi şi dacă au condiţiile de univocitate similare, respectiv îndeplinesc concomitent condiţiile de: similitudine geometrică, similitudine a constantelor fizice, similitudine dinamică similitudine a condiţiilor la limită.
15 SIMILITUDINEA GEOMETRICA Doua corpuri sunt similare geometric cand pt. fiecare pct. dintr-un corp un pct. corespondent in celalalt corp. L L 0 P 0 M L 1 L 2 = P = P L 1 L 2 M M = = L L n P n M = S G Simplex de similitudine geometrica
16 SIMILITUDINEA GEOMETRICA L L 0 P 0 M L L 1 2 = P P = 1 LM L 2 M = = L L n P n M = S G L 1 L 2 L 1 PROTOTIP MODEL L 2 L 0 L 0
17 SIMILITUDINEA MECANICA Este indeplinita daca sunt indeplinite simultan conditiile de: - Similitudine statica; - Similitudine cinematica; - Similitudine dinamica.
18 SIMILITUDINEA STATICA Corpurile geometrice sunt similare static, cand sub actiunea tensiunilor constante deformatia lor relativa nu modifica similitudinea geometrica. Este folosita in mecanica si constructii.
19 SIMILITUDINEA CINEMATICA Se ocupa cu sistemele solide sau fluide in miscare; Introduce timpul (viteza) ca variabila; Sistemele geometric similare, in miscare, sunt cinematic similare, cand traseul particulelor corespondente, au traiectorii geometric asemenea, in intervale corespondente de timp. In fluide cu curgere similara si straturi limita similare, viteza transferului de caldura si de masa se exprima prin relatii simple.
20 SIMILITUDINEA DINAMICA Studiaza fortele corespondente ce actioneaza asupra unui sistem in miscare; Forte corespondente = forte de aceeasi natura ce actioneaza asupra corpurilor corespondente la timpi corespondenti.
21 SIMILITUDINEA DINAMICA Sisteme geometric asemenea, in miscare, sunt similare dinamic cand rapoartele tuturor fortelor corespondente sunt egale: F F 0 P 0 M F 1 F 2 = P = P F 1 F 2 M M = = F F n P n M = S F
22 SIMILITUDINEA DINAMICA Forte care actioneaza in fluide: Forte gravitationale; Forte centrifuge; Forte inertiale; Forte viscoase; Forte interfaciale; Forte de presiune.
23 SIMILITUDINEA TERMICA Diferentele de temperatura intre 2 perechi de puncte corespondente, din doua sisteme diferite, la timpi corespondenti, formeaza diferente de temperatura corespondente. In sisteme similare d.p.d.v. termic, suprafetele izoterme, la timpi corespondenti, sunt geometric asemenea.
24 SIMILITUDINEA TERMICA Similitudinea termica impune ca vitezele corespondente de transfer de caldura sa fie intr-un raport constant. q q P c M c P P q q = v = r = q 0 = constant q q M v M r
25 TEORIA SIMILITUDINII Transpunerea MODEL PROTOTIP se realizeaza utilizand 3 teoreme generale: 1. Dacă două fenomene fizice sunt similare între ele criteriile respective de similitudine au aceeaşi valoare numerică; 2. Ecuaţiile care descriu fenomene fizice pot fi scrise în forma unor relaţii între criterii de similitudine; 3. Pentru ca două fenomene să fie similare, este necesar şi suficient ca ele să fie calitativ identice (adică să fie descrise prin ecuaţii matematice identice excepţie făcând constantele dimensionale conţinute în ele), iar criteriile lor determinate (care conţin numai mărimile cunoscute) corespunzătoare să aibă valori numerice identice.
26 EXEMPLU: Dacă un fenomen este reprezentat prin relaţia: Nu = ( Re, Pr, d ) f l condiţiile pentru existenţa similitudinii între modelul M şi prototipul P vor fi date de identităţile:
27 Re Pr M M = Re = Pr ( l d ) = ( l d ) M P In aceste conditii, va fi valabila si identitatea: P ; P ; Nu = Nu M P
28 SIMILITUDINE ABSOLUTA, COMPLETA, PARTIALA Similitudinea absolută (ideală) între două sisteme (model şi prototip) va exista numai în condiţiile asigurării unei corespondenţe depline a tuturor dimensiunilor geometrice ale sistemelor implicate şi a tuturor mărimilor care variază în timp şi spaţiu, adică a proceselor care se desfăşoară în aceste sisteme. Noţiunea este abstractă, neexistând fenomene similare în toate detaliile.
29 SIMILITUDINE ABSOLUTA, COMPLETA, PARTIALA Similitudinea completă este similitudinea acelor procese care se desfăşoară în timp şi spaţiu şi care determină în esenţă fenomenul studiat. Condiţiile de similitudine se referă numai la procesele sau fenomenele fundamentale, neglijându-se unele forţe a căror pondere este nesemnificativă asupra fenomenului studiat. Ex: criteriul Fr se ia în considerare doar în cazul fluidelor în mişcare care prezintă una sau mai multe suprafeţe libere neorizontale, asupra cărora forţele gravitaţionale au o pondere însemnată în desfăşurarea procesului respectiv; Ex: criteriul Re nu intervine în condiţiile în care pierderea de presiune a unui fluid în curgere sub presiune printr-o conductă nu este dependentă de Re (curgere puternic turbulentă), etc.
30 SIMILITUDINE ABSOLUTA, COMPLETA, PARTIALA Similitudinea parţială (incompletă) se realizează în cazul modelării incomplete, fie datorită dificultăţilor de modelare, fie datorită imposibilităţii realizării unei similitudini complete.
31 SIMILITUDINE ABSOLUTA, COMPLETA, PARTIALA EXEMPLU: Să presupunem că similitudinea între două sisteme este condiţionată de identitatea simultană a trei criterii de similitudine: Re, Fr şi We: Re = ρ v μ l ; Fr = l g ; We v 2 = ρ d v σ 2 l
32 SIMILITUDINE ABSOLUTA, COMPLETA, PARTIALA În aceste condiţii, dependenţele dintre viteza fluidului şi caracteristica geometrică vor fi de forma: v ~ l -1 pentru criteriul Reynolds v ~ l 1/2 pentru criteriul Froude v ~ l -1/2 pentru criteriul Weber
33 SIMILITUDINE ABSOLUTA, COMPLETA, PARTIALA Deoarece viteza fluidului nu poate fi proporţională simultan cu: 1 l l 1 l cele trei criterii de similitudine sunt incompatibile. Este imposibilă transpunerea la scară a procesului controlat simultan de cele trei criterii mentionate mai sus.
34 SIMILITUDINE ABSOLUTA, COMPLETA, PARTIALA Pentru ocolirea dificultăţilor sau incompatibilităţilor care pot interveni în transpunerea la scară: - Folosirea domeniilor de automodelare, - Folosirea distorsiunilor geometrice sau hidrodinamice.
35 DOMENII DE AUTOMODELARE Prin domeniu de automodelare în raport cu un anumit criteriu se înţelege intervalul de variaţie a valorii criteriului respectiv în care modificarea valorii lui nu influenţează fenomenele a căror similitudine dinamică trebuie asigurată.
36 DOMENII DE AUTOMODELARE EXEMPLU: în domeniul curgerii puternic turbulente, căderea de presiune la curgerea unui fluid printr-o conductă nu mai depinde de asigurarea identităţii numerice pentru Re, ci numai de realizarea similitudinii geometrice a celor două sisteme (M şi P), cu asigurarea desfăşurării proceselor la valori Re mai mari decât limita inferioară la care începe regimul turbulent.
37 UTILIZAREA DISTORSIUNILOR Utilizarea distorsiunilor geometrice sau hidrodinamice: renunţarea la similitudinea geometrică şi/sau dinamică completă, cu corecturile necesare (de regulă efectul unei distorsiuni este compensat prin introducerea unei alte distorsiuni) pentru realizarea transpunerii la scară.
38 UTILIZAREA DISTORSIUNILOR Când dimensiunile modelului sunt mult diferite de cele ale prototipului, procesul din model poate fi influenţat de mărimi fizice nesemnificative pentru desfăşurarea procesului în prototip şi viceversa, apărând aşanumitele efecte de scară.
39 EFECTE DE SCARA Exemplu: efectele tensiunii superficiale sunt mult mai pronunţate în modelele de dimensiuni mici. Pentru eliminarea efectelor de scară se recomandă realizarea, pe cât posibil, a modelelor la dimensiuni cât mai apropiate de cele ale prototipului.
40 AVANTAJE ŞI LIMITĂRI ÎN UTILIZAREA CRITERIILOR DE SIMILITUDINE Avantaje: 1. Un proces se poate transpune de la o scară la alta prin simpla păstrare a valorii numerice a criteriilor de similitudine. 2. Prin înlocuirea celor m variabile şi constante dimensionale din ecuaţiile obişnuite cu m-n criterii de similitudine din ecuaţiile criteriale, se micşorează (în general cu n ) numărul variabilelor efective ale problemei. 3. Criteriile de similitudine fiind adimensionale, ele sunt independente de sistemul de unităţi de măsură în care se lucrează.
41 AVANTAJE ŞI LIMITĂRI ÎN UTILIZAREA CRITERIILOR DE SIMILITUDINE Dezavantaje: 1. Analiza dimensională şi consideraţiile de similitudine nu furnizează direct ecuaţia criterială care descrie fenomenul oferind doar forma generală a funcţiei. Coeficientul k şi exponenţii a, b, c, din ecuaţia π = k π a π b π c i trebuie determinaţi experimental. 2. Transpunerea la scară a rezultatelor experimentale obţinute pe un model nu este întotdeauna posibilă, fie datorită incompatibilităţii unor criterii de similitudine fie datorită efectelor de scară, fie datorită restricţiilor referitoare la alegerea rapoartelor de scară.
42 PROCES GLOBAL PROCES ELEMENTAR Fluid cald Perete Fluid rece PROCESUL GLOBAL: - transferul de caldura intre cele doua fluide; PROCESE ELEMENTARE: - Trsp. Q de la fluidul cald la perete; - Trsp. Q prin perete; - Trsp. Q de la perete la fluidul rece.
43 PROCES DETERMINANT Procesele elementare (PE) se desfasoara cu o anumita intensitate; Daca PE sunt inseriate, viteza procesului global (PG) este influentata de viteza PE cel mai lent = PROCESUL DETERMINANT DE VITEZA = PROCESUL LIMITATIV. v PE1 v PE2 v PE3 v PG
44 REACTIE CHIMICA PROCES CHIMIC EXEMPLU: arderea metanului cu aer Reactia chimica: CH 4 + 2O 2 CO 2 + 2H 2 O Procesulchimic: T CH4[ ]g T O2[ ]g Amestecare moleculara Deg. Q Reactie chimica T CO2, H2O[ ]g Transfer Q
45 REACTIE CHIMICA PROCES CHIMIC Reactie PROCES CHIMIC chimica Fenomene de transfer
46 SCALE-UP
47 SCALE-UP
48
49 SCALE-UP
Aplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
Metode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
1. PROPRIETĂȚILE FLUIDELOR
1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea
(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
a. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
Sisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
Curs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
Curs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
MARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
Integrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25
Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 LAGĂRELE CU ALUNECARE!" 25.1.Caracteristici.Părţi componente.materiale.!" 25.2.Funcţionarea lagărelor cu alunecare.! 25.1.Caracteristici.Părţi componente.materiale.
5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
Seminar 5 Analiza stabilității sistemelor liniare
Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare
RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,
REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii
Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
Curs 2 DIODE. CIRCUITE DR
Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu
V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3
SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest
COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
V O. = v I v stabilizator
Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,
Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].
Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
Subiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
Subiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
14. Grinzi cu zăbrele Metoda secţiunilor...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3
SEMINAR GRINZI CU ZĂBRELE METODA SECŢIUNILOR CUPRINS. Grinzi cu zăbrele Metoda secţiunilor... Cuprins... Introducere..... Aspecte teoretice..... Aplicaţii rezolvate.... Grinzi cu zăbrele Metoda secţiunilor
Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent
Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului
1. ESTIMAREA UNUI SCHIMBĂTOR DE CĂLDURĂ CU PLĂCI
1. ESTIMAREA UNUI SCHIMBĂTOR DE CĂLDURĂ CU PLĂCI a. Fluidul cald b. Fluidul rece c. Debitul masic total de fluid cald m 1 kg/s d. Temperatura de intrare a fluidului cald t 1i C e. Temperatura de ieşire
5.4. MULTIPLEXOARE A 0 A 1 A 2
5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării
Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite
Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval
SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0
Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,
2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2
.1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,
IV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI
V. POL S FLTE ELETE P. 3. POL ELET reviar a) Forma fundamentala a ecuatiilor cuadripolilor si parametrii fundamentali: Prima forma fundamentala: doua forma fundamentala: b) Parametrii fundamentali au urmatoarele
10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea
INDUSTRIA ALIMENTARĂ
Conf.dr.ing. IOAN BĂISAN OPERAȚII ȘI TEHNOLOGII ÎN INDUSTRIA ALIMENTARĂ (curs pentru studenții specializării Mașini și Instalații pentru Agricultură și Industria Alimentară) 2015 1 C U P R I N S PARTEA
I. Forţa. I. 1. Efectul static şi efectul dinamic al forţei
I. Forţa I. 1. Efectul static şi efectul dinamic al forţei Interacţionăm cu lumea în care trăim o lume în care toate corpurile acţionează cu forţe unele asupra altora! Întrebările indicate prin: * 1 punct
Asemănarea triunghiurilor O selecție de probleme de geometrie elementară pentru gimnaziu Constantin Chirila Colegiul Naţional Garabet Ibrãileanu,
Asemănarea triunghiurilor O selecție de probleme de geometrie elementară pentru gimnaziu Constantin Chirila Colegiul Naţional Garabet Ibrãileanu, Iaşi Repere metodice ale predării asemănării în gimnaziu
Unitatea atomică de masă (u.a.m.) = a 12-a parte din masa izotopului de carbon
ursul.3. Mării şi unităţi de ăsură Unitatea atoică de asă (u.a..) = a -a parte din asa izotopului de carbon u. a.., 0 7 kg Masa atoică () = o ărie adiensională (un nuăr) care ne arată de câte ori este
Stabilizator cu diodă Zener
LABAT 3 Stabilizator cu diodă Zener Se studiază stabilizatorul parametric cu diodă Zener si apoi cel cu diodă Zener şi tranzistor. Se determină întâi tensiunea Zener a diodei şi se calculează apoi un stabilizator
Geometrie computationala 2. Preliminarii geometrice
Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,
CUPRINS 9. Echilibrul sistemelor de corpuri rigide... 1 Cuprins..1
CURS 9 ECHILIBRUL SISTEMELOR DE CORPURI RIGIDE CUPRINS 9. Echilibrul sistemelor de corpuri rigide........... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 9.1. Generalităţi. Legături intermediare...2
Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili
Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru
Problema a II - a (10 puncte) Diferite circuite electrice
Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător
1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB
1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul
3. DINAMICA FLUIDELOR. 3.A. Dinamica fluidelor perfecte
3. DINAMICA FLUIDELOR 3.A. Dinamica fluidelor perfecte Aplicația 3.1 Printr-un reductor circulă apă având debitul masic Q m = 300 kg/s. Calculați debitul volumic şi viteza apei în cele două conducte de
TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:
TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi
SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0
SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:
Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,
T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.
Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică
VII.2. PROBLEME REZOLVATE
Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea
5.1. Noţiuni introductive
ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul
* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1
FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile
Proiectarea filtrelor prin metoda pierderilor de inserţie
FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri
CIRCUITE INTEGRATE MONOLITICE DE MICROUNDE. MMIC Monolithic Microwave Integrated Circuit
CIRCUITE INTEGRATE MONOLITICE DE MICROUNDE MMIC Monolithic Microwave Integrated Circuit CUPRINS 1. Avantajele si limitarile MMIC 2. Modelarea dispozitivelor active 3. Calculul timpului de viata al MMIC
Laborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
Functii Breviar teoretic 8 ianuarie ianuarie 2011
Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)
EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă
Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a
2. STATICA FLUIDELOR. 2.A. Presa hidraulică. Legea lui Arhimede
2. STATICA FLUIDELOR 2.A. Presa hidraulică. Legea lui Arhimede Aplicația 2.1 Să se determine ce masă M poate fi ridicată cu o presă hidraulică având raportul razelor pistoanelor r 1 /r 2 = 1/20, ştiind
riptografie şi Securitate
riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare
Criptosisteme cu cheie publică III
Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.
Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare
Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R În cele ce urmează, vom studia unele proprietăţi ale mulţimilor din R. Astfel, vom caracteriza locul" unui punct în cadrul unei mulţimi (în limba
Studiu privind soluţii de climatizare eficiente energetic
Studiu privind soluţii de climatizare eficiente energetic Varianta iniţială O schemă constructivă posibilă, a unei centrale de tratare a aerului, este prezentată în figura alăturată. Baterie încălzire/răcire
REACŢII DE ADIŢIE NUCLEOFILĂ (AN-REACŢII) (ALDEHIDE ŞI CETONE)
EAŢII DE ADIŢIE NULEFILĂ (AN-EAŢII) (ALDEIDE ŞI ETNE) ompușii organici care conțin grupa carbonil se numesc compuși carbonilici și se clasifică în: Aldehide etone ALDEIDE: Formula generală: 3 Metanal(formaldehida
Aplicaţii ale principiului I al termodinamicii în tehnică
Aplicaţii ale principiului I al termodinamicii în tehnică Sisteme de încălzire a locuinţelor Scopul tuturor acestor sisteme, este de a compensa pierderile de căldură prin pereţii locuinţelor şi prin sistemul
Capitolul 2 - HIDROCARBURI 2.5.ARENE
Capitolul 2 - HIDROCARBURI 2.5.ARENE TEST 2.5.2 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Radicalul C 6 H 5 - se numeşte fenil. ( fenil/
I. NOŢIUNI FUNDAMENTALE DIVIZIUNILE MECANICII. PRINCIPIILE MECANICII CLASICE SISTEME ŞI UNITĂŢI DE MĂSURĂ
I. NOŢIUNI FUNDAMENTALE DIVIZIUNILE MECANICII. PRINCIPIILE MECANICII CLASICE SISTEME ŞI UNITĂŢI DE MĂSURĂ 1.1 Noţiuni fundamentale Mecanica este una dintre ştiinţele fundamentale ale naturii, având ca
Lucrul mecanic. Puterea mecanică.
1 Lucrul mecanic. Puterea mecanică. In acestă prezentare sunt discutate următoarele subiecte: Definitia lucrului mecanic al unei forţe constante Definiţia lucrului mecanic al unei forţe variabile Intepretarea
Metode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
Capitolul 14. Asamblari prin pene
Capitolul 14 Asamblari prin pene T.14.1. Momentul de torsiune este transmis de la arbore la butuc prin intermediul unei pene paralele (figura 14.1). De care din cotele indicate depinde tensiunea superficiala
CIRCUITE LOGICE CU TB
CIRCUITE LOGICE CU T I. OIECTIVE a) Determinarea experimentală a unor funcţii logice pentru circuite din familiile RTL, DTL. b) Determinarea dependenţei caracteristicilor statice de transfer în tensiune
ŞTIINŢA ŞI INGINERIA. conf.dr.ing. Liana Balteş curs 7
ŞTIINŢA ŞI INGINERIA MATERIALELOR conf.dr.ing. Liana Balteş baltes@unitbv.ro curs 7 DIAGRAMA Fe-Fe 3 C Utilizarea oţelului în rândul majorităţii aplicaţiilor a determinat studiul intens al sistemului metalic
2. Circuite logice 2.4. Decodoare. Multiplexoare. Copyright Paul GASNER
2. Circuite logice 2.4. Decodoare. Multiplexoare Copyright Paul GASNER Definiţii Un decodor pe n bits are n intrări şi 2 n ieşiri; cele n intrări reprezintă un număr binar care determină în mod unic care
a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)
Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului
7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL
7. RETEE EECTRICE TRIFAZATE 7.. RETEE EECTRICE TRIFAZATE IN REGIM PERMANENT SINSOIDA 7... Retea trifazata. Sistem trifazat de tensiuni si curenti Ansamblul format din m circuite electrice monofazate in
REDRESOARE MONOFAZATE CU FILTRU CAPACITIV
REDRESOARE MONOFAZATE CU FILTRU CAPACITIV I. OBIECTIVE a) Stabilirea dependenţei dintre tipul redresorului (monoalternanţă, bialternanţă) şi forma tensiunii redresate. b) Determinarea efectelor modificării
CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii
Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1
Capitolul 2 - HIDROCARBURI 2.3.ALCHINE
Capitolul 2 - HIDROCARBURI 2.3.ALCHINE TEST 2.3.3 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Acetilena poate participa la reacţii de
9. Interacţiunea câmpului electromagnetic de înaltă frecvenţă cu substanţa. Polarizarea dielectricilor. Copyright Paul GASNER 1
9. Interacţiunea câmpului electromagnetic de înaltă frecvenţă cu substanţa. Polarizarea dielectricilor Copyright Paul GASNER 1 Cuprins Mecanisme de polarizare a dielectricilor Polarizarea electronică şi
Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1
Aparate de măsurat Măsurări electronice Rezumatul cursului 2 MEE - prof. dr. ing. Ioan D. Oltean 1 1. Aparate cu instrument magnetoelectric 2. Ampermetre şi voltmetre 3. Ohmetre cu instrument magnetoelectric
Tranzistoare bipolare şi cu efect de câmp
apitolul 3 apitolul 3 26. Pentru circuitul de polarizare din fig. 26 se cunosc: = 5, = 5, = 2KΩ, = 5KΩ, iar pentru tranzistor se cunosc următorii parametrii: β = 200, 0 = 0, μa, = 0,6. a) ă se determine
Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,
vidiu Gabriel Avădănei, Florin Mihai Tufescu, Capitolul 6 Amplificatoare operaţionale 58. Să se calculeze coeficientul de amplificare în tensiune pentru amplficatorul inversor din fig.58, pentru care se
Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE
Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE TEST 2.4.1 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Rezolvare: 1. Alcadienele sunt hidrocarburi
Laborator biofizică. Noţiuni introductive
Laborator biofizică Noţiuni introductive Mărimi fizice Mărimile fizice caracterizează proprietăţile fizice ale materiei (de exemplu: masa, densitatea), starea materiei (vâscozitatea, fluiditatea), mişcarea
Scoruri standard Curba normală (Gauss) M. Popa
Scoruri standard Curba normală (Gauss) M. Popa Scoruri standard cunoaştere evaluare, măsurare evaluare comparare (Gh. Zapan) comparare raportare la un sistem de referință Povestea Scufiței Roşii... 70
Profesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
LUCRAREA NR. 1 STUDIUL SURSELOR DE CURENT
LUCAEA N STUDUL SUSELO DE CUENT Scopul lucrării În această lucrare se studiază prin simulare o serie de surse de curent utilizate în cadrul circuitelor integrate analogice: sursa de curent standard, sursa
4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice
4. Măsurarea tensiunilor şi a curenţilor electrici oltmetre electronice analogice oltmetre de curent continuu Ampl.c.c. x FTJ Protectie Atenuator calibrat Atenuatorul calibrat divizor rezistiv R in const.