Echilibrul termic. 1. Câteva elemente de termodinamică...

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Echilibrul termic. 1. Câteva elemente de termodinamică..."

Transcript

1 1

2 2 1. Câteva elemente de termodinamică... Vom lucra în acest capitol cu sisteme termodinamice. Ele reprezintă sisteme fizice delimitate de mediul exterior printr-o suprafaţă reală sau imaginară, realizate din unul sau mai multe corpuri macroscopice care conţin o cantitate finită de substanţă, alcătuită dintr-un număr mare de particule elementare constituente (molecule, atomi, electroni liberi, etc.). Menţinăm ca exemple de sisteme termodinamice: orice corp solid, orice lichid aflat într-un vas, orice gaz aflat într-o incintă, orice amestec solid, lichid, gazos sau mixt, organismele biologice etc. Starea unui sistem termodinamic este constituită din toţi parametrii de stare la un moment dat. Când sistemul nu evoluează, sistemul termodinamic se află în stare staţionară, iar când evoluează se află în stare nestaţionară. Fenomenul termic este, în general, orice fenomen fizic legat de mişcarea complet dezordonată care se manifestă la nivelul moleculelor. Exemple de fenomene termice: variaţia proprietăţilor fizice ale substanţei la încălzirea sau la răcirea ei; schimbul de căldură între corpurile încălzite diferit; transformarea căldurii (obţinută prin arderea combustibililor) în lucru mecanic şi invers, a lucrului mecanic în căldură; trecerea unui corp dintr-o stare de agregare în alta. Postulatul fundamental al termodinamicii. Un sistem termodinamic izolat de mediul exterior şi aflat într-o stare de neechilibru va evolua spre o stare de echilibru termodinamic, în care va ajunge după un interval de timp şi pe care nu o va părăsi de la sine. 2. Mărimi energetice specifice sistemelor termodinamice În general, corpurile se află în permanentă interacţiune cu mediul exterior, acestă interacţiune manifestându-se printr-un schimb de energie. Dacă sistemul interacţionează mecanic cu mediul înconjurător, starea de echilibru termodinamic a sistemului nu se modifică, forţele exterioare realizând doar o deplasare mecanică a întregului sistem; Atunci când sistemul interacţionează termic cu mediul exterior, el părăseşte starea de echilibru termodinamic, începând să efectueze o transformare în care anumiţi parametri de stare ce caracterizează dimensiunile sistemului (cum ar fi volumul gazului) variază în timp. Acesta este cazul în care are loc o variaţie a energiei interne a sistemului. Există trei moduri posibile de variaţie a energiei interne a unui corp: prin efectuare de lucru mecanic; prin schimb de căldură; prin schimb de substanţă între corp şi mediu.

3 3 Energia intenă a unui sistem termodinamic U, este o mărime fizică scalară, de stare a unui sistem termodinamic. Particulele constituente ale unei substanţe se află într-o continuă mişcare de agitaţie termică. La un moment dat, fiecare particulă posedă o emergie cinetică dată de natura particulei şi de conjunctura în care se află cu particulele vecine. Căldura Q este o mărime fizică scalară, de proces, care măsoară transferul de energie prin contact termic între sistemele termodinamice, în procesele care au loc între acestea. Căldura se măsoară, în S.I., în jouli (J), ca şi energia. 3. Despre echilibrul termic Contactul între un sistem termodinamic şi un alt sistem din mediul exterior lui se realizează atunci când sistemul dat nu mai este izolat de mediul exterior, fiind posibile interacţiuni cu celălalt sistem. Contactul dintre cele două sisteme poate fi: mecanic, atunci când schimbul de energie dintre sisteme se face prin lucrul mecanic realizat de forţele efectuate de unul dintre sisteme asupra celuilalt; termic, atunci când schimbul de energie dintre sisteme se face exclusiv prin căldură; prin schimb de substanţă între cele două sisteme. Echilibrul termic. Realizând un contact termic între două corpuri (unul cald şi altul rece), fără schimb de energie prin efectuare de lucru mecanic sau schimb de substanţă între ele, acestea ajung spontan şi ireversibil, după un interval de timp, conform postulatului fundamental al termodinamicii, să aibă aceeaşi stare de încălzire. În această situaţie, corpurile nu mai schimbă între ele energie sub formă de căldură şi se spune că se află în echilibru termic. Principiul zero al termodinamicii: Două sisteme termodinamice, fiecare aflat în echilibru termic cu al treilea, sunt şi ele în echilibru termic. Acest principiu, determinat pe cale experimentală, se numeşte şi principiul tranzitivităţii echilibrului termic. Temperatura empirică. Fiecărei stări de încălzire a unui sistem termodinamic i se asociază un parametru numit temperatura empirică a sistemului. Pentru un sistem dat, temperatura are valori egale pentru stările de echilibru termodinamic care sunt între ele în echilibru termic şi valori diferite pentru stările de echilibru termodinamic care nu sunt în relaţie de echilibru termic. Măsurarea temperaturii, conform unei scări definite, se realizează cu anumite dispozitive denumite termometre.

4 4 Scara Celsius cuantificată în grade Celsius (ºC) este o scară centigradă convenţională şi are ca temperaturi de referinţă, prin convenţie, valoarea 0ºC, corespunzător situaţiei când gheaţa pură se topeşte la presiune normală şi 100ºC, corespunzător situaţiei când apa pură fierbe la presiune nomală. Scara Kelvin, adoptată în S.I., are fixat punctul zero al scalei la temperatura -273,15ºC. Temperatura absolută, egală cu zero (T 0 =0K), corespunde stării materiei în care ar înceta mişcarea de agitaţie, termică a moleculelor. Unitatea de temperatură adică Kelvin-ul, are aceeaşi mărime ca şi gradul de pe scara Celsius: 1K=1ºC, iar T(K)=t(ºC)+273,15 Scara Fahrenheit fixează aceleaşi stări de referinţă ca şi scara Celsius, dar le atribuie alte valori: 32ºF, corespunzător situaţiei când gheaţa pură se topeşte la presiune normală, şi 212ºF, corespunzător situaţiei când apa pură fierbe la presiune nomală. tºf=32+1,8t(ºc). 4. Studiul clasic tipurile de termometre utilizabile enumerăm: Pentru studiul în laborator clasic al echilibrului termic sunt necesare termometre, instrumente cu citire directă a valorilor temperaturii sistemelor cu care ele sunt în echilibru termic. Printre Termometrul clasic cu coloană de lichid este construit dintr-un corp termometric în care se află mercur, toluen sau alcool, continuat de un tub capilar gradat după o scară de temperatură. Lungimea coloanei de lichid creşte linear cu temperatura prin fenomenul de dilatare a lichidului. Termometrul metalic utilizează o lamă bimetalică formată formată din două lame având aceeaşi formă geometrică, solidare între ele şi confecţionate din două metale diferite şi care suferă dilatări diferite la încălzire. Acesta produce curbarea lamei în funcţie de temperatura la care se află dispozitivul, tradusă in mişcarea unui ac indicator în faţa unei scale gradate. Termometrul cu termocuplu utilizează variaţia tensiunii electrice, care apare între sudurile a două metale

5 5 diferite, când una dintre suduri este la o temperatură mai ridicată decât cealaltă. Acestă tensiune este măsurată de un milivoltmetru, etalonat prin corespondenţă într-o scară de temperatură. Termometrul realizat cu dispozitive electronice utilizează sonde cu structuri semiconductoare care-şi modifică rezistenţa electrcă la încălzire. Variaţia intensităţii curentului care trece prin acestea este măsurat de un miliampermetru care are scara gradată în unităţi de temperatură. Termometrele din laboratorul de fizică pot avea diferite forme adecvate scopului pentru care servesc: măsurarea temperaturii în încăpere, în vase cu diametre diferite, în incinte cu forme speciale. Principiul care stă la baza funcţionării lor este în schimb acelaşi: dilatarea aparentă a unui lichid termometric care este de regulă alcool sau mercur. Majoritatea termometrelor sunt etalonate în scara Celsius care are ca puncte de referinţă două stări uşor reproductibile: starea triplă a apei căreia i se atribuie în mod convenţional valoarea 0 0 şi punctul de fierbere a apei pure cu valoarea Un grad Celsius reprezintă a suta parte din intervalul cuprins între C. Clasa de precizie a termometrului este dată de mărimea celui mai mic interval pe care îl poate măsura, practic de diferenţa de temperatură corespunzătoare ridicării lichidului termometric între două diviziuni alăturate. Încercaţi singuri! Construiţi-vă singuri un termometru Materialele necesare sunt: un pai de băut rigid şi transparent, o cutie de film fotografic cu capac, apă, colorant alimentar, silicon sau plastilină, hârtie milimetrică (riglă), şurubelniţă (sau altceva cu care să se poată găuri capacul). Pentru început faceţi o gaură în centrul capacului, suficient de mare, pentru ca paiul să poată fi introdus prin ea. Apoi introduceţi paiul. Capătul paiului trebuie să ajungă până imediat deasupra fundului cutiei, atunci când capacul este pus. Umpleţi cutia cu apă (cam ¾ din volum). Adăugaţi o picătură sau două de colorant. Ataşaţi capacul cu pai la cutie. Căutaţi o modalitate de a trage apa din cutie cam până la jumatatea paiului (cu ajutorul

6 6 unei seringi). Apa din pai trebuie să rămână aşa când capacul se fixează ermetic de cutie. Închideţi ermetic dispozitivul prin astuparea găurii pe unde s-a introdus paiul şi a marginilor capacului. Căutaţi un loc potrivit pentru termometru şi fixaţi hârtia milimetrică (rigla) de perete, sau pe un alt suport, făcând astfel o scală pentru termometru. Înregistraţi temperatura prin marcarea indicaţiei de pe scală. Cantitatea de aer şi apa din interiorul cutiei şi din jumatatea de jos a paiului nu se schimbă, dar se poate dilata sau contracta. Ce se va întampla cu nivelul apei din pai atunci când temperatura creşte? Cum influenţează starea vremii funcţionarea termometrului? Cu cat este mai mare presiunea aerului din exteriorul cutiei, cu atât acesta va îimpinge mai puternic asupra cutiei, forţând mai multă apă în sus în pai. Cum afectează aceasta etalonarea termometrului? Imaginaţi-vă o modalitate de a minimiza erorile datorate schimbărilor de volum cauzate de presiunea atmosferică. 5. Studiu virtual Accesaţi site-ul aflat la adresa: Aici puteţi simula procesul de difuzie în gaze cu temperaturi diferite, în timpul amestecului lor. (figura 5.1). Veţi putea urmări stabilirea echilibrului termic cu ajutorul a două termometre plasate în cele două incinte. Urmăriţi indicaţiile celor 7 experimente propuse!

7 7 Figura 5.1 Cum apreciaţi mişcarea de agitaţie termică a moleculelor din cele două gaze atunci când ele se află la echilibru? Pentru început vom defini câteva noţiuni! 6. Studiul unor transformări de fază cu o sondă de temperatură Vernier Faza reprezintă o porţiune dintr-un sistem care prezintă aceeaşi compoziţie şi aceleaşi proprietăţi fizice în toate punctele sale. Este de fapt o parte omogenă a unui sistem termodinamic, delimitată printr-o suprafaţă bine precizată de celelalte părţi ale sistemului. O fază poate fi formată dintr-un singur tip de molecule (vaporii unui lichid, un gaz, etc. ) sau din mai multe tipuri de molecule dacă amestecul este omogen până la nivel molecular (soluţie nesaturată de zahăr în apă, etc.). Faza nu trebuie confundată cu starea de agregare. De exemplu, fierul se poate găsi în diferite faze solide, în funcţie de structura cristalină. Carbonul are două faze distincte, diamantul şi

8 8 grafitul, care au proprietăţi deosebite. Transformarea de fază sau tranziţia de fază reprezintă trecerea substanţelor dintr-o fază în alta. Trecerea dintr-o stare de agregare în alta este o transformare de fază de speţa I, din care fac parte transformările care se produc la o anumită temperatură, cu absorbţie sau cedare de căldură numită căldură latentă. Din acest tip fac parte transformările: vaporizarea-condensarea, topirea-solidificarea, sublimarea-desublimarea, etc. Trecerea unei substanţe din faza lichidă în faza de vapori se numeşte vaporizare. Există mai multe modalităţi de vaporizare a unui lichid în funcţie de condiţiile în care se face experimentul: vaporizare în vid, în atmosferă gazoasă, la suprafaţa lichidului şi vaporizarea în toată masa lichidului. Cantitatea de căldură necesară pentru a vaporiza la temperatură constantă o unitate de masă dintr-un lichid se numeşte căldură latentă specifică de vaporizare: λ V Q = m În timpul fierberii unui lichid temperatura rămâne constantă, dacă presiunea nu se modifică! Procesul de trecere a unui corp din fază solidă în fază lichidă se numeşte topire. Procesul invers se numeşte solidificare. Din punct de vedere a structurii lor, corpurile se împart în două categorii: amorfe şi cristaline. Topirea corpurilor amorfe (sticla, ceara, smoala) nu are loc la o temperatură constantă, ci pe un interval de temperatură. Mai întâi, corpul se înmoaie şi apoi devine o pastă vâscoasă, pentru ca ulterior, la o temperatură mai mare, să devină lichid cu vâscozitate mică. În timpul topirii corpurilor cristaline temperatura rămâne constantă, dacă presiunea nu se modifică! Ne propunem acum să monitorizăm un amestec de apă cu cuburi de gheaţă cu ajutorul unei sonde de temperatură conectată cu computerul prin portul USB. Vom verifica întâi dacă temperatura rămâne constantă în timpul topirii gheţii, apoi vom începe încălzirea pentru a ajunge la fierberea apei rezultate. Aici vom verifica dacă temperatura rămâne constantă în timpul fierberii apei. Am obţinut semnalul dim figura 6.1

9 9 Figura 6.1 Urmează să prelucraţi singuri semnalul generat de sonda de temperatură utilizând Microsoft Excel. Noi am transferat valorile pentru timp şi temperatură obţinute cu acest senzor într-un fişier xls. Accesaţi acum fişierul TOPIRE GHEATA.xls şi efectuaţi următoarele: Reprezentaţi grafic temperatura exprimat în 0 C în funcţie de timpul exprimat în min. Apreciaţi ce se întâmplă cu temperatura în timpul topirii gheţii! Apreciaţi ce se întâmplă cu temperatura în timpul fierberii apei! Calculaţi rata de încălzire a sistemului utilizat! Cum explicaţi abaterea temperaturii de topire a gheţii de la 0 0 C? Cum explicaţi abaterea temperaturii de fierbere a apei de la C? Aţi Vom Vom relua experimentul înlocuind amestecul de apă cu gheaţă cu naftalină! Cristalele de naftalină au fost introduse într-o eprubetă. Sonda de temperatură s-a strecurat printre ele şi astfel echipată, eprubeta a fost introdusă într-un încălzitor cu apă. Am obţinut semnalul dim figura 6.2.

10 10 Figura 6.2 Urmează să prelucraţi singuri semnalul generat de sonda de temperatură utilizând Microsoft Excel. Noi am transferat valorile pentru timp şi temperatură obţinute cu acest senzor într-un fişier xls. Accesaţi acum fişierul TOPIRE NAFTALINA.xls şi efectuaţi următoarele: Reprezentaţi grafic temperatura exprimat în 0 C în funcţie de timpul exprimat în min. Apreciaţi ce se întâmplă cu temperatura în timpul topirii naftalinei! Calculaţi rata de încălzire a sistemului utilizat! Cum explicaţi abaterea temperaturii de topire a naftalinei de la 80 0 C? 7. Echilibrul termic al organismului uman Temperatura normală a corpului uman măsurată în axilă este în medie 36, C. Între C apare starea subfebrilă, iar peste 38 0 C se considera stare febrilă

11 11 În interiorul corpului temperatura rămâne constantă cu o variaţie de ±0,5 0 C. În general dimineaţa temperatura normală a corpului uman are valori mai mici decât seara. Organismul uman eliberează energie în procesul de respiraţie celulară, când glucoza se oxidează producând apă, dioxid de carbon şi energie. O parte din această energie este radiată sub formă de căldură, iar restul se depozitează sub formă de ATP, adenozin trifosfat, substanţă chimică. Atunci când cantitatea de căldură produsă de organism este egală cu căldura pierdută, persoana respectivă se află în echilibru termic. Organismul poate pierde surplusul de căldură prin două mecanisme: conducţia dublată de radiaţie şi evaporarea mult mai eficientă, datorită valorii mari a căldurii de vaporizare. Ori, evaporarea este posibilă prin transpiraţie (sudaţie), adică prin eliminarea surplusului de apă spre suprafaţa pielii, prin glandele sudoripare situate în dermă şi având un tub de eliminare a apei pînă la suprafaţa externă a epidermei. Mecanismele prin care corpul îşi menţine temperatura constantă sunt foarte complexe. Pe lângă reglajul nervos patronat de hipotalamus, există şi un reglaj hormonal asigurat de către hipofiză, tiroidă şi suprarenale. Ei bine, în creier avem nişte neuroni termosensibili! Aceşti neuroni din hipotalamus sesizează diferenţele de temperatură ale sângelui şi dacă temperatura este prea mare, sângele este direcţionat spre zonele pielii unde se află glandele sudoripare care vor elimina apă prin evaporare şi vor răci organismul. Sudoarea astfel secretată este un ultrafiltrat sanguin, care nu conţine doar apă, ci şi clorură de sodiu, de potasiu, amoniac, acid uric etc. În 24 de ore eliminăm prin transpiraţie puţin peste o jumătate de litru apă. Pentru ca prin evaporare să se poată pierde căldură, este nevoie ca aerul să nu fie foarte încărcat cu vapori de apă. Într-un mediu perfect uscat, corpul suportă temperaturi ale mediului de până la 130 C, pe când într-un mediu cu umiditate crescută, temperatura de 49 C nu este suportată mai mult de câteva minute. Febra înseamnă o creştere a temperaturii corporale peste limita obişnuită a normalului. Aceasta apare în: boli infecţioase (cu microbi sau virusuri), deshidratare (pierdere prea mare de apa din organism), ingerarea de substanţe toxice care afectează centrul de reglare a temperaturii din creier, boli ale creierului, tumori cerebrale. Febra are un rol important în apărarea organismului în infecţiile cu microbi şi virusi şi este considerată o reacţie de necesitate. Prin febră organismul împiedică multiplicarea unor viruşi şi microbi. Din acest motiv, nu vă repeziţi să luaţi medicamente fără recomandarea unui medic, pentru că se poate să nu luaţi medicamentul cel mai potrivit. Medicamentele antitermice sunt medicamentele care scad temperatura corpului. Referent de specialitate: profesor Elena Voiculescu, Liceul Teoretic Grigore Moisil Bucuresti

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

Noțiuni termodinamice de bază

Noțiuni termodinamice de bază Noțiuni termodinamice de bază Alexandra Balan Andra Nistor Prof. Costin-Ionuț Dobrotă COLEGIUL NAȚIONAL DIMITRIE CANTEMIR ONEȘTI Septembrie, 2015 http://fizicaliceu.wikispaces.com Noțiuni termodinamice

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

FIZICĂ. Elemente de termodinamica. ş.l. dr. Marius COSTACHE

FIZICĂ. Elemente de termodinamica. ş.l. dr. Marius COSTACHE FIZICĂ Elemente de termodinamica ş.l. dr. Marius COSTACHE 1 ELEMENTE DE TERMODINAMICĂ 1) Noţiuni introductive sistem fizic = orice porţiune de materie, de la o microparticulă la întreg Universul, porţiune

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

5.1. Noţiuni introductive

5.1. Noţiuni introductive ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

In cazul sistemelor G-L pentru care nu se aplica legile amintite ale echilibrului de faza, relatia y e = f(x) se determina numai experimental.

In cazul sistemelor G-L pentru care nu se aplica legile amintite ale echilibrului de faza, relatia y e = f(x) se determina numai experimental. ECHILIBRUL FAZELOR Este descris de: Legea repartitiei masice Legea fazelor Legea distributiei masice La echilibru, la temperatura constanta, raportul concentratiilor substantei dizolvate in doua faze aflate

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

ŞTIINŢA ŞI INGINERIA. conf.dr.ing. Liana Balteş curs 7

ŞTIINŢA ŞI INGINERIA. conf.dr.ing. Liana Balteş curs 7 ŞTIINŢA ŞI INGINERIA MATERIALELOR conf.dr.ing. Liana Balteş baltes@unitbv.ro curs 7 DIAGRAMA Fe-Fe 3 C Utilizarea oţelului în rândul majorităţii aplicaţiilor a determinat studiul intens al sistemului metalic

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Studiu privind soluţii de climatizare eficiente energetic

Studiu privind soluţii de climatizare eficiente energetic Studiu privind soluţii de climatizare eficiente energetic Varianta iniţială O schemă constructivă posibilă, a unei centrale de tratare a aerului, este prezentată în figura alăturată. Baterie încălzire/răcire

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1 Aparate de măsurat Măsurări electronice Rezumatul cursului 2 MEE - prof. dr. ing. Ioan D. Oltean 1 1. Aparate cu instrument magnetoelectric 2. Ampermetre şi voltmetre 3. Ohmetre cu instrument magnetoelectric

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 LAGĂRELE CU ALUNECARE!" 25.1.Caracteristici.Părţi componente.materiale.!" 25.2.Funcţionarea lagărelor cu alunecare.! 25.1.Caracteristici.Părţi componente.materiale.

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

CURS 5 TERMODINAMICĂ ŞI FIZICĂ STATISTICĂ

CURS 5 TERMODINAMICĂ ŞI FIZICĂ STATISTICĂ CURS 5 ERMODINAMICĂ ŞI FIZICĂ SAISICĂ 5.. Noţiuni fundamentale. Corpurile macroscopice sunt formate din atomi şi molecule, constituenţi microscopici aflaţi într-o mişcare continuă, numită mişcare de agitaţie

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

Unitatea de învăţare nr. 5

Unitatea de învăţare nr. 5 Unitatea de învăţare nr. 5 NOTIUNI DE BAZA IN TERMODINAMICA Cuprins Pagina Obiectivele unităţii de învăţare nr. 5 82 3.1 Agitatia termica 82 3.2 Temperatura si principiul zero al trmodinamicii 83 3.3 Termometre

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii în tehnică

Aplicaţii ale principiului I al termodinamicii în tehnică Aplicaţii ale principiului I al termodinamicii în tehnică Sisteme de încălzire a locuinţelor Scopul tuturor acestor sisteme, este de a compensa pierderile de căldură prin pereţii locuinţelor şi prin sistemul

Διαβάστε περισσότερα

4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice

4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice 4. Măsurarea tensiunilor şi a curenţilor electrici oltmetre electronice analogice oltmetre de curent continuu Ampl.c.c. x FTJ Protectie Atenuator calibrat Atenuatorul calibrat divizor rezistiv R in const.

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

2. STATICA FLUIDELOR. 2.A. Presa hidraulică. Legea lui Arhimede

2. STATICA FLUIDELOR. 2.A. Presa hidraulică. Legea lui Arhimede 2. STATICA FLUIDELOR 2.A. Presa hidraulică. Legea lui Arhimede Aplicația 2.1 Să se determine ce masă M poate fi ridicată cu o presă hidraulică având raportul razelor pistoanelor r 1 /r 2 = 1/20, ştiind

Διαβάστε περισσότερα

2.TEMPERATURA. Fig.2.1 Echilibrul termic între două sisteme A şi B despărţite printr-un perete diaterm.

2.TEMPERATURA. Fig.2.1 Echilibrul termic între două sisteme A şi B despărţite printr-un perete diaterm. 2.TEMPERATURA Multe din mărimile macroscopice (volumul presiunea şi temperatura, de exemplu) sunt legate direct de percepţiile simţurilor noase spre deosebire de proprietăţile microscopice dar penu orice

Διαβάστε περισσότερα

1. PROPRIETĂȚILE FLUIDELOR

1. PROPRIETĂȚILE FLUIDELOR 1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

V O. = v I v stabilizator

V O. = v I v stabilizator Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB 1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul

Διαβάστε περισσότερα

DETERMINAREA CĂLDURII LATENTE DE CRISTALIZARE

DETERMINAREA CĂLDURII LATENTE DE CRISTALIZARE Lucrarea XI DETERMINAREA CĂLDURII LATENTE DE CRISTALIZARE Consideraţii teoretice Orice corp solid are volum propriu, caracteristică ce este întâlnită şi în cazul corpurilor lichide, şi formă proprie. Toate

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.3.ALCHINE

Capitolul 2 - HIDROCARBURI 2.3.ALCHINE Capitolul 2 - HIDROCARBURI 2.3.ALCHINE TEST 2.3.3 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Acetilena poate participa la reacţii de

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

2. MĂRIMI ȘI UNITĂȚI CARACTERISTICE STRUCTURII DISCRETE A SUBSTANȚEI

2. MĂRIMI ȘI UNITĂȚI CARACTERISTICE STRUCTURII DISCRETE A SUBSTANȚEI Prin fenomen termic înțelegem, în general, orice fenomen fizic legat de mișcarea haotică, complet dezordonată care se manifestă la nivel molecular. Variația proprietăților fizice ale substanței la încălzirea

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Laborator biofizică. Noţiuni introductive

Laborator biofizică. Noţiuni introductive Laborator biofizică Noţiuni introductive Mărimi fizice Mărimile fizice caracterizează proprietăţile fizice ale materiei (de exemplu: masa, densitatea), starea materiei (vâscozitatea, fluiditatea), mişcarea

Διαβάστε περισσότερα

Forme de energie. Principiul I al termodinamicii

Forme de energie. Principiul I al termodinamicii Forme de energie. Principiul I al termodinamicii Există mai multe forme de energie, care se pot clasifica după natura modificărilor produse în sistemele termodinamice considerate şi după natura mişcărilor

Διαβάστε περισσότερα

11.3 CIRCUITE PENTRU GENERAREA IMPULSURILOR CIRCUITE BASCULANTE Circuitele basculante sunt circuite electronice prevăzute cu o buclă de reacţie pozitivă, folosite la generarea impulsurilor. Aceste circuite

Διαβάστε περισσότερα

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument: Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,

Διαβάστε περισσότερα

Esalonul Redus pe Linii (ERL). Subspatii.

Esalonul Redus pe Linii (ERL). Subspatii. Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste

Διαβάστε περισσότερα

Fig. 1. Procesul de condensare

Fig. 1. Procesul de condensare Condensarea este procesul termodinamic prin care agentul frigorific îşi schimbă starea de agregare din vapori în lichid, cedând căldură sursei calde, reprezentate de aerul sau apa de răcire a condensatorului.

Διαβάστε περισσότερα

Unitatea atomică de masă (u.a.m.) = a 12-a parte din masa izotopului de carbon

Unitatea atomică de masă (u.a.m.) = a 12-a parte din masa izotopului de carbon ursul.3. Mării şi unităţi de ăsură Unitatea atoică de asă (u.a..) = a -a parte din asa izotopului de carbon u. a.., 0 7 kg Masa atoică () = o ărie adiensională (un nuăr) care ne arată de câte ori este

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1

Διαβάστε περισσότερα

FC Termodinamica. November 24, 2013

FC Termodinamica. November 24, 2013 FC Termodinamica November 24, 2013 Cuprins 1 Noţiuni fundamentale (FC.01.) 2 1.1 Sistem termodinamic... 2 1.2 Stări termodinamice... 2 1.3 Procese termodinamice... 3 1.4 Parametri de stare... 3 1.5 Lucrul

Διαβάστε περισσότερα

TERMOCUPLURI TEHNICE

TERMOCUPLURI TEHNICE TERMOCUPLURI TEHNICE Termocuplurile (în comandă se poate folosi prescurtarea TC") sunt traductoare de temperatură care transformă variaţia de temperatură a mediului măsurat, în variaţie de tensiune termoelectromotoare

Διαβάστε περισσότερα

Lucrul mecanic şi energia mecanică.

Lucrul mecanic şi energia mecanică. ucrul mecanic şi energia mecanică. Valerica Baban UMC //05 Valerica Baban UMC ucrul mecanic Presupunem că avem o forţă care pune în mişcare un cărucior şi îl deplasează pe o distanţă d. ucrul mecanic al

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională

Διαβάστε περισσότερα

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R În cele ce urmează, vom studia unele proprietăţi ale mulţimilor din R. Astfel, vom caracteriza locul" unui punct în cadrul unei mulţimi (în limba

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.5.ARENE

Capitolul 2 - HIDROCARBURI 2.5.ARENE Capitolul 2 - HIDROCARBURI 2.5.ARENE TEST 2.5.2 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Radicalul C 6 H 5 - se numeşte fenil. ( fenil/

Διαβάστε περισσότερα

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie) Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului

Διαβάστε περισσότερα

I. Forţa. I. 1. Efectul static şi efectul dinamic al forţei

I. Forţa. I. 1. Efectul static şi efectul dinamic al forţei I. Forţa I. 1. Efectul static şi efectul dinamic al forţei Interacţionăm cu lumea în care trăim o lume în care toate corpurile acţionează cu forţe unele asupra altora! Întrebările indicate prin: * 1 punct

Διαβάστε περισσότερα

ENUNŢURI ŞI REZOLVĂRI 2013

ENUNŢURI ŞI REZOLVĂRI 2013 ENUNŢURI ŞI REZOLVĂRI 8. Un conductor de cupru ( ρ =,7 Ω m) are lungimea de m şi aria secţiunii transversale de mm. Rezistenţa conductorului este: a), Ω; b), Ω; c), 5Ω; d) 5, Ω; e) 7, 5 Ω; f) 4, 7 Ω. l

Διαβάστε περισσότερα

Criptosisteme cu cheie publică III

Criptosisteme cu cheie publică III Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.

Διαβάστε περισσότερα

Măsurări în Electronică şi Telecomunicaţii 4. Măsurarea impedanţelor

Măsurări în Electronică şi Telecomunicaţii 4. Măsurarea impedanţelor 4. Măsurarea impedanţelor 4.2. Măsurarea rezistenţelor în curent continuu Metoda comparaţiei ceastă metodă: se utilizează pentru măsurarea rezistenţelor ~ 0 montaj serie sau paralel. Montajul serie (metoda

Διαβάστε περισσότερα

2. CONDENSATOARE 2.1. GENERALITĂŢI PRIVIND CONDENSATOARELE DEFINIŢIE UNITĂŢI DE MĂSURĂ PARAMETRII ELECTRICI SPECIFICI CONDENSATOARELOR SIMBOLURILE

2. CONDENSATOARE 2.1. GENERALITĂŢI PRIVIND CONDENSATOARELE DEFINIŢIE UNITĂŢI DE MĂSURĂ PARAMETRII ELECTRICI SPECIFICI CONDENSATOARELOR SIMBOLURILE 2. CONDENSATOARE 2.1. GENERALITĂŢI PRIVIND CONDENSATOARELE DEFINIŢIE UNITĂŢI DE MĂSURĂ PARAMETRII ELECTRICI SPECIFICI CONDENSATOARELOR SIMBOLURILE CONDENSATOARELOR 2.2. MARCAREA CONDENSATOARELOR MARCARE

Διαβάστε περισσότερα

I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare.

I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Capitolul 3 COMPUŞI ORGANICI MONOFUNCŢIONALI 3.2.ACIZI CARBOXILICI TEST 3.2.3. I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Reacţia dintre

Διαβάστε περισσότερα

2CP Electropompe centrifugale cu turbina dubla

2CP Electropompe centrifugale cu turbina dubla 2CP Electropompe centrifugale cu turbina dubla DOMENIUL DE UTILIZARE Capacitate de până la 450 l/min (27 m³/h) Inaltimea de pompare până la 112 m LIMITELE DE UTILIZARE Inaltimea de aspiratie manometrică

Διαβάστε περισσότερα

145. Sã se afle acceleraţiile celor trei corpuri din figurã. Ramurile firului care susţin scripetele mobil sunt verticale.

145. Sã se afle acceleraţiile celor trei corpuri din figurã. Ramurile firului care susţin scripetele mobil sunt verticale. Tipuri de forţe 127. Un corp cu masa m = 5 kg se află pe o suprafaţã orizontalã pe care se poate deplasa cu frecare (μ= 0,02). Cu ce forţã orizontalã F trebuie împins corpul astfel încât sã capete o acceleraţie

Διαβάστε περισσότερα

Continue. Answer: a. Logout. e-desc» Concurs Phi» Quizzes» Setul 1 - Clasa a X-a» Attempt 1. 1 of 2 4/14/ :27 PM. Marks: 0/1.

Continue. Answer: a. Logout. e-desc» Concurs Phi» Quizzes» Setul 1 - Clasa a X-a» Attempt 1. 1 of 2 4/14/ :27 PM. Marks: 0/1. Concurs Phi: Setul 1 - Clasa a X-a 1 of 2 4/14/2008 12:27 PM Logout e-desc» Concurs Phi» Quizzes» Setul 1 - Clasa a X-a» Attempt 1 1 Un termometru cu lichid este gradat intr-o scara de temperatura liniara,

Διαβάστε περισσότερα

REDRESOARE MONOFAZATE CU FILTRU CAPACITIV

REDRESOARE MONOFAZATE CU FILTRU CAPACITIV REDRESOARE MONOFAZATE CU FILTRU CAPACITIV I. OBIECTIVE a) Stabilirea dependenţei dintre tipul redresorului (monoalternanţă, bialternanţă) şi forma tensiunii redresate. b) Determinarea efectelor modificării

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

UNITĂŢI Ţ DE MĂSURĂ. Măsurarea mărimilor fizice. Exprimare în unităţile de măsură potrivite (mărimi adimensionale)

UNITĂŢI Ţ DE MĂSURĂ. Măsurarea mărimilor fizice. Exprimare în unităţile de măsură potrivite (mărimi adimensionale) PARTEA I BIOFIZICA MOLECULARĂ 2 CURSUL 1 Sisteme de unităţiţ de măsură. Atomi şi molecule. UNITĂŢI Ţ DE MĂSURĂ Măsurarea mărimilor fizice Exprimare în unităţile de măsură potrivite (mărimi adimensionale)

Διαβάστε περισσότερα

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, vidiu Gabriel Avădănei, Florin Mihai Tufescu, Capitolul 6 Amplificatoare operaţionale 58. Să se calculeze coeficientul de amplificare în tensiune pentru amplficatorul inversor din fig.58, pentru care se

Διαβάστε περισσότερα

Curs 2 DIODE. CIRCUITE DR

Curs 2 DIODE. CIRCUITE DR Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu

Διαβάστε περισσότερα

UnităŃile de măsură pentru tensiune, curent şi rezistenńă

UnităŃile de măsură pentru tensiune, curent şi rezistenńă Curentul Un circuit electric este format atunci când este construit un drum prin care electronii se pot deplasa continuu. Această mişcare continuă de electroni prin firele unui circuit poartă numele curent,

Διαβάστε περισσότερα

ALGEBRĂ ŞI ELEMENTE DE ANALIZĂ MATEMATICĂ FIZICĂ

ALGEBRĂ ŞI ELEMENTE DE ANALIZĂ MATEMATICĂ FIZICĂ Sesiunea august 07 A ln x. Fie funcţia f : 0, R, f ( x). Aria suprafeţei plane delimitate de graficul funcţiei, x x axa Ox şi dreptele de ecuaţie x e şi x e este egală cu: a) e e b) e e c) d) e e e 5 e.

Διαβάστε περισσότερα

REACŢII DE ADIŢIE NUCLEOFILĂ (AN-REACŢII) (ALDEHIDE ŞI CETONE)

REACŢII DE ADIŢIE NUCLEOFILĂ (AN-REACŢII) (ALDEHIDE ŞI CETONE) EAŢII DE ADIŢIE NULEFILĂ (AN-EAŢII) (ALDEIDE ŞI ETNE) ompușii organici care conțin grupa carbonil se numesc compuși carbonilici și se clasifică în: Aldehide etone ALDEIDE: Formula generală: 3 Metanal(formaldehida

Διαβάστε περισσότερα

Scoruri standard Curba normală (Gauss) M. Popa

Scoruri standard Curba normală (Gauss) M. Popa Scoruri standard Curba normală (Gauss) M. Popa Scoruri standard cunoaştere evaluare, măsurare evaluare comparare (Gh. Zapan) comparare raportare la un sistem de referință Povestea Scufiței Roşii... 70

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2016 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2016 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii ADOLF HAIMOVICI, 206 Clasa a IX-a profil științe ale naturii, tehnologic, servicii. Se consideră predicatul binar p(x, y) : 4x + 3y = 206, x, y N și mulțimea A = {(x, y) N N 4x+3y = 206}. a) Determinați

Διαβάστε περισσότερα

CUPRINS 9. Echilibrul sistemelor de corpuri rigide... 1 Cuprins..1

CUPRINS 9. Echilibrul sistemelor de corpuri rigide... 1 Cuprins..1 CURS 9 ECHILIBRUL SISTEMELOR DE CORPURI RIGIDE CUPRINS 9. Echilibrul sistemelor de corpuri rigide........... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 9.1. Generalităţi. Legături intermediare...2

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE TEST 2.4.1 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Rezolvare: 1. Alcadienele sunt hidrocarburi

Διαβάστε περισσότερα