Lucrul mecanic şi energia mecanică.
|
|
- Ηιονη Φωτόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ucrul mecanic şi energia mecanică. Valerica Baban UMC //05 Valerica Baban UMC
2 ucrul mecanic Presupunem că avem o forţă care pune în mişcare un cărucior şi îl deplasează pe o distanţă d. ucrul mecanic al unei forţe constante F este o mărime fizică scalară egală cu produsul dintre mărimea forţei care acţionează pe aceeaşi direcţie şi în acelaşi sens cu deplasarea şi valoarea deplasării. În cazul mai general în care forţa constantă F face un unghi α cu direcţia deplasării lucrul mecanic reprezintă produsul scalar dintre vectorul forţă şi vectorul deplasare. Fd F d Fd cos Unitatea de măsură pentru lucru mecanic în Sistemul Internaţional este Joule-ul. Nm J( Joule) SI //05 Valerica Baban UMC
3 ucrul mecanic motor. ucrul mecanic rezistiv. Dacă lucrul mecanic efectuat de o forţă este pozitiv se numeşte lucru mecanic motor. ucru mecanic motor efectuează în general forţele de tracţiune. Dacă lucrul mecanic efectuat de o forţă este negativ se numeşte lucru mecanic rezistiv sau rezistent ucru mecanic rezistiv efectuează în general forţele de frecare. Dacă o forţă este perpendiculară pe direcţia deplasării corpului eceasta nu efectuează lucru mecanic pentru că nu contribuie în nici un fel la deplasarea corpului. Un exemplu care ilustrează situaţiile prezentate mai sus este dat în slide-ul următor. //05 Valerica Baban UMC
4 Exemplu Considerăm un cal care trage de o căruţă cu o forţă F=00N orientată sub un unghi de 30 grade faţă de orizontală pe o distanţă de 0m. Forţa de frecare este de 0N. //05 Valerica Baban UMC
5 Se deplasează pe o anumită distanţă d =0m Exemplu Forţele perpendiculare pe deplasare (G greutatea, N normala) nu efectuează lucru mecanic G N Gd cos 90 0 Nd cos 90 0 Ff 0N ucrul mecanic efectuat de forţa de frecare 0N 0m 00J Ff ucrul mecanic efectuat de forţa de tracţiune F Fd cos 00N 0m0, J ucru mecanic rezistent < 0 //05 Valerica Baban UMC F ucru mecanic motor > 0
6 Puterea mecanică Puterea medie reprezintă lucrul mecanic efectuat într-un interval de timp şi se calculează conform relaţiei: Peter şi Ema urcă nişte trepte efectuând lucru mecanic impotriva propriei greutăţi. Forţa minimă necesară urcării este egală cu greutatea fiecăruia. Ema Gh 300N, m 360J 360J P 8W t 0s Exemplu privind modul în care se calculează puterea mecanică. P m t P W ( Watt ) m SI J s Peter Gh 500N, m 600J 600J P 60W t 0s //05 Valerica Baban UMC
7 Ce mănâncă fiecare animăluţ. Problemă O pisică un căţel şi un şoricel deplasând un sa Am tras cu N o distanţă de 8m timp de 4s Am tras cu 3N o distanţă de 4m timp de 7s Am tras cu 3N o distanţă de 9m timp de 5s. Cine efectuează cel mai mult lucrul mecanic?. Cine dezvoltă cea mai mare 3. Cine este cel mai eficient? putere? //05 Valerica Baban UMC
8 Răspunsul la problemă. Cine efectuează cel mai mult lucrul mecanic? Pisica Câţelul Soricelul N 8m 6J N 4m J 3 3N 9m 7J. Cine dezvoltă cea mai mare putere? 3. Cine este cel mai eficient? Eficienţa (randamentul) este dată de măsura în care energia consumată se transformă în lucru mecanic util. În acest caz este vorba de energia consumată prin ceea ce a mâncat fiecare. Pisica Câţelul Soricelul P 6J t 4s P P t 4W J 7s 7J 3 3 t 3 5s,7W 5,4W Pisica Câţelul Soricelul 6J E 3J J 0,56 5, 6% E 6J 7J 0, 75 75% 0,586 58, 6% 3 3 E 3 46J //05 Valerica Baban UMC
9 ucrul mecanic al unei forţe variabile Dacă forţa care acţionează asupra unui sistem nu este constantă atunci relaţia nu poate fi aplicată. Fd cos F d ucrul mecanic poate fi interpretat ca fiind aria cuprinsă între graficul F(x) şi axa Ox (axa deplasării) x F( x) dx x a) F = const x Fdx F dx F( x x ) Fd x x x x //05 Valerica Baban UMC x b) Forţă variabilă ( ) 5 x 0 ( ) ( 5 ) F x x x F x dx x x dx x m 0m x x x (000 8) J (00 4) J (0 ) J 3 3 ( ) J 586J
10 Energia mecanică Energia mecanică este o mărime fizică scalară care măsoară capacitatea unui sistem de a efectua lucru mecanic. Orice corp sau sistem care poate efectua lucru mecanic spunem că are energie. Spre deosebire de lucru mecanic care este o mărime ce descrie un proces, energia mecanică descrie starea unui sistem. Energia mecanică poate fi: energie cinetică (de mişcare). Orice corp care are viteză are energie cinetică. energie potenţială gravitaţională, este dată de poziţia unui corp sau sistem de corpuri în câmpul gravitaţional al Pământului. energie potenţială elastică, este dată de deformarea corpurilor elastice. Energie potenţială gravitaţională //05 Valerica Baban UMC Energie cinetică Balon umflat Balon care se dezumflă Energie potenţială elastică
11 Cum se calculează energia mecanică Energia cinetică energia datorată mişcării unui corp Peter Ec mv MAX m v 70kg 3 m / s Ec mv 35J m v 0kg m / s Ec mv 40J //05 Valerica Baban UMC
12 Cum se calculează energia mecanică Energia potenţială gravitaţională datorată poziţiei unui corp în câmp gravitaţional m=40kg Epg mgh G Epg mgh 40kg 9,8 m/ s 3m 76J h=3m Epg = 0 Nivel de referinţă pentru energia potenţială gravitaţională //05 Valerica Baban UMC
13 Cum se calculează energia mecanică Energia potenţială elastică energia înmagazinată de orice corp deformat. Epe kx Resort nedeformat, Epe = 0J Resort comprimat 0 / (0,0 ) 0, Epe kx N m m J //05 Valerica Baban UMC
14 Conservarea energiei mecanice egea de conservare a energiei mecanice Este o lege fundamentală în fizică egea conservării energiei afirmă că într-un sistem de forţe conservativ, în absenţa forţelor de frecare, energia totală a unui sistem fizic se conservă (adică rămâne constantă în timp). Exemplul m=0kg g=0m/s Starea A Etotal = const. Considerăm cazul unui corp care cade liber. În absenţa frecării energia totală în starea A este egală cu energia totală în B. Epg = mgh = 400J Ec = 0J Etotal =400J Starea B 4m Nivel de referinţă Epg=0 Epg = 0J Ec = 400J Etotal =400J v //05 Valerica Baban UMC
15 Conservarea energiei mecanice Exemplul Mişcarea se consideră fără frecare E E E 90J total c pg v 0 E mgh 90J Ec mv 0J pg Epg h 3,m mg E mgh 0J Ec mv 90J pg E E E 90J total c pg E mgh 600J Ec mv 30J pg E E E 90J total c pg Nivel de referinţă pentru energia potenţială gravitaţională Epg=0J //05 Valerica Baban UMC
16 Exemplul 3 Conservarea energiei mecanice m = 0,kg Resort iniţial nedeformat E total = 0J Ec 0J 0 / (0,) 0, Epe kx N m m J Etotal 0,J v Etotal Ec 0,J E 0J 0,J pe Ec mv 0,J v E m c,4 m / s //05 Valerica Baban UMC
17 Ce se întâmplă când nu se conservă energia? Final Considerăm o maşină în frânare, motorul este decuplat ( nu există forţă de tracţiune) 0 Ff 0% mg 0000N 00 FFf 4000J E E totalá c0 m E m v 000 kg 400 s E J c0 0 c0 Ec E E E ( F d cos80) E ( F d) c c0 Ff c0 f c0 f E J 40000J J c //05 Valerica Baban UMC?
18 Ce se întâmplă când nu se conservă energia? E E egea de variaţie a energie totale tot _ final tot _ initial Ff a ce distanţă se opreşte maşina? //05 Valerica Baban UMC
19 Teorema de variaţie a energiei cinetice Cât este lucrul mecanic efectuat de fiecare forţă? Cât este lucrul mecanic total? E E Teorema de variaţie a energie cinetice c_ final c_ initial rezul tant //05 Valerica Baban UMC
Lucrul mecanic. Puterea mecanică.
1 Lucrul mecanic. Puterea mecanică. In acestă prezentare sunt discutate următoarele subiecte: Definitia lucrului mecanic al unei forţe constante Definiţia lucrului mecanic al unei forţe variabile Intepretarea
Clasa a IX-a, Lucrul mecanic. Energia
1. LUCRUL MECANIC 1.1. Un resort având constanta elastică k = 50Nm -1 este întins cu x = 0,1m de o forță exterioară. Ce lucru mecanic produce forța pentru deformarea resortului? 1.2. De un resort având
Aplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
Lucrul si energia mecanica
Lucrul si energia mecanica 1 Lucrul si energia mecanica I. Lucrul mecanic este produsul dintre forta si deplasare: Daca forta este constanta, atunci dl = F dr. L 1 = F r 1 cos α, unde r 1 este modulul
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
a. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
1. (4p) Un mobil se deplasează pe o traiectorie curbilinie. Dependența de timp a mărimii vitezei mobilului pe traiectorie este v () t = 1.
. (4p) Un mobil se deplasează pe o traiectorie curbilinie. Dependența de timp a mărimii vitezei mobilului pe traiectorie este v () t.5t (m/s). Să se calculeze: a) dependența de timp a spațiului străbătut
(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
Metode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
Curs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
I. Forţa. I. 1. Efectul static şi efectul dinamic al forţei
I. Forţa I. 1. Efectul static şi efectul dinamic al forţei Interacţionăm cu lumea în care trăim o lume în care toate corpurile acţionează cu forţe unele asupra altora! Întrebările indicate prin: * 1 punct
Ministerul Educaţiei, Cercetării şi Inovării Centrul Naţional pentru Curriculum şi Evaluare în Învăţământul Preuniversitar
A. SUBIECTUL III Varianta 001 (15 puncte) O locomotivă cu puterea P = 480 kw tractează pe o cale ferată orizontală o garnitură de vagoane. Masa totală a trenului este m = 400 t. Forţa de rezistenţă întâmpinată
FIZICĂ. Oscilatii mecanice. ş.l. dr. Marius COSTACHE
FIZICĂ Oscilatii mecanice ş.l. dr. Marius COSTACHE 3.1. OSCILAŢII. Noţiuni generale Oscilaţii mecanice Oscilaţia fenomenul fizic în decursul căruia o anumită mărime fizică prezintă o variaţie periodică
V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
Optica geometricǎ. Formula de definiţie
Tabel recapitulativ al marimilor fizice învǎţate în clasa a IX-a Optica geometricǎ Nr. crt. Denumire Simbol Unitate de mǎsurǎ Formula de definiţie 1 Indicele de n adimensional n=c/v refracţie 2 Formula
Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
Continue. Answer: a. 0,25 b. 0,15 c. 0,1 d. 0,2 e. 0,3. Answer: a. 0,1 b. 0,25 c. 0,17 d. 0,02 e. 0,3
Concurs Phi: Setul 1 - Clasa a VII-a Logout e-desc» Concurs Phi» Quizzes» Setul 1 - Clasa a VII-a» Attempt 1 1 Pentru a deplasa uniform pe orizontala un corp de masa m = 18 kg se actioneaza asupra lui
ENUNŢURI ŞI REZOLVĂRI 2013
ENUNŢURI ŞI REZOLVĂRI 8. Un conductor de cupru ( ρ =,7 Ω m) are lungimea de m şi aria secţiunii transversale de mm. Rezistenţa conductorului este: a), Ω; b), Ω; c), 5Ω; d) 5, Ω; e) 7, 5 Ω; f) 4, 7 Ω. l
Sisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
Integrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
Sistem hidraulic de producerea energiei electrice. Turbina hidraulica de 200 W, de tip Power Pal Schema de principiu a turbinei Power Pal
Producerea energiei mecanice Pentru producerea energiei mecanice, pot fi utilizate energia hidraulica, energia eoliană, sau energia chimică a cobustibililor în motoare cu ardere internă sau eternă (turbine
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
Curs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,
REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
Curs - programul Electrotehnică Versiunea Ș. L. Mihail-Ioan Pop
Fizică I Curs - programul Electrotehnică Versiunea 4.1.1 Ș. L. Mihail-Ioan Pop 2018 2 Cuprins Introducere 5 1 Mecanică 7 1.1 Opțional: Mărimi și unități de măsură. Sistemul Internațional (SI).... 7 1.2
CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1
CURS 3 SISTEME DE FORŢE (continuare) CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 3.1. Momentul forţei în raport cu un punct...2 Test de autoevaluare
TEST GRILĂ DE VERIFICARE A CUNOŞTINŢELOR LA MATEMATICĂ-FIZICĂ VARIANTA 1 MATEMATICĂ
ROMÂNIA MINISTERUL APĂRĂRII NAŢIONALE ŞCOALA MILITARĂ DE MAIŞTRI MILITARI ŞI SUBOFIŢERI A FORŢELOR TERESTRE BASARAB I Concurs de admitere la Programul de studii postliceale cu durata de 2 ani (pentru formarea
IV. LUCRUL MECANIC. RANDAMENTUL. PUTEREA. ENERGIA MECANICĂ.
IV. LUCRUL MECANIC. RANDAMENTUL. UTEREA. ENERGIA MECANICĂ. LUCRUL MECANIC. Orice activitate desfășurată de o, anial sau așină se nuește lucru. Atunci când, în ura unei activități, corpul suferă o deplasare,
2. STATICA FLUIDELOR. 2.A. Presa hidraulică. Legea lui Arhimede
2. STATICA FLUIDELOR 2.A. Presa hidraulică. Legea lui Arhimede Aplicația 2.1 Să se determine ce masă M poate fi ridicată cu o presă hidraulică având raportul razelor pistoanelor r 1 /r 2 = 1/20, ştiind
Lucrul si energia mecanica
Impulul mecanic 1 Impulul mecanic Impulul mecanic al punctului material ete produul dintre maa lui la viteza: p = m v. Din legea a II-a a lui Newton obtinem: F = m a = m v v 0 t F t = m v m v 0. F t poarta
145. Sã se afle acceleraţiile celor trei corpuri din figurã. Ramurile firului care susţin scripetele mobil sunt verticale.
Tipuri de forţe 127. Un corp cu masa m = 5 kg se află pe o suprafaţã orizontalã pe care se poate deplasa cu frecare (μ= 0,02). Cu ce forţã orizontalã F trebuie împins corpul astfel încât sã capete o acceleraţie
III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
ALGEBRĂ ŞI ELEMENTE DE ANALIZĂ MATEMATICĂ FIZICĂ
Sesiunea august 07 A ln x. Fie funcţia f : 0, R, f ( x). Aria suprafeţei plane delimitate de graficul funcţiei, x x axa Ox şi dreptele de ecuaţie x e şi x e este egală cu: a) e e b) e e c) d) e e e 5 e.
Profesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
Metode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite
Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval
Dinamica. F = F 1 + F F n. si poarta denumirea de principiul suprapunerii fortelor.
Dinamica 1 Dinamica Masa Proprietatea corpului de a-si pastra starea de repaus sau de miscare rectilinie uniforma cand asupra lui nu actioneaza alte corpuri se numeste inertie Masura inertiei este masa
CUPRINS 2. Sisteme de forţe... 1 Cuprins..1
CURS 2 SISTEME DE FORŢE CUPRINS 2. Sisteme de forţe.... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 2.1. Forţa...2 Test de autoevaluare 1...3 2.2. Proiecţia forţei pe o axă. Componenta forţei
Capitolul 1. Noțiuni Generale. 1.1 Definiții
Capitolul 1 Noțiuni Generale 1.1 Definiții Forța este acțiunea asupra unui corp care produce accelerația acestuia cu condiția ca asupra corpului să nu acționeze şi alte forțe de sens contrar primeia. Forța
riptografie şi Securitate
riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare
10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea
Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.
liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia
2. NOŢIUNI SUMARE ASUPRA DEPLASĂRII AUTOMOBILULUI
2. NOŢIUNI SUMARE ASUPRA DEPLASĂRII AUTOMOBILULUI 2.1. Consideraţii generale Utilizarea automobilului constă în transportul pe drumuri al pasagerilor, încărcăturilor sau al utilajului special montat pe
MARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
UNELE APLICAŢII ALE FORŢELOR DE INERŢIE
70 Metodica fizicii UNELE APLICAŢII ALE FORŢELOR DE INERŢIE Mircea COLPAJIU, UTM, Chişinău Stefan TIRON, USM, Chişinău În articolul precedent (Revista de fizică, nr. 2, 1995) s-a fost menţionat că atunci
V O. = v I v stabilizator
Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,
SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0
SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
III. Statica III. Statica. Echilibrul mecanic al corpurilor. 1. Sistem de forțe concurente. Sistemul de forțe
III. Statica III. Statica. Echilibrul mecanic al corpurilor. 1. Sistem de forțe concurente. Sistemul de forțe reprezintă totalitatea forțelor care acționează simultan asupra unui corp, Fig. 1. În Fig.
Elemente de mecanică şi aplicaţii în biologie
Biofizică Elemente de mecanică şi aplicaţii în biologie Capitolul II. Elemente de mecanică şi aplicaţii în biologie Acest capitol are drept scop familiarizarea cititorului cu cele mai importante noţiuni
Forme de energie. Principiul I al termodinamicii
Forme de energie. Principiul I al termodinamicii Există mai multe forme de energie, care se pot clasifica după natura modificărilor produse în sistemele termodinamice considerate şi după natura mişcărilor
MECANICA CINEMATICA. Cinematica lucrează cu noţiunile de spaţiu, timp, şi derivatele lor viteză şi acceleraţie.
unde cos(a,b) este cosinusul unghiului dintre cei doi vectori a şi b, iar a şi b sunt modulele vectorilor a şi b. Fiindcă cos(π/)=0, produsele i j, j k şi k i sunt nule, iar produsele i i, j j şi k k sunt
1. Introducere in Fizică
FIZICA se ocupă cu studiul proprietăţilor şi naturii materiei, a diferitelor forme de energie şi a metodelor prin care materia şi enegia interacţionează în lumea în care ne înconjoară.. Introducere in
5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
Se consideră că un automobil Dacia Logan, având masa de 1000 kg, se deplasează rectiliniu uniform, pe o autostradă, cu viteza de 100 km/h.
Automobile şi motoare cu ardere internă Se consideră că un automobil Dacia Logan, având masa de 000 kg, se deplasează rectiliniu uniform, pe o autostradă, cu viteza de 00 km/h.. Să se determine valoarea
5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
Clasa a IX-a - Set 1. Completat: Saturday, 10 May 2003 Nota: 100/100
Φ: Set file:///e:/stoleriu/artwork/web_stoner/rezultate003/0/teste/... of 3/0/008 :0 PM Raspunsuri corecte Clasa a IX-a - Set Completat: Saturday, 0 May 003 Nota: 00/00 (LA)In figura este reprezentat un
II. Dinamica (2) Unde F și F sunt forța de acțiune respectiv de reacțiune, Fig. 1.
II. Dinamica 1. Principiile mecanicii clasice (sau principiile mecanicii newtoniene, sau principiile dinamicii). 1.1 Principiul I, (al inerției): Un corp își păstrează starea de repaus relativ sau de mișcare
Problema a II - a (10 puncte) Diferite circuite electrice
Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător
Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:
Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,
Capitolul 30. Transmisii prin lant
Capitolul 30 Transmisii prin lant T.30.1. Sa se precizeze domeniile de utilizare a transmisiilor prin lant. T.30.2. Sa se precizeze avantajele si dezavantajele transmisiilor prin lant. T.30.3. Realizati
Asupra unei inegalităţi date la barajul OBMJ 2006
Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale
4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].
Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie
CURS 9 MECANICA CONSTRUCŢIILOR
CURS 9 MECANICA CONSTRUCŢIILOR Conf. Dr. Ing. Viorel Ungureanu CINEMATICA NOŢIUNI DE BAZĂ ÎN CINEMATICA Cinematica studiază mişcările mecanice ale corpurilor, fără a lua în considerare masa acestora şi
5.4. MULTIPLEXOARE A 0 A 1 A 2
5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării
CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii
Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1
Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
Seminar electricitate. Seminar electricitate (AP)
Seminar electricitate Structura atomului Particulele elementare sarcini elementare Protonii sarcini elementare pozitive Electronii sarcini elementare negative Atomii neutri dpdv electric nr. protoni =
Criptosisteme cu cheie publică III
Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.
CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi
Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială
2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2
.1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,
Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
1. PROPRIETĂȚILE FLUIDELOR
1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea
UnităŃile de măsură pentru tensiune, curent şi rezistenńă
Curentul Un circuit electric este format atunci când este construit un drum prin care electronii se pot deplasa continuu. Această mişcare continuă de electroni prin firele unui circuit poartă numele curent,
3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4
SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei
SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0
Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,
Subiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
PARTEA A II A COMPLETĂRI, ÎNTREBĂRI ŞI RĂSPUNSURI CAPITOLUL 1 - FENOMENE MECANICE
PARTEA A II A COMPLETĂRI, ÎNTREBĂRI ŞI RĂSPUNSURI Introducere În această parte, reluăm aceleaşi capitole, încercând să realizăm o adâncire a cunoştinţelor, adaugând diverse observaţii sau aspecte particulare,
5. Un camion a frânat pe o distanţă d= 75 m într-un timp t = 10 s. Care a fost viteza camionului înainte de frânare?
1. Un mobil, mişcându-se cu acceleraţia a = 2,0 m/s 2, a parcurs distanţa d = 100 m în timpul t = 5,0 s. Care a fost viteza iniţială? 2. Ce distanţă a parcurs un automobil în timp ce viteza sa a crescut
Examen AG. Student:... Grupa:... ianuarie 2011
Problema 1. Pentru ce valori ale lui n,m N (n,m 1) graful K n,m este eulerian? Problema 2. Să se construiască o funcţie care să recunoască un graf P 3 -free. La intrare aceasta va primi un graf G = ({1,...,n},E)
Curs 2 DIODE. CIRCUITE DR
Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu
Laborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3
SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest
GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii
GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile
Subiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
Maşina sincronă. Probleme
Probleme de generator sincron 1) Un generator sincron trifazat pentru alimentare de rezervă, antrenat de un motor diesel, are p = 3 perechi de poli, tensiunea nominală (de linie) U n = 380V, puterea nominala
ELECTROMAGNETISM.
ELECTROMAGNETISM http://rumble.com/viral/p935765-the-power-of-nature-expressed-by-electricity.html http://openstockblog.com/incredible-faces-of-naturephotography-by-evan-ludes/electric-tsunami-ii/ ELECTROMAGNETISM
2CP Electropompe centrifugale cu turbina dubla
2CP Electropompe centrifugale cu turbina dubla DOMENIUL DE UTILIZARE Capacitate de până la 450 l/min (27 m³/h) Inaltimea de pompare până la 112 m LIMITELE DE UTILIZARE Inaltimea de aspiratie manometrică
1. Examenul de bacalaureat național 2015 Proba E. d)- Fizică A. MECANICĂ
1. Examenul de bacalaureat național 2015 Proba E. d)- Fizică A. MECANICĂ Se consideră acceleraṭia gravitaṭională g = 10m/s 2. I. Pentru itemii 1-5 scrieṭi pe foaia de răspuns litera corespunzătoare răspunsului
Seminar 5 Analiza stabilității sistemelor liniare
Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare
2. Rezistența electrică (R) Ohm (Ω) 1Ω = 1kg A -2 m 2 s Rezistivitatea (ρ) Ohm metru (Ω m) 1Ω m = 1kg A -2 m 3 s -3
SINTEZE DE BACALAUREAT - ELECTRICITATE 1. Lungimea (l) metrul (m) ELECTRICITATEA 2. MĂRIMI ȘI UNITĂȚI DE MĂSURĂ DERIVATE, ÎN SISTEMUL INTERNAȚIONAL NR. DENUMIREA MĂRIMII FIZICE 1. Tensiunea electrică,
Curentul electric stationar
Curentul electric stationar 1 Curentul electric stationar Tensiunea electromotoare. Legea lui Ohm pentru un circuit interg. Regulile lui Kirchhoft. Lucrul si puterea curentului electric continuu 1. Daca