INTELIGENŢĂ ARTIFICIALĂ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "INTELIGENŢĂ ARTIFICIALĂ"

Transcript

1 INTELIGENŢĂ ARTIFICIALĂ Curs 11 Sisteme inteligente Sisteme care învaţă singure maşini cu support vectorial - K-means - Laura Dioşan

2 2 Sumar A. Scurtă introducere în Inteligenţa Artificială (IA) B. Rezolvarea problemelor prin căutare Definirea problemelor de căutare Strategii de căutare Strategii de căutare neinformate Strategii de căutare informate Strategii de căutare locale (Hill Climbing, Simulated Annealing, Tabu Search, Algoritmi evolutivi, PSO, ACO) Strategii de căutare adversială C. Sisteme inteligente Sisteme bazate pe reguli în medii certe Sisteme bazate pe reguli în medii incerte (Bayes, factori de certitudine, Fuzzy) Sisteme care învaţă singure Arbori de decizie Reţele neuronale artificiale Algoritmi evolutivi Maşini cu suport vectorial Algoritmi de clusterizare Sisteme hibride

3 3 Materiale de citit şi legături utile capitolul 15 din C. Groşan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011 Capitolul 9 din T. M. Mitchell, Machine Learning, McGraw-Hill Science, 1997 Documentele din directorul svm

4 4 Sisteme inteligente Sisteme expert Sisteme bazate pe reguli Bayes Fuzzy Arbori de decizie Reţele neuronale artificiale Maşini cu suport vectorial Algoritmi evolutivi Obiecte, frame-uri, agenţi Sisteme bazate pe cunoştinţe Inteligenţă computaţională

5 5 Sisteme inteligente SIS Învăţare automată Tipologie În funcţie de experienţa acumulată în timpul învăţării: SI cu învăţare supervizată SI cu învăţare nesupervizată SI cu învăţare activă SI cu învăţare cu întărire În funcţie de modelul învăţat (algoritmul de învăţare): Arbori de decizie Reţele neuronale artificiale Maşini cu suport vectorial (MSV) Algoritmi evolutivi Modele Markov ascunse

6 6 Sisteme inteligente SIS MSV Maşini cu suport vectorial (MSV) Definire Tipuri de probleme rezolvabile Avantaje Dificultăţi Tool-uri

7 7 Sisteme inteligente SIS MSV Definire Dezvoltate de Vapnik în 1970 Popularizate după 1992 Clasificatori liniari care identifică un hiperplan de separare a clasei pozitive de clasa negativă Au o fundamentare teoretică foarte riguroasă Funcţionează foarte bine pentru date de volum mare (analiza textelor, analiza imaginilor) Reamintim Problemă de învăţare supervizată în care avem un set de date de forma: (x d, t d ), cu: x d R m x d =(x d 1, x d 2,..., x d m) t d R t d {1, -1}, 1 clasă pozitivă, -1 clasă negativă cu d = 1,2,...,n,n+1,n+2,...,N Primele n date (se cunosc x d şi t d ) vor fi folosite drept bază de antrenament a MSV Ultimele N-n date (se cunosc doar x d, fără t d ) vor fi folosite drept bază de testare a MSV

8 8 Sisteme inteligente SIS MSV Definire MSV găseşte o funcţie liniară de forma f(x) = w x + b, (w -vector pondere) a.î. y i 1 1 if if w x w x i i b 0 b 0 w x + b = 0 hiperplanul de decizie care separă cele 2 clase

9 9 Sisteme inteligente SIS MSV Definire Pot exista mai multe hiperplane Care este cel mai bun hiperplan? MSV caută hiperplanul cu cea mai largă margine (cel care micşorează eroarea de generalizare) Algoritmul SMO (Sequential minimal optimization)

10 Sisteme inteligente SIS MSV Tipuri de probleme rezolvabile Probleme de clasificare Cazuri de date Liniar separabile Separabile Eroarea = 0 Ne-separabile Se relaxează constrângerile se permit unele erori C coeficient de penalizare Mai, 2017 Inteligență artificială - sisteme inteligente 10 (SVM, k-means)

11 11 Sisteme inteligente SIS MSV Cazuri de date Non-liniar separabile Spaţiul de intrare se transformă într-un spaţiu cu mai multe dimensiuni (feature space), cu ajutorul unei funcţii kernel, unde datele devin liniar separabile În MSV, funcţiile kernel calculează distanţa între 2 puncte kernelul ~ funcţie de similaritate

12 12 Sisteme inteligente SIS MSV Cazuri de date Non-liniar separabile Kernele posibile Clasice Polynomial kernel: K(x d1, x d2 ) = (x d1, x d2 + 1) p RBF kernel: K(x d1, x d2 ) = exp(- x d1 - x d2 2 /2σ 2 ) Kernele multiple Liniare: K(x d1, x d2 ) = w i K i (x d1, x d2 ) Ne-liniare Fără coeficienţi: K(x d1, x d2 ) = K 1 (x d1, x d2 )+ K 2 (x d1, x d2 )* exp(k 3 (x d1, x d2 )) Cu coeficienţi: K(x d1, x d2 ) = K 1 (x d1, x d2 )+ c 1 * K 2 *(x d1, x d2 ) exp(c 2 + K 3 (x d1, x d2 )) Kernele pentru stringuri Kernele pentru imagini Kernele pentru grafe

13 13 Sisteme inteligente SIS MSV Configurarea MSV Parametrii unei MSV Coeficientul de penalizare C C mic convergenţă lentă C mare convergenţă rapidă Parametrii funcţiei kernel (care kernel şi cu ce parametri) Dacă m (nr de atribute) este mult mai mare decât n (nr de instanţe) MSV cu kernel liniar (MSV fără kernel) K(x d1, x d2 ) = xd1 xd2 Dacă m (nr de atribute) este mare, iar n (nr de instanţe) este mediu MSV cu kernel Gaussian K(x d1, x d2 ) = exp(- x d1 - x d2 2 /2σ 2 ) σ dispersia datelor de antrenament Atributele instanţelor trebuie normalizate (scalate la (0,1)) m (nr de atribute) este mic, iar n (nr de instanţe) este mare Se adaugă noi atribute, iar apoi MSV cu kernel liniar

14 14 Sisteme inteligente SIS MSV MSV pentru probleme de clasificare supervizate cu mai mult de 2 clase Una vs. restul (one vs. all)

15 15 Sisteme inteligente SIS MSV MSV structurate Învăţare automată Normală f:x R Intrări de orice fel Ieşiri numerice (naturale, întregi, reale) Structurată:X Y Intrări de orice fel Ieşiri de orice fel (simple sau structurate) Informaţii structurate Texte şi hiper-texte Molecule şi structuri moleculare Imagini

16 16 Sisteme inteligente SIS MSV MSV structurate Aplicaţii Procesarea limbajului natural Traduceri automate (ieşiri propoziţii) Analiza sintactică şi/sau morfologică a propoziţiilor (ieşiri arborele sintactic şi/sau morfologic) Bioinformatică Predicţia unor structuri secundare (ieşirile grafe bi-partite) Predicţia funcţionării unor enzime (ieşirile path-uri în arbori) Procesarea vorbirii Transcrieri automate (ieşiri propoziţii) Transformarea textelor în voce (ieşiri semnale audio) Robotică Planificare (ieşirile secvenţe de acţiuni)

17 17 Sisteme inteligente SIS MSV Avantaje Pot lucra cu orice fel de date (liniar separabile sau nu, distribuit uniform sau nu, cu distribuţie cunoscută sau nu) Funcţiile kernel care crează noi atribute (features) straturile ascunse dintr-o RNA Dacă problema e convexă oferă o soluţie unică optimul global RNA pot asocia mai multe soluţii optime locale Selectează automat mărimea modelului învăţat (prin vectorii suport) În RNA straturile ascunse trebuie configurate de către utilizator apriori Nu învaţă pe derost datele (overfitting) RNA se confruntă cu problema overfitting-ului chiar şi cand modelul se învaţă prin validare încrucişată Dificultăţi Doar atribute reale Doar clasificare binară Background matematic dificil Tool-uri LibSVM Weka SMO SVMLight SVMTorch

18 18 Sisteme inteligente SIS Învăţare automată Tipologie În funcţie de experienţa acumulată în timpul învăţării: SI cu învăţare supervizată SI cu învăţare nesupervizată SI cu învăţare activă SI cu învăţare cu întărire În funcţie de modelul învăţat (algoritmul de învăţare): Arbori de decizie Reţele neuronale artificiale Maşini cu suport vectorial (MSV) Algoritmi evolutivi Modele Markov ascunse K-means

19 19 Învăţare nesupervizată Scop Găsirea unui model sau a unei structuri utile a datelor Tip de probleme Identificara unor grupuri (clusteri) Analiza genelor Procesarea imaginilor Analiza reţelelor sociale Segmentarea pieţei Analiza datelor astronomice Clusteri de calculatoare Reducerea dimensiunii Identificarea unor cauze (explicaţii) ale datelor Modelarea densităţii datelor Caracteristic Datele nu sunt adnotate (etichetate)

20 20 Învăţare ne-supervizată definire Împărţirea unor exemple neetichetate în submulţimi disjuncte (clusteri) astfel încât: exemplele din acelaşi cluster sunt foarte similare exemplele din clusteri diferiţi sunt foarte diferite Definire Se dă un set de date (exemple, instanţe, cazuri) Se determină Date de antrenament Sub forma atribute_data i, unde i =1,N (N = nr datelor de antrenament) atribute_data i = (atr i1, atr i2,..., atr im ), m nr atributelor (caracteristicilor, proprietăţilor) unei date Date de test Sub forma (atribute_data i ), i =1,n (n = nr datelor de test) o funcţie (necunoscută) care realizează gruparea datelor de antrenament în mai multe clase Nr de clase poate fi pre-definit (k) sau necunoscut Datele dintr-o clasă sunt asemănătoare clasa asociată unei date (noi) de test folosind gruparea învăţată pe datele de antrenament Alte denumiri Clustering

21 21 Învăţare ne-supervizată definire Supervizată vs. Ne-supervizată

22 22 Învăţare ne-supervizată definire Distanţe între 2 elemente p şi q є R m Euclideana d(p,q)=sqrt( j=1,2,...,m (p j -q j ) 2 ) Manhattan d(p,q)= j=1,2,...,m p j -q j Mahalanobis d(p,q)=sqrt(p-q)s -1 (p-q)), unde S este matricea de variaţie şi covariaţie (S= E[(p-E[p])(q-E[q])]) Produsul intern Cosine d(p,q)= j=1,2,...,m p j q j d(p,q)= j=1,2,...,m p j q j / (sqrt( j=1,2,...,m p j2 ) * sqrt( j=1,2,...,m q j2 )) Hamming Levenshtein numărul de diferenţe între p şi q numărul minim de operaţii necesare pentru a-l transforma pe p în q Distanţă vs. Similaritate Distanţa min Similaritatea max

23 23 Învăţare ne-supervizată exemple Gruparea genelor Studii de piaţă pentru gruparea clienţilor (segmentarea pieţei) news.google.com

24 24 Învăţare ne-supervizată proces Procesul 2 paşi: Antrenarea Testarea Învăţarea (determinarea), cu ajutorul unui algoritm, a clusterilor existenţi Plasarea unei noi date într-unul din clusterii identificaţi în etapa de antrenament Calitatea învăţării (validarea clusterizării): Criterii interne Similaritate ridicată în interiorul unui cluster şi similaritate redusă între clusteri Criteri externe Folosirea unor benchmark-uri formate din date pre-grupate

25 25 Învăţare ne-supervizată evaluare Măsuri de performanţă Criterii interne Distanţa în interiorul clusterului Distanţa între clusteri Indexul Davies-Bouldin Indexul Dunn Criteri externe Compararea cu date cunoscute în practică este imposibil Precizia Rapelul F-measure

26 26 Învăţare ne-supervizată evaluare Măsuri de performanţă Criterii interne Distanţa în interiorul clusterului c j care conţine n j instanţe Distanţa medie între instanţe (average distance) D a (c j ) = xi1,xi2єcj x i1 x i2 / (n j (n j -1)) Distanţa între cei mai apropiaţi vecini (nearest neighbour distance) D nn (c j ) = xi1єcj min xi2єcj x i1 x i2 / n j Distanţa între centroizi D c (c j ) = xi,єcj x i μ j / n j, unde μ j = 1/ n j xiєcj x i

27 27 Învăţare ne-supervizată evaluare Măsuri de performanţă Criterii interne Distanţa între 2 clusteri c j1 şi c j2 Legătură simplă d s (c j1, c j2 ) = min xi1єcj1, xi2єcj2 { x i1 x i2 } Legătură completă d co (c j1, c j2 ) = max xi1єcj1, xi2єcj2 { x i1 x i2 } Legătură medie d a (c j1, c j2 ) = xi1єcj1, xi2єcj2 { x i1 x i2 } / (n j1 * n j2 ) Legătură între centroizi d ce (c j1, c j2 ) = μ j1 μ j2

28 28 Învăţare ne-supervizată evaluare Măsuri de performanţă Criterii interne Indexul Davies-Bouldin min clusteri compacţi DB = 1/nc* i=1,2,...,nc max j=1, 2,..., nc, j i ((σ i + σ j )/d(μ i, μ j )) unde: nc numărul de clusteri μ i centroidul clusterului i σ i media distanţelor între elementele din clusterul i şi centroidul μ i d(μ i, μ j ) distanţa între centroidul μ i şi centroidul μ j Indexul Dunn Identifică clusterii denşi şi bine separaţi D=d min /d max Unde: d min distanţa minimă între 2 obiecte din clusteri diferiţi distanţa intracluster d max distanţa maximă între 2 obiecte din acelaşi cluster distanţa intercluster

29 29 Învăţare ne-supervizată - tipologie După modul de formare al clusterilor C. ierarhic C. ne-ierarhic (partiţional) C. bazat pe densitatea datelor C. bazat pe un grid

30 30 Învăţare ne-supervizată - tipologie După modul de formare al clusterilor Ierarhic se crează un arbore taxonomic (dendogramă) crearea clusterilor (recursiv) nu se cunoaşte k (nr de clusteri) aglomerativ (de jos în sus) clusteri mici spre clusteri mari diviziv (de sus în jos) clusteri mari spre clusteri mici Ex. Clustering ierarhic aglomerativ

31 31 Învăţare ne-supervizată - tipologie După modul de formare al clusterilor Ne-ierarhic Partiţional se determină o împărţire a datelor toţi clusterii deodată Optimizează o funcţie obiectiv definită Local doar pe anumite atribute Global pe toate atributele care poate fi Pătratul erorii suma patratelor distanţelor între date şi centroizii clusterilor min Ex. K-means Bazată pe grafuri Ex. Clusterizare bazată pe arborele minim de acoperire Bazată pe modele probabilistice Ex. Identificarea distribuţiei datelor Maximizarea aşteptărilor Bazată pe cel mai apropiat vecin Necesită fixarea apriori a lui k fixarea clusterilor iniţiali Algoritmii se rulează de mai multe ori cu diferiţi parametri şi se alege versiunea cea mai eficientă Ex. K-means, ACO

32 32 Învăţare ne-supervizată - tipologie După modul de formare al clusterilor bazat pe densitatea datelor Densitatea şi conectivitatea datelor Formarea clusterilor de bazează pe densitatea datelor într-o anumită regiune Formarea clusterilor de bazează pe conectivitatea datelor dintr-o anumită regiune Funcţia de densitate a datelor Se încearcă modelarea legii de distribuţie a datelor Avantaj: Modelarea unor clusteri de orice formă

33 33 Învăţare ne-supervizată - tipologie După modul de formare al clusterilor Bazat pe un grid Nu e chiar o metodă nouă de lucru Poate fi ierarhic, partiţional sau bazat pe densitate Pp. segmentarea spaţiului de date în zone regulate Obiectele se plasează pe un grid multi-dimensional Ex. ACO

34 34 Învăţare ne-supervizată - tipologie După modul de lucru al algoritmului Aglomerativ 1. Fiecare instanţă formează iniţial un cluster 2. Se calculează distanţele între oricare 2 clusteri 3. Se reunesc cei mai apropiaţi 2 clusteri 4. Se repetă paşii 2 şi 3 până se ajunge la un singur cluster sau la un alt criteriu de stop Diviziv 1. Se stabileşte numărul de clusteri (k) 2. Se iniţializează centrii fiecărui cluster 3. Se determină o împărţire a datelor 4. Se recalculează centrii clusterilor 5. Se reptă pasul 3 şi 4 până partiţionarea nu se mai schimbă (algoritmul a convers) După atributele considerate Monotetic atributele se consideră pe rând Politetic atributele se consideră simultan

35 35 Învăţare ne-supervizată - tipologie După tipul de apartenenţă al datelor la clusteri Clustering exact (hard clustering) Asociază fiecarei intrări x i o etichetă (clasă) c j Clustering fuzzy Asociază fiecarei intrări x i un grad (probabilitate) de apartenenţă f ij la o anumită clasă c j o instanţă x i poate aparţine mai multor clusteri

36 36 Învăţare ne-supervizată algoritmi Clustering ierarhic aglomerativ K-means AMA Modele probabilistice Cel mai apropiat vecin Fuzzy Reţele neuronale artificiale Algoritmi evolutivi ACO

37 37 Învăţare ne-supervizată algoritmi Clustering ierarhic aglomerativ Se consideră o distanţă între 2 instanţe d(x i1, x i2 ) Se formează N clusteri, fiecare conţinând câte o instanţă Se repetă Determinarea celor mai apropiaţi 2 clusteri Se reunesc cei 2 clusteri un singur cluster Până când se ajunge la un singur cluster (care conţine toate instanţele)

38 Învăţare ne-supervizată algoritmi Mai, 2017 Inteligență artificială - sisteme inteligente (SVM, k-means) 38 Clustering ierarhic aglomerativ Distanţa între 2 clusteri c i şi c j : Legătură simplă minimul distanţei între obiectele din cei 2 clusteri d(c i, c j ) = max xi1єci, xi2єcj sim(x i1, x i2 ) Legătură completă maximul distanţei între obiectele din cei 2 clusteri d(c i, c j ) = min xi1єci, xi2єcj sim(x i1, x i2 ) Legătură medie media distanţei între obiectele din cei 2 clusteri d(c i, c j ) = 1 / (n i *n j ) xi1єci xi2єcj d(x i1, x i2 ) Legătură medie peste grup distanţa între mediile (centroizii) celor 2 clusteri d(c i, c j ) = ρ(μ i, μ j ), ρ distanţă, μ j = 1/ n j xiєcj x i

39 Învăţare ne-supervizată algoritmi K-means (algoritmul Lloyd/iteraţia Voronoi) Mai, 2017 Inteligență artificială - sisteme inteligente (SVM, k-means) 39 Pp că se vor forma k clusteri Iniţializează k centroizi μ 1, μ 2,..., μ k Un centroid μ j (i=1,2,..., k) este un vector cu m valori (m nr de atribute) Repetă până la convergenţă Asociază fiecare instanţă celui mai apropiat centroid pentru fiecare instanţă x i, i = 1, 2,..., N c i = arg min j = 1, 2,..., k x i - μ j 2 Recalculează centroizii prin mutarea lor în media instanţelor asociate fiecăruia pentru fiecare cluster c j, j = 1, 2,..., k μ j = i=1,2,...n 1 ci=j x i / i=1,2,...n 1 ci=j

40 40 Învăţare ne-supervizată algoritmi K-means

41 Învăţare ne-supervizată algoritmi Mai, 2017 Inteligență artificială - sisteme inteligente (SVM, k-means) 41 K-means Iniţializarea a k centroizi μ 1, μ 2,..., μ k Cu valori generate aleator (în domeniul de definiţie al problemei) Cu k dintre cele N instanţe (alese în mod aleator) Algoritmul converge întotdeauna? Da, pt că avem funcţia de distorsiune J J(c, μ) = i=1,2,..., N x i - μ cj 2 care este descrescătoare Converge într-un optim local Găsirea optimului global NP-dificilă

42 42 Învăţare ne-supervizată algoritmi Clusterizare bazată pe arborele minim de acoperire (AMA) Se construieşte AMA al datelor Se elimină din arbore cele mai lungi muchii, formându-se clusteri

43 43 Învăţare ne-supervizată algoritmi Modele probabilistice e04/ul.pdf t.pdf

44 Învăţare ne-supervizată algoritmi Mai, 2017 Inteligență artificială - sisteme inteligente (SVM, k-means) 44 Cel mai apropiat vecin Se etichetează câteva dintre instanţe Se repetă până la etichetarea tuturor instanţelor O instanţă ne-etichetată va fi inclusă în clusterul instanţei cele mai apropiate dacă distanţa între instanţa neetichetată şi cea etichetată este mai mică decât un prag

45 45 Învăţare ne-supervizată algoritmi Clusterizare fuzzy Se stabileşte o partiţionare fuzzy iniţială Se construieşte matricea gradelor de apartenenţă U, unde u ij gradul de apartenenţă al instanţei x i (i=1,2,..., N) la clusterul c j (j = 1, 2,..., k) (u ij є [0,1]) Cu cât u ij e mai mare, cu atât e mai mare încrederea că instanţa x i face parte din clusterul c j Se stabileşte o funcţie obiectiv E 2 (U) = i=1,2,..., N j=1,2,...,k u ij x i - μ j 2, unde μ j = i=1,2,..., N u ij x i centrul celui de-al j-lea fuzzy cluster care se optimizează (min) prin re-atribuirea instanţelor (în clusteri noi) Clusering fuzzy clusterizare hard (fixă) impunerea unui prag funcţiei de apartenenţă u ij

46 Învăţare ne-supervizată algoritmi Algoritmi evolutivi Algoritmi Inspiraţi din natură (biologie) Iterativi Bazaţi pe populaţii de potenţiale soluţii căutare aleatoare ghidată de Operaţii de selecţie naturală Operaţii de încrucişare şi mutaţie Care procesează în paralel mai multe soluţii Metafora evolutivă Evoluţie naturală Individ Populaţie Cromozom Genă Fitness (măsură de adaptare) Rezolvarea problemelor Soluţie potenţială (candidat) Mulţime de soluţii Codarea (reprezentarea) unei soluţii Parte a reprezentării Calitate Mai, 2017 Încrucişare Inteligență şi mutaţie artificială - Operatori sisteme de inteligente căutare 46 (SVM, k-means) Mediu Spaţiul de căutare al problemei

47 47 Selecţie pentru perturbare Învăţare ne-supervizată algoritmi Algoritmi evolutivi Initializare populaţie P(0) Evaluare P(0) g := 0; //generaţia CâtTimp (not condiţie_stop) execută Repetă Selectează 2 părinţi p1 şi p2 din P(g) Încrucişare(p1,p2) =>o1 şi o2 Mutaţie(o1) => o1* Mutaţie(o2) => o2* Evaluare(o1*) Evaluare(o2*) adăugare o1* şi o* în P(g+1) Până când P(g+1) este completă g := g + 1 Sf CâtTimp Populaţie (părinţi) Încrucişare Selecţie de supravieţuire Mutaţie Populaţie (urmaşi)

48 48 Învăţare ne-supervizată algoritmi Algoritmi evolutivi Reprezentare Cromozomul = o partiţionare a datelor Ex. 2 clusteri cromozom = vector binar Ex. K clusteri cromozom = vector cu valori din {1,2,,k} Fitness Calitatea partiţionării Iniţializare Aleatoare Încrucişare Punct de tăietură Mutaţie Schimbarea unui element din cromozom

49 49 Învăţare ne-supervizată algoritmi ACO Preferinţa pentru drumuri cu nivel ridicat de feromon Pe drumurile scurte feromonul se înmulţeşte Furnicile comunică pe baza urmelor de feromon

50 50 Învăţare ne-supervizată algoritmi ACO Algoritm de clusterizare bazat pe un grid Obiectele se plasează aleator pe acest grid, urmând ca furnicuţele să le grupeze în funcţie de asemănarea lor 2 reguli pentru furnicuţe Furnica ridică un obiect-obstacol Probabilitatea de a-l ridica e cu atât mai mare cu cât obiectul este mai izolat (în apropierea lui nu se află obiecte similare) p(ridica)=(k + /(k + +f)) 2 Furnica depune un obiect (anterior ridicat) într-o locaţie nouă Probabilitatea de a-l depune e cu atât mai mare cu cât în vecinătatea locului de plasare se afla mai multe obiecte asemănătoare p(depune)=(f/(k - +f)) 2 k +, k - - constante f procentul de obiecte similare cu obiectul curent din memoria furnicuţei Furnicuţele au memorie reţin obiectele din vecinătatea poziţiei curente se mişcă ortogonal (N, S, E, V) pe grid pe căsuţele neocupate de alte furnici

51 51 Recapitulare Sisteme care învaţă singure (SIS) Maşini cu suport vectorial (MSV) Modele computaţionale care K-means rezolvă (în special) probleme de învăţare supervizată prin identificarea celui mai bun hyper-plan de separare a datelor Modele computaţionale care rezolvă probleme de clusterizare prin nu se cunosc etichetele claselor minimizarea diferenţelor între elementele aceleaşi calse maximizarea diferenţelor între elementele claselor diferite

52 52 Cursul următor A. Scurtă introducere în Inteligenţa Artificială (IA) B. Rezolvarea problemelor prin căutare Definirea problemelor de căutare Strategii de căutare Strategii de căutare neinformate Strategii de căutare informate Strategii de căutare locale (Hill Climbing, Simulated Annealing, Tabu Search, Algoritmi evolutivi, PSO, ACO) Strategii de căutare adversială C. Sisteme inteligente Sisteme bazate pe reguli în medii certe Sisteme bazate pe reguli în medii incerte (Bayes, factori de certitudine, Fuzzy) Sisteme care învaţă singure Arbori de decizie Reţele neuronale artificiale Maşini cu suport vectorial Algoritmi evolutivi Sisteme hibride

53 Informaţiile prezentate au fost colectate din diferite surse de pe internet, precum şi din cursurile de inteligenţă artificială ţinute în anii anteriori de către: Conf. Dr. Mihai Oltean Lect. Dr. Crina Groşan - Prof. Dr. Horia F. Pop - Mai, 2017 Inteligență artificială - sisteme inteligente (SVM, k-means) 53

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

METODE INTELIGENTE DE REZOLVARE A PROBLEMELOR REALE. Laura Dioşan Tema 3

METODE INTELIGENTE DE REZOLVARE A PROBLEMELOR REALE. Laura Dioşan Tema 3 METODE INTELIGENTE DE REZOLVARE A PROBLEMELOR REALE Laura Dioşan Tema 3 Conţinut Instruire automata (Machine Learning - ML) Problematică Proiectarea unui sistem de învăţare automată Tipologie Învăţare

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Criptosisteme cu cheie publică III

Criptosisteme cu cheie publică III Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

Geometrie computationala 2. Preliminarii geometrice

Geometrie computationala 2. Preliminarii geometrice Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,

Διαβάστε περισσότερα

Esalonul Redus pe Linii (ERL). Subspatii.

Esalonul Redus pe Linii (ERL). Subspatii. Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Examen AG. Student:... Grupa:... ianuarie 2011

Examen AG. Student:... Grupa:... ianuarie 2011 Problema 1. Pentru ce valori ale lui n,m N (n,m 1) graful K n,m este eulerian? Problema 2. Să se construiască o funcţie care să recunoască un graf P 3 -free. La intrare aceasta va primi un graf G = ({1,...,n},E)

Διαβάστε περισσότερα

Algoritmi genetici. 1.1 Generalităţi

Algoritmi genetici. 1.1 Generalităţi 1.1 Generalităţi Algoritmii genetici fac parte din categoria algoritmilor de calcul evoluţionist şi sunt inspiraţi de teoria lui Darwin asupra evoluţiei. Idea calculului evoluţionist a fost introdusă în

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I. Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument: Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,

Διαβάστε περισσότερα

Proiectarea Algoritmilor 2. Scheme de algoritmi Divide & Impera

Proiectarea Algoritmilor 2. Scheme de algoritmi Divide & Impera Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Proiectarea Algoritmilor 2. Scheme de algoritmi Divide & Impera Cuprins Scheme de algoritmi Divide et impera Exemplificare

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

3. ALGORITMI GENETICI

3. ALGORITMI GENETICI 3. ALGORITMI GENETICI Un algoritm genetic efectuează operaţii specifice în cadrul unui proces de reproducere guvernat de operatori genetici. Noile soluţii sunt create prin selecţia şi recombinarea cromozomilor

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Examen AG. Student:... Grupa: ianuarie 2016

Examen AG. Student:... Grupa: ianuarie 2016 16-17 ianuarie 2016 Problema 1. Se consideră graful G = pk n (p, n N, p 2, n 3). Unul din vârfurile lui G se uneşte cu câte un vârf din fiecare graf complet care nu-l conţine, obţinându-se un graf conex

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

Lucrarea 1.b Clasificatorul Bayes

Lucrarea 1.b Clasificatorul Bayes Lucrarea.b Clasificatorul Bayes. Bază teoretică Formele sunt atât obiectele fizice observabile dar şi modele matematice relativ la celule, particule, forme de undă, spectre de frecvenţă (imagini TV, semnale

Διαβάστε περισσότερα

V O. = v I v stabilizator

V O. = v I v stabilizator Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Laborator 1: INTRODUCERE ÎN ALGORITMI. Întocmit de: Claudia Pârloagă. Îndrumător: Asist. Drd. Gabriel Danciu

Laborator 1: INTRODUCERE ÎN ALGORITMI. Întocmit de: Claudia Pârloagă. Îndrumător: Asist. Drd. Gabriel Danciu INTRODUCERE Laborator 1: ÎN ALGORITMI Întocmit de: Claudia Pârloagă Îndrumător: Asist. Drd. Gabriel Danciu I. NOŢIUNI TEORETICE A. Sortarea prin selecţie Date de intrare: un şir A, de date Date de ieşire:

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

Curs 2 DIODE. CIRCUITE DR

Curs 2 DIODE. CIRCUITE DR Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu

Διαβάστε περισσότερα

Teme de implementare in Matlab pentru Laboratorul de Metode Numerice

Teme de implementare in Matlab pentru Laboratorul de Metode Numerice Teme de implementare in Matlab pentru Laboratorul de Metode Numerice As. Ruxandra Barbulescu Septembrie 2017 Orice nelamurire asupra enunturilor/implementarilor se rezolva in cadrul laboratorului de MN,

Διαβάστε περισσότερα

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a

Διαβάστε περισσότερα

Sisteme liniare - metode directe

Sisteme liniare - metode directe Sisteme liniare - metode directe Radu T. Trîmbiţaş 27 martie 2016 1 Eliminare gaussiană Să considerăm sistemul liniar cu n ecuaţii şi n necunoscute Ax = b, (1) unde A K n n, b K n 1 sunt date, iar x K

Διαβάστε περισσότερα

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB 1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul

Διαβάστε περισσότερα

8 Intervale de încredere

8 Intervale de încredere 8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată

Διαβάστε περισσότερα

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1 FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile

Διαβάστε περισσότερα

2. Circuite logice 2.4. Decodoare. Multiplexoare. Copyright Paul GASNER

2. Circuite logice 2.4. Decodoare. Multiplexoare. Copyright Paul GASNER 2. Circuite logice 2.4. Decodoare. Multiplexoare Copyright Paul GASNER Definiţii Un decodor pe n bits are n intrări şi 2 n ieşiri; cele n intrări reprezintă un număr binar care determină în mod unic care

Διαβάστε περισσότερα

Modelare fuzzy. Problematica modelarii Sisteme fuzzy in modelare Procedura de modelare ANFIS Clasificare substractiva. Modelare fuzzy. G.

Modelare fuzzy. Problematica modelarii Sisteme fuzzy in modelare Procedura de modelare ANFIS Clasificare substractiva. Modelare fuzzy. G. Modelare fuzzy Problematica modelarii Sisteme fuzzy in modelare Procedura de modelare ANFIS Clasificare substractiva 1 /13 Problematica modelarii Estimarea unei funcţii necunoscute pe baza unor eşantioane

Διαβάστε περισσότερα

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

Algoritmica grafurilor XI. Cuplaje in grafuri. Masuri de calitate. Numere Ramsey

Algoritmica grafurilor XI. Cuplaje in grafuri. Masuri de calitate. Numere Ramsey Algoritmica grafurilor XI. Cuplaje in grafuri. Masuri de calitate. Numere Ramsey Mihai Suciu Facultatea de Matematică și Informatică (UBB) Departamentul de Informatică Mai, 16, 2018 Mihai Suciu (UBB) Algoritmica

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

Zgomotul se poate suprapune informaţiei utile în două moduri: g(x, y) = f(x, y) n(x, y) (6.2)

Zgomotul se poate suprapune informaţiei utile în două moduri: g(x, y) = f(x, y) n(x, y) (6.2) Lucrarea 6 Zgomotul în imagini BREVIAR TEORETIC Zgomotul este un semnal aleator, care afectează informaţia utilă conţinută într-o imagine. El poate apare de-alungul unui lanţ de transmisiune, sau prin

Διαβάστε περισσότερα

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)).

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)). Teoremă. (Y = f(x)). Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism Demonstraţie. f este continuă pe X: x 0 X, S Y (f(x 0 ), ε), S X (x 0, ε) aşa ca f(s X (x 0, ε)) = S Y (f(x 0 ), ε) : y

Διαβάστε περισσότερα

Tehnici de Optimizare

Tehnici de Optimizare Tehnici de Optimizare Cristian OARA Facultatea de Automatica si Calculatoare Universitatea Politehnica Bucuresti Fax: + 40 1 3234 234 Email: oara@riccati.pub.ro URL: http://riccati.pub.ro Tehnici de Optimizare

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Algebra si Geometrie Seminar 9

Algebra si Geometrie Seminar 9 Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

VII.2. PROBLEME REZOLVATE

VII.2. PROBLEME REZOLVATE Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea

Διαβάστε περισσότερα

MULTIMEA NUMERELOR REALE

MULTIMEA NUMERELOR REALE www.webmteinfo.com cu noi totul pre mi usor MULTIMEA NUMERELOR REALE office@ webmteinfo.com 1.1 Rdcin ptrt unui numr nturl ptrt perfect Ptrtul unui numr rtionl este totdeun pozitiv su zero (dic nenegtiv).

Διαβάστε περισσότερα

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 LAGĂRELE CU ALUNECARE!" 25.1.Caracteristici.Părţi componente.materiale.!" 25.2.Funcţionarea lagărelor cu alunecare.! 25.1.Caracteristici.Părţi componente.materiale.

Διαβάστε περισσότερα

prin egalizarea histogramei

prin egalizarea histogramei Lucrarea 4 Îmbunătăţirea imaginilor prin egalizarea histogramei BREVIAR TEORETIC Tehnicile de îmbunătăţire a imaginilor bazate pe calculul histogramei modifică histograma astfel încât aceasta să aibă o

Διαβάστε περισσότερα

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru

Διαβάστε περισσότερα

Sortare. 29 martie Utilizarea şi programarea calculatoarelor. Curs 16

Sortare. 29 martie Utilizarea şi programarea calculatoarelor. Curs 16 Sortare 29 martie 2005 Sortare 2 Sortarea. Generalitǎţi Sortarea = aranjarea unei liste de obiecte dupǎ o relaţie de ordine datǎ (ex.: pentru numere, ordine lexicograficǎ pt. şiruri, etc.) una din clasele

Διαβάστε περισσότερα

Curs 6 Rețele Neuronale Artificiale

Curs 6 Rețele Neuronale Artificiale SISTEME INTELIGENTE DE SUPORT DECIZIONAL Ș.l.dr.ing. Laura-Nicoleta IVANCIU Curs 6 Rețele Neuronale Artificiale Cuprins Principii Bazele biologice Arhitectura RNA Instruire Tipuri de probleme rezolvabile

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă.

CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă. Sala: 2103 Decembrie 2014 Conf. univ. dr.: Dragoş-Pătru Covei CURS 11: ALGEBRĂ Specializarea: C.E., I.E., S.P.E. Nota: Acest curs nu a fost supus unui proces riguros de recenzare pentru a fi oficial publicat.

Διαβάστε περισσότερα

Scoruri standard Curba normală (Gauss) M. Popa

Scoruri standard Curba normală (Gauss) M. Popa Scoruri standard Curba normală (Gauss) M. Popa Scoruri standard cunoaştere evaluare, măsurare evaluare comparare (Gh. Zapan) comparare raportare la un sistem de referință Povestea Scufiței Roşii... 70

Διαβάστε περισσότερα

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy Metode Runge-Kutta Radu T. Trîmbiţaş 8 ianuarie 7 Probleme scalare, pas constant Dorim să aproximăm soluţia problemei Cauchy y (t) = f(t, y), a t b, y(a) = α. pe o grilă uniformă de (N + )-puncte din [a,

Διαβάστε περισσότερα

CIRCUITE INTEGRATE MONOLITICE DE MICROUNDE. MMIC Monolithic Microwave Integrated Circuit

CIRCUITE INTEGRATE MONOLITICE DE MICROUNDE. MMIC Monolithic Microwave Integrated Circuit CIRCUITE INTEGRATE MONOLITICE DE MICROUNDE MMIC Monolithic Microwave Integrated Circuit CUPRINS 1. Avantajele si limitarile MMIC 2. Modelarea dispozitivelor active 3. Calculul timpului de viata al MMIC

Διαβάστε περισσότερα

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1 Aparate de măsurat Măsurări electronice Rezumatul cursului 2 MEE - prof. dr. ing. Ioan D. Oltean 1 1. Aparate cu instrument magnetoelectric 2. Ampermetre şi voltmetre 3. Ohmetre cu instrument magnetoelectric

Διαβάστε περισσότερα

NOTIUNI DE BAZA IN STATISTICA

NOTIUNI DE BAZA IN STATISTICA NOTIUNI DE BAZA IN STATISTICA INTRODUCERE SI DEFINITII A. PARAMETRI SI STATISTICI Parametru valoare sau caracteristica asociata unei populatii constante fixe notatie - litere grecesti: media populatiei

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

FLUXURI MAXIME ÎN REŢELE DE TRANSPORT. x 4

FLUXURI MAXIME ÎN REŢELE DE TRANSPORT. x 4 FLUXURI MAXIME ÎN REŢELE DE TRANSPORT Se numeşte reţea de transport un graf în care fiecărui arc îi este asociat capacitatea arcului şi în care eistă un singur punct de intrare şi un singur punct de ieşire.

Διαβάστε περισσότερα

Laborator 6. Integrarea ecuaţiilor diferenţiale

Laborator 6. Integrarea ecuaţiilor diferenţiale Laborator 6 Integrarea ecuaţiilor diferenţiale Responsabili: 1. Surdu Cristina(anacristinasurdu@gmail.com) 2. Ştirbăţ Bogdan(bogdanstirbat@yahoo.com) Obiective În urma parcurgerii acestui laborator elevul

Διαβάστε περισσότερα

Proiectarea filtrelor prin metoda pierderilor de inserţie

Proiectarea filtrelor prin metoda pierderilor de inserţie FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri

Διαβάστε περισσότερα

Să se arate că n este număr par. Dan Nedeianu

Să se arate că n este număr par. Dan Nedeianu Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

Analiza bivariata a datelor

Analiza bivariata a datelor Aaliza bivariata a datelor Aaliza bivariata a datelor! Presupue masurarea gradului de asoiere a doua variabile sub aspetul: Diretiei (aturii) Itesitatii Semifiatiei statistie Variabilele omiale Tabele

Διαβάστε περισσότερα

4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice

4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice 4. Măsurarea tensiunilor şi a curenţilor electrici oltmetre electronice analogice oltmetre de curent continuu Ampl.c.c. x FTJ Protectie Atenuator calibrat Atenuatorul calibrat divizor rezistiv R in const.

Διαβάστε περισσότερα

Statistică multivariată Lucrarea nr. 12 Clasificare - SPSS. Clasificare. A. Noţiuni teoretice. Clasificare predictivă. Clasificare predictivă - Fisher

Statistică multivariată Lucrarea nr. 12 Clasificare - SPSS. Clasificare. A. Noţiuni teoretice. Clasificare predictivă. Clasificare predictivă - Fisher Statistică multivariată Lucrarea nr. Clasificare - SPSS A. Noţiuni teoretice Clasificare Prin clasificare se înţelege gruparea unor entităţi (observaţii, obiecte etc.) în clase (grupuri) de entităţi similare.

Διαβάστε περισσότερα

I X A B e ic rm te e m te is S

I X A B e ic rm te e m te is S Sisteme termice BAXI Modele: De ce? Deoarece reprezinta o solutie completa care usureaza realizarea instalatiei si ofera garantia utilizarii unor echipamente de top. Adaptabilitate la nevoile clientilor

Διαβάστε περισσότερα

METODE NUMERICE: Laborator #5 Metode iterative pentru rezolvarea sistemelor: Jacobi, Gauss-Siedel, Suprarelaxare

METODE NUMERICE: Laborator #5 Metode iterative pentru rezolvarea sistemelor: Jacobi, Gauss-Siedel, Suprarelaxare METODE NUMERICE: Laborator #5 Metode iterative pentru rezolvarea sistemelor: Jacobi, Gauss-Siedel, Suprarelaxare Titulari curs: Florin Pop, George-Pantelimon Popescu Responsabil Laborator: Mădălina-Andreea

Διαβάστε περισσότερα

Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b.

Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b. Lucrare Soluţii 28 aprilie 2015 Varianta 1 I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2 Definiţie. Numărul întreg p se numeşte număr prim dacă p 0,

Διαβάστε περισσότερα

UNIVERSITATEA TEHNICĂ GH. ASACHI IAŞI FACULTATEA DE AUTOMATICĂ ŞI CALCULATOARE. Algoritmi genetici. Inteligenţă artificială - referat -

UNIVERSITATEA TEHNICĂ GH. ASACHI IAŞI FACULTATEA DE AUTOMATICĂ ŞI CALCULATOARE. Algoritmi genetici. Inteligenţă artificială - referat - UNIVERSITATEA TEHNICĂ GH. ASACHI IAŞI FACULTATEA DE AUTOMATICĂ ŞI CALCULATOARE Algoritmi genetici Inteligenţă artificială - referat - Chelariu Angela, Topolniceanu Irina, Dumitru Alin - 2002/2003 - ALGORITMI

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională

Διαβάστε περισσότερα

Capitolul COTAREA DESENELOR TEHNICE LECŢIA 21

Capitolul COTAREA DESENELOR TEHNICE LECŢIA 21 Capitolul COTAREA DESENELOR TEHNICE LECŢIA 21! 21.1. Generalităţi.! 21.2. Elementele cotării.! 21.3. Aplicaţii.! 21.1. Generalităţi! Dimensiunea este o caracteristică geometrică liniară sau unghiulară,care

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul numarului intrebarii

Διαβάστε περισσότερα