8 Intervale de încredere
|
|
- Εὐκλείδης Βενιζέλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată ˆ ( 1 ) aluiˆ ( 1 ) folosind valorile observate 1 ale selecţiei 1 nu coincide aproape niciodată cu valoarea reală a parametrului necunoscut. Ne punem problema cât de apropiată esteˆ de valoarea reală alui, în sensul determinării unui interval ( ) ( = ( 1 ) şi = ( 1 ) sunt variabile aleatoare ce depind de variabilele aleatoare 1 ale selecţiei) astfel încât ( ) cu o probabilitate dată, adică ( )=1 pentru o valoare (0 1) fixată. Înlocuind variabilele aleatoare 1 prin valorile observate 1 obţinem = ( 1 ) şi = ( 1 ),şi numim intervalul ( ) un interval de 100 (1 )% încredere pentru parametrul necunoscut. În general, se poate determina un interval de încredere pentru parametrul necunoscut dacă existăovariabilă aleatoare Θ = ( 1 ) cu proprietăţile: 1. Funcţia depinde netrivial de selecţia 1 şi ;. Distribuţia lui Θ nu depinde de sau de alţi parametrii necunoscuţi. În aceste ipoteze, determinarea unui interval de 100 (1 )% încredere pentru se face astfel: se determină constantele şi astfel încât ( ( 1 ) )=1 şi se rezolvă dubla inegalitate în raport cu pentru a obţine ( ( 1 ) ( 1 )) = 1 Variabilele aleatoare şi astfel obţinute dau valorile şi ale intervalului ( ) de 100 (1 )% încredere pentru parametrul necunoscut. 8.1 Intervale de încredere pentru media unei populaţii normale cu dispersie cunoscută Propoziţia 8.1 Dacă 1 sunt valorile observate ale unei selecţii 1 dintr-o populaţie normală N cu dispersie cunoscută, atunci un interval de 100 (1 )% încredere pentru media apopulaţiei este ( ) = µ + unde = 1++ R (Φ () = 1 şi ). este media valorilor observate ale selecţiei iar este determinat astfel încât Φ =1 este funcţia de distribuţie a variabilei aleatoare normale standard - a se vedea Anexele 1 Observaţia 8. (Alegerea volumului al selecţiei) Dacă sedoreşte ca eroarea de estimare să nu depăşească ovaloarelimită cu probabilitate (1 ), adică =1 comparând cu intervalul de (1 )% încredere pentru media obţinem de unde obţinem că volumul al selecţiei trebuie ales astfel încât ³ 55
2 Observaţia 8.3 În practică, este uneori util ca în loc de intervale simetrice pentru media să avem intervale de mărginire inferioară sau superioară pentru. Procedând în mod similar, se pot obţine următoarele intervale de 100 (1 )% încredere pentru media : ³ -intervaledemărginire inferioară pentru : ( ) = -intervaledemărginire superioară pentru: ( )= ³ + 8. Intervale de încredere pentru medie în cazul selecţiilor mari Reamintim teorema limită centrală: dacă 1 este un şir de variabile aleatoare independente şi identic distribuite, atunci variabila aleatoare = 1 ++ = tinde în distribuţie către o variabilă aleatoare normală standard, adică Ã! Φ () = 1 Z oricare ar fi R. Dacă abatereapătratică medie apopulaţiei este necunoscută, atunci înlocuind pe prin estimatorul s P =1 = 1 se poate arăta că pentru suficient de mare ( 40), variabila aleatoare obţinută = N (0 1) este aproximativ o variabilă aleatoare normală standard. Repetând calculul din secţiunea anterioară obţinem deci următoarea. Propoziţia 8.4 Pentru un volum al selecţiei suficient de mare, un interval de 100 (1 )% încredere pentru media apopulaţiei este µ ( ) = + =1 unde = 1++ ( este media valorilor observate ale selecţiei, = ) 1 este o estimare a abaterii pătratice medii, iar este determinat astfel încât Φ =1 a variabilei aleatoare normale standard). R 1 (Φ () = este funcţia de distribuţie 8.3 Intervale de încredere pentru media unei populaţii normale cu dispersie necunoscută Pentru a construi intervalele de încredere în acest caz, avem nevoie de două tipuri de distribuţii continue, şi anume distribuţia şi distribuţia Student. Dacă 1 N (0 1) sunt variabile aleatoare normale standard independente, atunci distribuţia variabilei aleatoare = se numeşte distribuţie ( chi pătrat ) cu grade de libertate. Se poate arăta că densitatea acestui tip de variabilă aleatoare este ½ 0 0 () = unde = Γ( ) este o constantă de normare (aleasă astfelîncâtr () =1). 56
3 Dacă () este o variabilă aleatoare cu grade de libertate şi N (0 1) este o variabilă aleatoare normală standard, atunci distribuţia variabilei aleatoare = se numeşte distribuţie Student (sau distribuţie T) cu grade de libertate. Se poate arăta că densitatea acestui tip de variabilă aleatoare este µ +1 () = 1+ unde = 1 Γ( +1 ) Γ( ) este o constantă de normare (aleasă astfelîncât R () =1). În secţiunile anterioare am observat că dacă populaţia N este normală, atunci variabila aleatoare este o variabilă aleatoare normală. Dacă abatereapătratică medie nu este cunoscută, atunci înlocuind pe prin estimatorul = obţinem unde = = = r ( 1) 1 = 1 N (0 1) este o variabilă aleatoare nromală standard, iar = P ( ) =1 r =1( ) 1, ( 1) este o variabilă aleatoare cu 1 grade de libertate. Rezultă deci că variabila aleatoare are o distribuţie Student cu 1 grade de libertate, şi alegând ca şi în cazul distribuţiei normale punctul 1 astfel încât aria de sub densitatea acestei distribuţii, aflată ladreapta acestui punct să fie egală cu, obţinem 1 1 =1 Înlocuind pe prin expresia anterioarăşi rezolvând dubla inegalitate în raport cu media, obţinem următoarea. Propoziţia 8.5 Dacă 1 sunt valorile observate ale unei selecţii 1 dintr-o populaţie normală N cu dispersie necunoscută, atunci un interval de 100 (1 )% încredere pentru media apopulaţiei este µ ( ) = =1 ( ) unde = 1++ este media şi = 1 este abaterea pătratică medie a valorilor observate ale selecţiei, iar 1 este determinat astfel încât 1 =1 ( () este funcţia de distribuţie a variabilei aleatoare Student cu 1 grade de libertate - a se vedea Anexa 3). 8.4 Intervale de încredere pentru dispersia unei populaţii normale Pentru a determina un interval de încredere pentru dispersia necunoscută a unei populaţii normale N vom folosi faptul că variabila aleatoare = ( 1) = are o distribuţie ( 1) cu 1 grade de libertate. X µ =1 57
4 Considerând în acest caz punctul 1 cu proprietate că aria la dreapta sa, sub densitatea ( 1) cu 1 grade de libertate este, avem ( 1) µ =1 de unde rezolvând în raport cu obţinem următoarea. Propoziţia 8.6 Dacă 1 sunt valorile observate ale unei selecţii 1 dintr-o populaţie normală N, atunci un interval de 100 (1 )% încredere pentru dispersia apopulaţiei este ( ) = =1 ( ) Ã! ( 1) ( 1) unde = 1++ este media şi = 1 este abaterea pătratică medie a valorilor observate ale selecţiei, iar 1 este determinat astfel încât 1 =1 ( () este funcţia de distribuţie a variabilei aleatoare cu 1 grade de libertate - a se vedea Anexa 4). Observaţia 8.7 În mod similar se pot determina intervale de încredere de mărginire inferioară sausuperioară pentru dispersie: ³ -intervaledemărginire inferioară pentru : ( ) = ( 1) 1 -intervaledemărginire superioară pentru: ( )= ³ ( 1) Intervale de încredere pentru proporţia unei populaţii Considerăm că sunteminteresaţi de proporţia membrilor unei populaţii ce verifică oanumită caracteristică de interes (membrii populaţiei pot verifica saunuaceastă caracteristică, spre exemplu dacă preferă un anumit candidat electoral, daca sunt sau nu angajaţi, etc). Vom considera deci că populaţia urmează o distribuţie Bernoulli cu parametrul necunoscut ( este probabilitatea ca un membru al populaţiei să verifice caracteristica de interes). Reamintim că media populaţiei (distribuţie Bernoulli cu parametrul ) este = () =1 +0 (1 ) = şi coincide deci cu parametrul necunoscut, iar dispersie este = ³( ) =(1 ) +(0 ) (1 ) = (1 ). Considerăm o selecţie 1 de volum din populaţia, şi deci =1(succes) dacă observaţia verifică acea caracteristică de care suntem interesaţi, şi =0în caz contrar. Media selecţiei ˆ = = 1 ++ este un estimator corect al proporţiei apopulaţiei ce verifică respectiva caracteristică deinteres: ³ µ ˆ = = 1 X ( )= 1 X = Deoarece parametrul necunoscut coincide cu media a populaţiei, pentru a determina un interval de încredere pentru parametrul necunoscut procedăm ca şi în cazul determinării unui interval de încredere pentru media unei populaţii cu dispersie necunoscută (în cazul selecţiilor de volum mare, Secţiunea 8.). Din Teorema limită centrală, rezultă căpentru suficient de mare, variabila aleatoare p (1 ) = = (1 ) =1 = ˆ (1 ) are aproximativ o distribuíe normală. Cum dispersia = (1 ) este necunoscută, o înlocuim prin estimatorul c = ˆ ³ 1 ˆ şi obţinem că pentru valori suficient de mari ale lui, variabila aleatoare = N (0 1) are aproximativ o distribuţie normală. ˆ (1 ) Observaţia 8.8 În practică, valori suficient de mari pentru volumul al selecţiei înseamnă că ˆ 15 şi (1 ˆ)
5 Alegând ca şi în cazul estimării mediei punctul cu proprietatea că aria de sub densitatea normală standard, la dreapta acestui punct, este egală cu, obţinem ˆ =1 (56) (1 ) Rezolvând dubla inegalitate în raport cu obţinem următoarea. =1 Propoziţia 8.9 Pentru un volum suficientdemarealselecţiei, dacă ˆ = este proporţia observată aa datelor selecţiei populaţiei ce îndeplinesc un anumit criteriu, atunci un interval de 100 (1 )% încredere pentru proporţia a populaţiei ce verifică acest criteriu este à r r! ˆ (1 ˆ) ˆ (1 ˆ) ( ) = ˆ ˆ + unde este determinat astfel încât Φ R =1 1 (Φ () = este funcţia de distribuţie a variabilei aleatoare normale standard - a se vedea Anexele 1 şi ). Observaţia 8.10 (Alegerea volumului al selecţiei) Dacă sedoreşte ca eroarea de aproximare ˆ să nu depăşească ovaloarelimită cu probabilitate cel puţin (1 ), adică ³ ˆ 1 comparând cu inegalitatea (56) scrisă sub forma echivalentă µ ˆ (1 ), deunderezolvândpentru obţinem condiţia ³ (1 ) (1 ) = 1, se obţine Folosind faptul că (1 ) 1 4,obţinem eroarea de aproximare ˆ nu va depăşi valoarea cu probabilitate cel puţin (1 ) dacă volumul al selecţiei este ales astfel încât 1 ³ ³ (1 ) 4 Observaţia 8.11 Ca şi în celelalte cazuri prezentate, înlocuind prin se pot obţine intervale de mărginire inferioară sau superioară pentru proporţia necunoscută. 8.6 Intervale de predicţie Vom considera problema determinării unui interval de predicţie a unei valori dintr-o populaţie normală N. Pentru aceasta, considerăm o selecţie 1 dintr-o populaţia,şi observăm că valoarea +1 aobservaţiei viitoare verifică +1 = =0 şi şi deci h +1 i = ( +1 )+ µ = + = 1+ 1 = +1 N (0 1)
6 Dacă dispersia P 1 nu este cunoscută, înlocuind prin estimatorul = 1 =1 obţinem variabila aleatoare = +1 şi se poate arăta că variabila aleatoare are o distribuţie Student cu grade de libertate. Pentru a obţine un interval de (1 )% încredere pentru valoarea +1 aobservaţiei viitoare, considerăm punctul cu proprietatea că aria de sub densitatea distribuţiei Student cu grade de libertate la dreapta acestui punct este egală cu, adică =1 unde este funcţia de distribuţie Student cu grade de libertate (a se vedea Anexa 3). Obţinem deci +1 = de unde rezolvând în raport cu +1 obţinem echivalent =1 Un interval de predicţie de 100 (1 )% încredere pentru observaţia unei valori dintr-o populaţie normală este deci ( ) = unde = 1++ P 1 este media iar = 1 =1 ( ) este dispersia eşantionului 1. 60
9 Testarea ipotezelor statistice
9 Testarea ipotezelor statistice Un test statistic constă în obţinerea unei deducţii bazată pe o selecţie din populaţie prin testarea unei anumite ipoteze (rezultată din experienţa anterioară, din observaţii,
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
7 Distribuţia normală
7 Distribuţia normală Distribuţia normală este cea mai importantă distribuţie continuă, deoarece în practică multe variabile aleatoare sunt variabile aleatoare normale, sunt aproximativ variabile aleatoare
Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
Metode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
Curs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
Statisticǎ - curs 3. 1 Seria de distribuţie a statisticilor de eşantioane 2. 2 Teorema limitǎ centralǎ 5. 3 O aplicaţie a teoremei limitǎ centralǎ 7
Statisticǎ - curs 3 Cuprins 1 Seria de distribuţie a statisticilor de eşantioane 2 2 Teorema limitǎ centralǎ 5 3 O aplicaţie a teoremei limitǎ centralǎ 7 4 Estimarea punctualǎ a unui parametru; intervalul
Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0
SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................
Asupra unei inegalităţi date la barajul OBMJ 2006
Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale
Sisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
Integrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
NOTIUNI DE BAZA IN STATISTICA
NOTIUNI DE BAZA IN STATISTICA INTRODUCERE SI DEFINITII A. PARAMETRI SI STATISTICI Parametru valoare sau caracteristica asociata unei populatii constante fixe notatie - litere grecesti: media populatiei
Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite
Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
5 Statistica matematică
5 Statistica matematică Cuvântul statistică afostiniţial folosit pentru a desemna o colecţiededatedesprepopulaţie şi situaţia economică, date vitale pentru conducerea unui stat. Cu timpul, Statistica a
SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0
Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,
ESTIMAREA PARAMETRILOR STATISTICI. Călinici Tudor
ESTIMAREA PARAMETRILOR STATISTICI Călinici Tudor 1 Obiective educaţionale Înţelegerea procesului de estimare Însuşirea limbajului specific pentru inferenţa statistică Enumerarea estimatorilor fără bias
1.7 Mişcarea Browniană
CAPITOLUL 1. ELEMENTE DE TEORIA PROCESELOR STOCHASTICE 43 1.7 Mişcarea Browniană Mişcarea Browniană a fost pentru prima dată observată de către botanistul scoţian Robert Brown în 1828, când a observat
3 Distribuţii discrete clasice
3 Distribuţii discrete clasice 3.1 Distribuţia Bernoulli Probabil cel mai simplu tip de variabilă aleatoare discretă, variabila aleatoare Bernoulli modelează efectuareaunui experiment în care poate apare
Curs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
Curs 2 Şiruri de numere reale
Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
Metode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
Capitolul 2. Integrala stochastică
Capitolul 2 Integrala stochastică 5 CAPITOLUL 2. INTEGRALA STOCHASTICĂ 51 2.1 Introducere În acest capitol vom prezenta construcţia integralei stochastice Itô H sdm s, unde M s este o martingală locală
riptografie şi Securitate
riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare
Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15
MĂSURI RELE Cursul 13 15 Măsuri reale Fie (,, µ) un spaţiu cu măsură completă şi f : R o funcţie -măsurabilă. Cum am văzut în Teorema 11.29, dacă f are integrală pe, atunci funcţia de mulţime ν : R, ν()
Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
Profesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
Subiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
Aplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
Scoruri standard Curba normală (Gauss) M. Popa
Scoruri standard Curba normală (Gauss) M. Popa Scoruri standard cunoaştere evaluare, măsurare evaluare comparare (Gh. Zapan) comparare raportare la un sistem de referință Povestea Scufiței Roşii... 70
Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane
Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii
Subiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2
.1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,
Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].
Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie
Conice - Câteva proprietǎţi elementare
Conice - Câteva proprietǎţi elementare lect.dr. Mihai Chiş Facultatea de Matematicǎ şi Informaticǎ Universitatea de Vest din Timişoara Viitori Olimpici ediţia a 5-a, etapa I, clasa a XII-a 1 Definiţii
5.4. MULTIPLEXOARE A 0 A 1 A 2
5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării
MARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)
BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul
Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice
Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională
Functii Breviar teoretic 8 ianuarie ianuarie 2011
Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)
3. I. Mihoc, C. Fătu, Calculul probabilităţilor şi statistică matematică, Transilvania Press, Cluj-Napoca, 2003
CURS STATISTICĂ CURS 1 Bibliografie: 1. P. Blaga, Calculul probabilităţilor şi statistică matematică, vol. 2, Curs şi Culegere de probleme, Litografiat Univ. Babeş-Bolyai, Cluj-Napoca, 1994 2. P. Blaga,
IV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI
V. POL S FLTE ELETE P. 3. POL ELET reviar a) Forma fundamentala a ecuatiilor cuadripolilor si parametrii fundamentali: Prima forma fundamentala: doua forma fundamentala: b) Parametrii fundamentali au urmatoarele
O generalizare a unei probleme de algebră dată la Olimpiada de Matematică, faza judeţeană, 2013
O generalizare a unei probleme de algebră dată la Olimpiada de Matematică, faza judeţeană, 2013 Marius Tărnăuceanu 1 Aprilie 2013 Abstract În această lucrare vom prezenta un rezultat ce extinde Problema
Elemente de bază în evaluarea incertitudinii de măsurare. Sonia Gaiţă Institutul Naţional de Metrologie Laboratorul Termometrie
Elemente de bază în evaluarea incertitudinii de măsurare Sonia Gaiţă Institutul Naţional de Metrologie Laboratorul Termometrie Sonia Gaiţă - INM Ianuarie 2005 Subiecte Concepte şi termeni Modelarea măsurării
TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:
TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi
EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă
Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a
( ) ( ) ( ) Funcţii diferenţiabile. cos x cos x 2. Fie D R o mulţime deschisă f : D R şi x0 D. Funcţia f este
o ( ) o ( ) sin π ( sec ) = = ; R 2 + kπ k Z cos cos 2 cos ( cosec ) = = ; R 2 { kπ k Z} sin sin ( arcsec ) = ; (, ) (, ) 2 ( arcosec ) = ; (, ) (, ) 2 Funcţii dierenţiabile. Fie D R o mulţime deschisă
Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ
UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8
Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare
Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R În cele ce urmează, vom studia unele proprietăţi ale mulţimilor din R. Astfel, vom caracteriza locul" unui punct în cadrul unei mulţimi (în limba
COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent
Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului
prin egalizarea histogramei
Lucrarea 4 Îmbunătăţirea imaginilor prin egalizarea histogramei BREVIAR TEORETIC Tehnicile de îmbunătăţire a imaginilor bazate pe calculul histogramei modifică histograma astfel încât aceasta să aibă o
RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,
REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii
z a + c 0 + c 1 (z a)
1 Serii Laurent (continuare) Teorema 1.1 Fie D C un domeniu, a D şi f : D \ {a} C o funcţie olomorfă. Punctul a este pol multiplu de ordin p al lui f dacă şi numai dacă dezvoltarea în serie Laurent a funcţiei
1 Formula Black-Scholes
Formula Black-Scholes. Modele de creştere (investiţii bancare, creşterea populaţiei, etc) Unul din cele mai simple modele de creştere este cel al creşterii exponenţiale. În acest model, notând cu cantitatea
Principiul Inductiei Matematice.
Principiul Inductiei Matematice. Principiul inductiei matematice constituie un mijloc important de demonstratie in matematica a propozitiilor (afirmatiilor) ce depind de argument natural. Metoda inductiei
Zgomotul se poate suprapune informaţiei utile în două moduri: g(x, y) = f(x, y) n(x, y) (6.2)
Lucrarea 6 Zgomotul în imagini BREVIAR TEORETIC Zgomotul este un semnal aleator, care afectează informaţia utilă conţinută într-o imagine. El poate apare de-alungul unui lanţ de transmisiune, sau prin
a. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b.
Lucrare Soluţii 28 aprilie 2015 Varianta 1 I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2 Definiţie. Numărul întreg p se numeşte număr prim dacă p 0,
SEMINAR TRANSFORMAREA FOURIER. 1. Probleme
SEMINAR TRANSFORMAREA FOURIER. Probleme. Să se precizeze dacă funcţiile de mai jos sunt absolut integrabile pe R şi, în caz afirmativ să se calculeze { transformata Fourier., t a. σ(t), t < ; b. f(t) σ(t)
Statistică descriptivă Distribuția normală Estimare. Călinici Tudor 2015
Statistică descriptivă Distribuția normală Estimare Călinici Tudor 2015 Obiective educaționale Enumerarea caracteristicilor distribuției normale Enumerarea principiilor inferenței statistice Calculul intervalului
10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea
a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)
Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului
f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +
Semnul local al unei funcţii care are limită. Propoziţie. Fie f : D (, d) R, x 0 D. Presupunem că lim x x 0 f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl,
Criptosisteme cu cheie publică III
Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.
VII.2. PROBLEME REZOLVATE
Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea
1. Distribuţiile teoretice 2. Intervalul de încredere pentru caracteristicile cantitative (medii) Histograma Nr. valori Nr. de clase de valori
1. Distribuţiile teoretice (diagramă de distribuţie, distribuţia normală sau gaussiană) 2. Intervalul de încredere pentru caracteristicile cantitative (medii) 1. Distribuţia constituie ansamblul tuturor
V O. = v I v stabilizator
Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,
Laborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4
SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei
Seminar 5 Analiza stabilității sistemelor liniare
Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare
DistributiiContinue de Probabilitate Distributia Normala
8.03.011 STATISTICA -distributia normala -distributii de esantionare lectia 7 30 martie 011 al.isaic-maniu www.amaniu.ase.ro http://www.ase.ro/ase/studenti/index.asp?item=fisiere&id=88 DistributiiContinue
, m ecuańii, n necunoscute;
Sisteme liniare NotaŃii: a ij coeficienńi, i necunoscute, b i termeni liberi, i0{1,,..., n}, j0{1,,..., m}; a11 1 + a1 +... + a1 nn = b1 a11 + a +... + an n = b (S), m ecuańii, n necunoscute;... am11 +
Ecuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1)
Ecuatii exponentiale Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. Cea mai simpla ecuatie exponentiala este de forma a x = b, () unde a >, a. Afirmatia.
Exemple de probleme rezolvate pentru cursurile DEEA Tranzistoare bipolare cu joncţiuni
Problema 1. Se dă circuitul de mai jos pentru care se cunosc: VCC10[V], 470[kΩ], RC2,7[kΩ]. Tranzistorul bipolar cu joncţiuni (TBJ) este de tipul BC170 şi are parametrii β100 şi VBE0,6[V]. 1. să se determine
Masurarea variabilitatii Indicatorii variaţiei(împrăştierii) lectia 5 16 martie 2 011
1.0.011 STATISTICA Masurarea variabilitatii Indicatorii variaţiei(împrăştierii) lectia 16 martie 011 al.isaic-maniu www.amaniu.ase.ro http://www.ase.ro/ase/studenti/inde.asp?itemfisiere&id Observati doua
CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ
UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ CONCURS DE ADMITERE, 7 iulie 207 Proba scrisă la MATEMATICĂ SUBIECTUL I (30 puncte) ) (0 puncte) Să se arate că oricare ar
3. Vectori şi valori proprii
Valori şi vectori proprii 7 Vectori şi valori proprii n Reamintim că dacă A este o matrice pătratică atunci un vector x R se numeşte vector propriu în raport cu A dacă x şi există un număr λ (real sau
4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice
4. Măsurarea tensiunilor şi a curenţilor electrici oltmetre electronice analogice oltmetre de curent continuu Ampl.c.c. x FTJ Protectie Atenuator calibrat Atenuatorul calibrat divizor rezistiv R in const.
STATISTICĂ DESCRIPTIVĂ
STATISTICĂ DESCRIPTIVĂ » Reprezentarea şi sumarizarea datelor» Parametrii statistici descriptivi Centralitate Dispersie Asimetrie Localizare Cuprins Măsuri de centralitate Măsuri de împrăştiere Media Amplitudine
Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener
Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener 1 Caracteristica statică a unei diode Zener În cadranul, dioda Zener (DZ) se comportă ca o diodă redresoare
VARIABILE ŞI PROCESE ALEATOARE: Principii. Constantin VERTAN, Inge GAVĂT, Rodica STOIAN
VARIABILE ŞI PROCESE ALEATOARE: Principii şi aplicaţii Constantin VERTAN, Inge GAVĂT, Rodica STOIAN 3 mai 999 Cuprins Cuvânt înainte 4 Variabile aleatoare cu valori continue 5. Funcţia de repartiţieavariabilelor
Statisticǎ - curs 4. 1 Generalitǎţi privind ipotezele statistice şi problema verificǎrii ipotezelor statistice 2
Statisticǎ - curs 4 Cuprins 1 Generalitǎţi privind ipotezele statistice şi problema verificǎrii ipotezelor statistice 2 2 Inferenţǎ statisticǎ privind media populaţiei dacǎ se cunoaşte abaterea standard
T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.
Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică
Tranzistoare bipolare şi cu efect de câmp
apitolul 3 apitolul 3 26. Pentru circuitul de polarizare din fig. 26 se cunosc: = 5, = 5, = 2KΩ, = 5KΩ, iar pentru tranzistor se cunosc următorii parametrii: β = 200, 0 = 0, μa, = 0,6. a) ă se determine
4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica