Thuật toán Cực đại hóa Kì vọng (EM)
|
|
- Πέρσις Καραβίας
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Thuật toán Cực đại hóa Kì vọng (EM) Trần Quốc Long 1 1 Bộ môn Khoa học Máy tính Khoa Công nghệ Thông tin Trường Đại học Công nghệ Thứ Tư, 30/03/2016 Long (Đại học Công nghệ) Thuật toán EM 30/03/ / 19
2 Giới thiệu Nội dung 1 Giới thiệu 2 Thuật toán cực đại hóa kì vọng (EM) 3 Mô hình Markov ẩn 4 Tổng kết Long (Đại học Công nghệ) Thuật toán EM 30/03/ / 19
3 Giới thiệu Bài toán ước lượng mật độ (có tham số) Xét biến ngẫu nhiên X trên tập X Ta không biết phân bố thật sự p(x) của X nhưng ta có dữ liệu là một mẫu lấy từ phân bố p(x) x p(x) Xét lớp hàm phân bố p(x; θ), x X phụ thuộc vào tham số θ Θ Bài toán: Cho mẫu x p(x), tìm tham số θ để p(x; θ) xấp xỉ p(x) Lưu ý: Khi X = Z Z Z và p(x) có thể phân tích thành nhân tử n p(x) = p(z 1, z 2,, z n ) = p(z i ), z i Z thì x tương đương với n mẫu học độc lập có cùng phân bố z i, i = 1, n i=1 Long (Đại học Công nghệ) Thuật toán EM 30/03/ / 19
4 Giới thiệu Phương pháp ước lượng hợp lý cực đại (MLE) Bài toán Bài toán: Cho mẫu x p(x), tìm tham số θ để p(x; θ) xấp xỉ p(x) Sự hợp lý của tham số (likelihood function): L(θ; x) = p(x; θ) là hàm của θ Ước lượng hợp lý cực đại: θ MLE = arg max L(θ; x) θ = arg max log L(θ; x) θ Long (Đại học Công nghệ) Thuật toán EM 30/03/ / 19
5 Giới thiệu Phương pháp ước lượng hợp lý cực đại (MLE) Ví dụ Giả sử n mẫu z 1, z 2,, z n độc lập và có cùng phân bố p(z) Xét lớp hàm phân bố chuẩn p(z; µ, σ 2 ) = N (z; µ, σ 2 ) Sự hợp lý của tham số L(µ, σ 2 ; z }{{} 1:n ) = }{{} θ x n i=1 log L(µ, σ 2 ; z 1:n ) = n log Lấy đạo hàm và đặt bằng 0 được µ = z = 1 n 1 (z 2πσ 2 e i µ)2 2σ πσ 2 2σ 2 n z i ; σ 2 = i=1 n i=1 z2 i Long (Đại học Công nghệ) Thuật toán EM 30/03/ / 19 n n (z i µ) 2 i=1 z 2
6 Thuật toán cực đại hóa kì vọng (EM) Nội dung 1 Giới thiệu 2 Thuật toán cực đại hóa kì vọng (EM) 3 Mô hình Markov ẩn 4 Tổng kết Long (Đại học Công nghệ) Thuật toán EM 30/03/ / 19
7 Biến ẩn Thuật toán cực đại hóa kì vọng (EM) Trong đa số trường hợp, ta không có đầy đủ dữ liệu, một số thông tin đã bị ẩn đi Ta chỉ quan sát được biến x mà không quan sát được biến y (ẩn) Bài toán: Cho mẫu x, ước lượng mật độ p(x, y) với lớp hàm phân bố p(x, y; θ) Ước lượng hợp lý cực đại (MLE) θ MLE = arg max log p(x; θ) θ [ = arg max log θ p(x, y; θ)dy y ] Long (Đại học Công nghệ) Thuật toán EM 30/03/ / 19
8 Thuật toán cực đại hóa kì vọng (EM) Bất đẳng thức biến phân cho EM (variational inequality) Xét một phân bố bất kì q(y), ta có log p(x; θ) = log p(x; θ)q(y)dy y = log p(x, y; θ)q(y)dy log p(y x; θ)q(y)dy y y log p(x, y; θ)q(y)dy = E q [log p(x, y; θ)] y y log p(y x; θ)q(y)dy = q(y) log y p(y x; θ) q(y)dy }{{} D KL [q p(y x;θ)] E q [log p(x, y; θ)]: kì vọng theo phân bố q(y) D KL [q p(y x; θ)]: khoảng cách Kullback-Leibler E[q]: entropy của phân bố q(y) Long (Đại học Công nghệ) Thuật toán EM 30/03/ / 19 y log q(y)q(y)dy } {{ } E[q]
9 Thuật toán cực đại hóa kì vọng (EM) Bất đẳng thức biến phân cho EM (variational inequality) Xét một phân bố bất kì q(y), ta có log p(x; θ) }{{} sự hợp lý = E q [log p(x, y; θ)] + D KL [q p(y x; θ)] }{{}}{{} kì vọng khoảng cách KL 0 Sự hợp lý bị chặn dưới bởi kì vọng + entropy Cận dưới này chặt nhất (dấu bằng xảy ra) khi q(y) = p(y x; θ) Long (Đại học Công nghệ) Thuật toán EM 30/03/ / 19 + E[q] }{{} entropy Nếu cố định q(y) như trên thì chỉ cần cực đại hóa kì vọng E p(y x;θ) [log p(x, y; θ)] Bản chất thuật toán EM là cực đại hóa cận dưới của sự hợp lý
10 Thuật toán cực đại hóa kì vọng (EM) Thuật toán cực đại hóa kì vọng (EM) Thuật toán 1 Cực đại hóa kì vọng (EM) 1: Input: mẫu x (thông tin về y bị ẩn) 2: Khởi tạo: chọn tham số θ (0) của phân bố p(x, y; θ) và k = 0 3: while chưa hội tụ do 4: Bước E: tính phân bố hậu nghiệm p(y x; θ (k) ) và biểu thức kì vọng 5: Bước M: cực đại hóa kì vọng 6: k k + 1 7: end while Q(θ θ (k) ) = E p(y x;θ (k) )[log p(x, y; θ)] θ (k+1) = arg max Q(θ θ (k) ) θ Đặt tên bởi Arthur Dempster, Nan Laird, và Donald Rubin (1977) Long (Đại học Công nghệ) Thuật toán EM 30/03/ / 19
11 Thuật toán cực đại hóa kì vọng (EM) Thuật toán cực đại hóa kì vọng (EM) Đặc biệt khi p(x, y; θ) có phân bố dạng mũ (exponential family) p(x, y; θ) = h(x, y)g(θ) exp{ η(θ), T(x, y) } Véc-tơ T(x, y) gọi là thống kê đủ (sufficient statistics) của phân bố dạng mũ Bài toán MLE khi biết cả x và y arg max θ log p(x, y; θ) = arg max[log g(θ) + η(θ), T(x, y) ] θ Thuật toán EM khi y bị ẩn đi arg max θ E q [log p(x, y; θ)] = arg max[log g(θ) + η(θ), E q [ T(x, y)] ] θ Long (Đại học Công nghệ) Thuật toán EM 30/03/ / 19
12 Thuật toán cực đại hóa kì vọng (EM) Thuật toán cực đại hóa kì vọng (EM) (MLE) : arg max[log g(θ) + η(θ), T(x, y) ] θ (EM) : arg max[log g(θ) + η(θ), E q [ T(x, y)] ] θ Rolf Sundberg (1974): Bước M của thuật toán EM chính là phương pháp MLE sau khi thay thống kê đủ T(x, y) bằng kì vọng của nó theo phân bố q(y) Long (Đại học Công nghệ) Thuật toán EM 30/03/ / 19
13 Thuật toán cực đại hóa kì vọng (EM) Ví dụ Trộn phân bố chuẩn (mixture of gaussians) Giả sử n mẫu z 1, z 2,, z n độc lập và có cùng phân bố p(z) Xét lớp hàm phân bố là trộn của K phân bố chuẩn p(z ; µ 1:K, σ 2 1:K) = K p k N (z ; µ k, σk 2 ) Biến ẩn: gọi c ik {0, 1} là biến nhị phân chỉ ra mẫu z i có thuộc phân bố chuẩn thứ k hay không p(z 1:n, c ; µ 1:K, σ 2 1:K) = k=1 n i=1 k=1 K (p k N (z i ; µ k, σk 2 ))c ik } {{ } Phân bố dạng mũ Long (Đại học Công nghệ) Thuật toán EM 30/03/ / 19
14 Thuật toán cực đại hóa kì vọng (EM) Ví dụ Trộn phân bố chuẩn: MLE khi biết c ik Thống kê đủ n k = n c ik, t 1,k = i=1 n c ik z i, t 2,k = i=1 n c ik z 2 i i=1 MLE p k = n k n µ k = t 1,k n k σ 2 k = t 2,k n k ( ) 2 t1,k n k Long (Đại học Công nghệ) Thuật toán EM 30/03/ / 19
15 Thuật toán cực đại hóa kì vọng (EM) Ví dụ Trộn phân bố chuẩn: EM khi không biết c ik Bước E: tính xác suất hậu nghiệm và kì vọng của thống kê đủ r ik = E[c ik z i ; µ, σ 2 ] = p(c ik = 1 z i ; µ, σ 2 p k N (z i µ k, σk 2 ) = ) k p k N (z i µ k, σk 2 ) n n n n k = r ik, t 1,k = r ik z i, t 2,k = r ik z 2 i i=1 Bước M: thế vào công thức MLE p k = n k n µ k = t 1,k n k σ 2 k = t 2,k n k i=1 Long (Đại học Công nghệ) Thuật toán EM 30/03/ / 19 ( ) 2 t1,k n k i=1
16 Mô hình Markov ẩn Nội dung 1 Giới thiệu 2 Thuật toán cực đại hóa kì vọng (EM) 3 Mô hình Markov ẩn 4 Tổng kết Long (Đại học Công nghệ) Thuật toán EM 30/03/ / 19
17 Mô hình Markov ẩn Mô hình Markov ẩn Giới thiệu x(0) x(1) x(t-1) x(t) x(t+1) x(t) y(1) y(t-1) y(t) y(t+1) y(t) Biến trạng thái x {x 1,, x N } (ẩn) Biến nhãn y {y 1,, y K } (hiện) Tính chất Markov: x(u) x(v) x(t), u > t, v < t x(u) y(v) x(t), u > t, v t Long (Đại học Công nghệ) Thuật toán EM 30/03/ / 19
18 Mô hình Markov ẩn Mô hình Markov ẩn Tham số của mô hình x(0) x(1) x(t-1) x(t) x(t+1) x(t) y(1) y(t-1) y(t) y(t+1) y(t) Xác suất chuyển trạng thái P(x(t + 1) = x j x(t) = x i ) = a ij Xác suất sinh ra y P(y(t) = y k x(t) = x i ) = b ik Long (Đại học Công nghệ) Thuật toán EM 30/03/ / 19
19 Mô hình Markov ẩn Mô hình Markov ẩn Ví dụ x(0) x(1) x(t-1) x(t) x(t+1) x(t) y(1) y(t-1) y(t) y(t+1) y(t) Biến ẩn x có thể là chức năng đoạn gen, loại của từ trong câu, vv Biến quan sát được y là kí hiệu nucleotide ATCG, các từ cụ thể, vv Xác suất chuyển trạng thái là xác suất chuyển giữa các đoạn gen có chức năng khác nhau, vv Xác suất sinh dữ liệu là xác suất để mỗi đoạn gen sinh ra các nucleotide khác nhau, vv Bài toán: Quan sát được (biến hiện) y, tính tham số của mô hình Markov ẩn A = [a ij ], B = [b ik ] Long (Đại học Công nghệ) Thuật toán EM 30/03/ / 19
20 Mô hình Markov ẩn Mô hình Markov ẩn Ví dụ: Wikipedia Alice - Bob Long (Đại học Công nghệ) Thuật toán EM 30/03/ / 19
21 Mô hình Markov ẩn Xác suất đầy đủ của HMM Giả sử ta biết cả biến trạng thái x = (x(0) = x 1, x(1), x(2),, x(t)) và biến quan sát được y = (y(1), y(2),, y(t)) Đặt δ s t,i {0, 1} là biến nhị phân chỉ ra x(t) = x i (biến ẩn) Đặt δ o t,k {0, 1} là biến nhị phân chỉ ra y(t) = y k (biến hiện) Xác suất chuyển trạng thái x(t 1) x(t) là (chỉ có một số khác 1) N N i=1 j=1 Xác suất sinh dữ liệu x(t) y(t) là N K a δs t 1,i δs t,j ij b δs t,i δo t,k ik i=1 k=1 Long (Đại học Công nghệ) Thuật toán EM 30/03/ / 19
22 Mô hình Markov ẩn Xác suất đầy đủ của HMM Giả sử ta biết cả biến trạng thái x = (x(0) = x 1, x(1), x(2),, x(t)) và biến quan sát được y = (y(1), y(2),, y(t)) x(0) x(1) x(t-1) x(t) x(t+1) x(t) y(1) y(t-1) y(t) y(t+1) y(t) Xác suất đầy đủ (phân phối dạng mũ) T N P( }{{} δ s, }{{} δ o ; A, B ) = }{{} biến ẩn biến hiện t=1 i=1 tham số θ N j=1 a δs t 1,i δs t,j ij N K i=1 k=1 b δs t,i δo t,k ik Long (Đại học Công nghệ) Thuật toán EM 30/03/ / 19
23 Thống kê đủ Mô hình Markov ẩn [ N,N T log P(δ s, δ o ; A, B) = (log a ij ) = i,j=1 N,N i,j=1 t=1 log a ij U ij + δ s t 1,iδ s t,j N,K i,k=1 ] [ N,K T + (log b ik ) i,k=1 log b ik V ik t=1 Thống kê đủ (số đếm trên cạnh đồ thị) δ s t,iδ o t,k ] U ij = T δt 1,i s δt,j s t=1 } {{ } số lần x i x j, V ik = T δt,i s δt,k o t=1 } {{ } số lần x i y k Long (Đại học Công nghệ) Thuật toán EM 30/03/ / 19
24 MLE khi biết δ s Tính a ij, b ik Mô hình Markov ẩn Bài toán tối ưu có ràng buộc max a ij,j=1,,n max N log a ij U ij, sao cho j=1 b ik,k=1,,k k=1 K log b ik V ik, sao cho N a ij = 1 j=1 K b ik = 1 k=1 Dùng phương pháp nhân tử Lagrange a ij = b ik = U ij j U ij U ij, j = 1,, N V ik k V ik V ik, k = 1,, K Long (Đại học Công nghệ) Thuật toán EM 30/03/ / 19
25 Mô hình Markov ẩn EM khi không biết δ s Thế vào công thức MLE Tính kì vọng hậu nghiệm U ij = E[U ij δ o ; A, B], V ik = E[V ik δ o ; A, B] Thế vào công thức MLE a ij = với i, j = 1,, N, k = 1,, K U ij j U, b ik = V ik ij k V, ik Long (Đại học Công nghệ) Thuật toán EM 30/03/ / 19
26 Mô hình Markov ẩn EM khi không biết δ s Kì vọng hậu nghiệm U ij = E[U ij δ o ] = T E[δt 1,i s δt,j s δ o ] t=1 E[δt,i s δt+1,j s δ o ] = P(x(t) = x i, x(t + 1) = x j δ o ) T V ik = E[V ik δ o ] = E[δt,i s δt,k o δo ] E[δ s t,i δ o t,k δo ] = P(x(t) = x i, y(t) = y k δ o ) Như vậy, thuật toán EM được quy về việc tính các xác suất hậu nghiệm (xác suất cạnh của đồ thị) ξ ij (t) = P(x(t) = x i, x(t + 1) = x j δ o ) γ ik (t) = P(x(t) = x i, y(t) = y k δ o ) t=1 Long (Đại học Công nghệ) Thuật toán EM 30/03/ / 19
27 Mô hình Markov ẩn EM khi không biết δ s Tính các xác suất hậu nghiệm Do biến hiện δ o là hằng số, nhân 2 vế với P(δ o ) = const ξ ij (t) P(x(t) = x i, x(t + 1) = x j, δ o ) γ ik (t) P(x(t) = x i, y(t) = y k, δ o ) Quy hoạch động α i (t) = P(x(t) = i, δ o 1,, δ o t ) β i (t) = P(δ o t+1,, δ o T x(t) = i) Dùng công thức Bayes P(x(t) = x i, x(t + 1) = x j, δ o ) = α i (t)a ij β j (t + 1) P(x(t) = x i, y(t) = y k, δ o ) = δ o t,k α i(t)β i (t) K k=1 b δo t,k jk Long (Đại học Công nghệ) Thuật toán EM 30/03/ / 19
28 Mô hình Markov ẩn EM khi không biết δ s Quy hoạch động tính α i(t), β i(t) Công thức đệ quy (lại sử dụng công thức Bayes) Thuật toán xuôi 1, t = 0, i = 1 α i (t) = 0, t = 0, i 1 [ N ] u=1 α K u(t 1)a ui k=1 bδo t,k ik, t > 0 Thuật toán ngược { 1, t = T β i (t) = N j=1 β j(t + 1)a K ij k=1 bδo t+1,k jk, t < T Long (Đại học Công nghệ) Thuật toán EM 30/03/ / 19
29 Mô hình Markov ẩn Thuật toán EM cho mô hình Markov ẩn Thuật toán 2 EM cho HMM 1: Input: chuỗi y (tức là các biến nhị phân δ o ) 2: Khởi tạo: chọn tham số A (0), B (0) và r = 0 3: while chưa hội tụ do 4: Bước E: Tính α i (t), β i (t) bằng quy hoạch động Tính xác suất hậu nghiệm ξ ij (t), γ ik (t) Tính kì vọng của thống kê đủ U ij, V ik 5: Bước M: cập nhật a (r+1) 6: r r + 1 7: end while ij, b (r+1) ik (thế U ij, V ik vào công thức MLE) Long (Đại học Công nghệ) Thuật toán EM 30/03/ / 19
30 Mô hình Markov ẩn Ví dụ: Wikipedia Alice - Bob Long (Đại học Công nghệ) Thuật toán EM 30/03/ / 19
31 Tổng kết Nội dung 1 Giới thiệu 2 Thuật toán cực đại hóa kì vọng (EM) 3 Mô hình Markov ẩn 4 Tổng kết Long (Đại học Công nghệ) Thuật toán EM 30/03/ / 19
32 Tổng kết Tổng kết EM là thuật toán ước lượng mật độ (có tham số) cho dữ liệu không đầy đủ (có thông tin bị ẩn đi) Bản chất EM là cực đại hóa cận dưới sự hợp lý của tham số Với phân bố dạng mũ, bước M của EM là ước lượng hợp lý cực đại (MLE) với thống kê đủ được thay bằng kì vọng hậu nghiệm Lớp phân bố dạng mũ rất rộng, bao gồm cả mô hình trộn phân bố chuẩn, mô hình Markov ẩn Long (Đại học Công nghệ) Thuật toán EM 30/03/ / 19
1. Ma trận A = Ký hiệu tắt A = [a ij ] m n hoặc A = (a ij ) m n
Cơ sở Toán 1 Chương 2: Ma trận - Định thức GV: Phạm Việt Nga Bộ môn Toán, Khoa CNTT, Học viện Nông nghiệp Việt Nam Bộ môn Toán () Cơ sở Toán 1 - Chương 2 VNUA 1 / 22 Mục lục 1 Ma trận 2 Định thức 3 Ma
Διαβάστε περισσότεραNăm Chứng minh Y N
Về bài toán số 5 trong kì thi chọn đội tuyển toán uốc tế của Việt Nam năm 2015 Nguyễn Văn Linh Năm 2015 1 Mở đầu Trong ngày thi thứ hai của kì thi Việt Nam TST 2015 có một bài toán khá thú vị. ài toán.
Διαβάστε περισσότεραI 2 Z I 1 Y O 2 I A O 1 T Q Z N
ài toán 6 trong kì thi chọn đội tuyển quốc gia Iran năm 2013 Nguyễn Văn Linh Sinh viên K50 TNH ĐH Ngoại Thương 1 Giới thiệu Trong ngày thi thứ 2 của kì thi chọn đội tuyển quốc gia Iran năm 2013 xuất hiện
Διαβάστε περισσότεραNăm Chứng minh. Cách 1. Y H b. H c. BH c BM = P M. CM = Y H b
huỗi bài toán về họ đường tròn đi qua điểm cố định Nguyễn Văn inh Năm 2015 húng ta bắt đầu từ bài toán sau. ài 1. (US TST 2012) ho tam giác. là một điểm chuyển động trên. Gọi, lần lượt là các điểm trên,
Διαβάστε περισσότεραNăm 2017 Q 1 Q 2 P 2 P P 1
Dùng phép vị tự quay để giải một số bài toán liên quan đến yếu tố cố định Nguyễn Văn Linh Năm 2017 1 Mở đầu Tư tưởng của phương pháp này khá đơn giản như sau. Trong bài toán chứng minh điểm chuyển động
Διαβάστε περισσότερα5. Phương trình vi phân
5. Phương trình vi phân (Toán cao cấp 2 - Giải tích) Lê Phương Bộ môn Toán kinh tế Đại học Ngân hàng TP. Hồ Chí Minh Homepage: http://docgate.com/phuongle Nội dung 1 Khái niệm Phương trình vi phân Bài
Διαβάστε περισσότεραQ B Y A P O 4 O 6 Z O 5 O 1 O 2 O 3
ài tập ôn đội tuyển năm 2015 guyễn Văn Linh Số 8 ài 1. ho tam giác nội tiếp đường tròn () có là tâm nội tiếp. cắt () lần thứ hai tại J. Gọi ω là đường tròn tâm J và tiếp xúc với,. Hai tiếp tuyến chung
Διαβάστε περισσότεραSỞ GD & ĐT ĐỒNG THÁP ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 2014 LẦN 1
SỞ GD & ĐT ĐỒNG THÁP ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 0 LẦN THPT Chuyên Nguyễn Quang Diêu Môn: TOÁN; Khối D Thời gian làm bài: 80 phút, không kể thời gian phát đề ĐỀ CHÍNH THỨC I. PHẦN CHUNG CHO TẤT CẢ
Διαβάστε περισσότεραKinh tế học vĩ mô Bài đọc
Chương tình giảng dạy kinh tế Fulbight Niên khóa 2011-2013 Mô hình 1. : cung cấp cơ sở lý thuyết tổng cầu a. Giả sử: cố định, Kinh tế đóng b. IS - cân bằng thị tường hàng hoá: I() = S() c. LM - cân bằng
Διαβάστε περισσότεραHÀM NHIỀU BIẾN Lân cận tại một điểm. 1. Định nghĩa Hàm 2 biến. Miền xác định của hàm f(x,y) là miền VD:
. Định nghĩa Hàm biến. f : D M (, ) z= f( M) = f(, ) Miền ác định của hàm f(,) là miền VD: f : D HÀM NHIỀU BIẾN M (, ) z= f(, ) = D sao cho f(,) có nghĩa. Miền ác định của hàm f(,) là tập hợp những điểm
Διαβάστε περισσότεραBài Tập Môn: NGÔN NGỮ LẬP TRÌNH
Câu 1: Bài Tập Môn: NGÔN NGỮ LẬP TRÌNH Cho văn phạm dưới đây định nghĩa cú pháp của các biểu thức luận lý bao gồm các biến luận lý a,b,, z, các phép toán luận lý not, and, và các dấu mở và đóng ngoặc tròn
Διαβάστε περισσότεραNgày 26 tháng 12 năm 2015
Mô hình Tobit với Biến Phụ thuộc bị chặn Lê Việt Phú Chương trình Giảng dạy Kinh tế Fulbright Ngày 26 tháng 12 năm 2015 1 / 19 Table of contents Khái niệm biến phụ thuộc bị chặn Hồi quy OLS với biến phụ
Διαβάστε περισσότεραMôn: Toán Năm học Thời gian làm bài: 90 phút; 50 câu trắc nghiệm khách quan Mã đề thi 116. (Thí sinh không được sử dụng tài liệu)
SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI ĐỀ KIỂM TRA HỌC KÌ I LỚP TRƯỜNG THPT TRUNG GIÃ Môn: Toán Năm học 0-0 Thời gian làm bài: 90 phút; 50 câu trắc nghiệm khách quan Mã đề thi (Thí sinh không được sử dụng tài liệu)
Διαβάστε περισσότεραSử dụngụ Minitab trong thống kê môi trường
Sử dụngụ Minitab trong thống kê môi trường Dương Trí Dũng I. Giới thiệu Hiện nay có nhiều phần mềm (software) thống kê trên thị trường Giá cao Excel không đủ tính năng Tinh bằng công thức chậm Có nhiều
Διαβάστε περισσότεραChương 1: VECTOR KHÔNG GIAN VÀ BỘ NGHỊCH LƯU BA PHA
I. Vcto không gian Chương : VECTOR KHÔNG GIAN VÀ BỘ NGHỊCH LƯ BA PHA I.. Biể diễn vcto không gian cho các đại lượng ba pha Động cơ không đồng bộ (ĐCKĐB) ba pha có ba (hay bội ố của ba) cộn dây tato bố
Διαβάστε περισσότεραNăm 2014 B 1 A 1 C C 1. Ta có A 1, B 1, C 1 thẳng hàng khi và chỉ khi BA 1 C 1 = B 1 A 1 C.
Đường thẳng Simson- Đường thẳng Steiner của tam giác Nguyễn Văn Linh Năm 2014 1 Đường thẳng Simson Đường thẳng Simson lần đầu tiên được đặt tên bởi oncelet, tuy nhiên một số nhà hình học cho rằng nó không
Διαβάστε περισσότεραx y y
ĐÁP ÁN - ĐỀ KHẢO SÁT CHẤT LƯỢNG HỌC SINH LỚP THPT Bài Năm học 5 6- Môn: TOÁN y 4 TXĐ: D= R Sự biến thiên lim y lim y y ' 4 4 y ' 4 4 4 ( ) - - + y - + - + y + - - + Bài Hàm số đồng biến trên các khoảng
Διαβάστε περισσότεραO 2 I = 1 suy ra II 2 O 1 B.
ài tập ôn đội tuyển năm 2014 guyễn Văn inh Số 2 ài 1. ho hai đường tròn ( 1 ) và ( 2 ) cùng tiếp xúc trong với đường tròn () lần lượt tại,. Từ kẻ hai tiếp tuyến t 1, t 2 tới ( 2 ), từ kẻ hai tiếp tuyến
Διαβάστε περισσότερα* Môn thi: VẬT LÝ (Bảng A) * Ngày thi: 27/01/2013 * Thời gian làm bài: 180 phút (Không kể thời gian giao đề) ĐỀ:
Họ và tên thí sinh:. Chữ kí giám thị Số báo danh:..... SỞ GIÁO DỤC VÀ ĐÀO TẠO BẠC LIÊU KỲ THI CHỌN HSG LỚP 0 CẤP TỈNH NĂM HỌC 0-03 ĐỀ THI CHÍNH THỨC (Gồm 0 trang) * Môn thi: VẬT LÝ (Bảng A) * Ngày thi:
Διαβάστε περισσότεραĐỀ BÀI TẬP LỚN MÔN XỬ LÝ SONG SONG HỆ PHÂN BỐ (501047)
ĐỀ BÀI TẬP LỚN MÔN XỬ LÝ SONG SONG HỆ PHÂN BỐ (501047) Lưu ý: - Sinh viên tự chọn nhóm, mỗi nhóm có 03 sinh viên. Báo cáo phải ghi rõ vai trò của từng thành viên trong dự án. - Sinh viên báo cáo trực tiếp
Διαβάστε περισσότεραSuy ra EA. EN = ED hay EI EJ = EN ED. Mặt khác, EID = BCD = ENM = ENJ. Suy ra EID ENJ. Ta thu được EI. EJ Suy ra EA EB = EN ED hay EA
ài tập ôn đội tuyển năm 015 guyễn Văn inh Số 6 ài 1. ho tứ giác ngoại tiếp. hứng minh rằng trung trực của các cạnh,,, cắt nhau tạo thành một tứ giác ngoại tiếp. J 1 1 1 1 hứng minh. Gọi 1 1 1 1 là tứ giác
Διαβάστε περισσότεραTối ưu tuyến tính. f(z) < inf. Khi đó tồn tại y X sao cho (i) d(z, y) 1. (ii) f(y) + εd(z, y) f(z). (iii) f(x) + εd(x, y) f(y), x X.
Tối ưu tuyến tính Câu 1: (Định lý 2.1.1 - Nguyên lý biến phân Ekeland) Cho (X, d) là không gian mêtric đủ, f : X R {+ } là hàm lsc bị chặn dưới. Giả sử ε > 0 và z Z thỏa Khi đó tồn tại y X sao cho (i)
Διαβάστε περισσότεραhttps://www.facebook.com/nguyenkhachuongqv2 ĐỀ 56
TRƯỜNG THPT QUỲNH LƯU TỔ TOÁN Câu ( điểm). Cho hàm số y = + ĐỀ THI THỬ THPT QUỐC GIA LẦN NĂM HỌC 5-6 MÔN: TOÁN Thời gian làm bài: 8 phút (không tính thời gian phát đề ) a) Khảo sát sự biến thiên và vẽ
Διαβάστε περισσότεραTôi có thể tìm mẫu đơn đăng kí ở đâu? Tôi có thể tìm mẫu đơn đăng kí ở đâu? Για να ρωτήσετε που μπορείτε να βρείτε μια φόρμα
- Γενικά Tôi có thể tìm mẫu đơn đăng kí ở đâu? Tôi có thể tìm mẫu đơn đăng kí ở đâu? Για να ρωτήσετε που μπορείτε να βρείτε μια φόρμα Khi nào [tài liệu] của bạn được ban hành? Για να ρωτήσετε πότε έχει
Διαβάστε περισσότεραO C I O. I a. I b P P. 2 Chứng minh
ài toán rotassov và ứng dụng Nguyễn Văn Linh Năm 2017 1 Giới thiệu ài toán rotassov được phát biểu như sau. ho tam giác với là tâm đường tròn nội tiếp. Một đường tròn () bất kì đi qua và. ựng một đường
Διαβάστε περισσότεραBÀI TẬP LỚN MÔN THIẾT KẾ HỆ THỐNG CƠ KHÍ THEO ĐỘ TIN CẬY
Trường Đại Học Bách Khoa TP HCM Khoa Cơ Khí BÀI TẬP LỚN MÔN THIẾT KẾ HỆ THỐNG CƠ KHÍ THEO ĐỘ TIN CẬY GVHD: PGS.TS NGUYỄN HỮU LỘC HVTH: TP HCM, 5/ 011 MS Trang 1 BÀI TẬP LỚN Thanh có tiết iện ngang hình
Διαβάστε περισσότεραĐỀ 83. https://www.facebook.com/nguyenkhachuongqv2
ĐỀ 8 https://www.facebook.com/nguyenkhachuongqv GV Nguyễn Khắc Hưởng - THPT Quế Võ số - https://huongphuong.wordpress.com SỞ GIÁO DỤC VÀ ĐÀO TẠO HƯNG YÊN KỲ THI THỬ THPT QUỐC GIA 016 LẦN TRƯỜNG THPT MINH
Διαβάστε περισσότεραBỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI MINH HỌA - KỲ THI THPT QUỐC GIA NĂM 2015 Môn: TOÁN Thời gian làm bài: 180 phút.
BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI MINH HỌA - KỲ THI THPT QUỐC GIA NĂM Môn: TOÁN Thời gian làm bài: 8 phút Câu (, điểm) Cho hàm số y = + a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho b) Viết
Διαβάστε περισσότεραHOC360.NET - TÀI LIỆU HỌC TẬP MIỄN PHÍ. đến va chạm với vật M. Gọi vv, là vận tốc của m và M ngay. đến va chạm vào nó.
HOC36.NET - TÀI LIỆU HỌC TẬP IỄN PHÍ CHỦ ĐỀ 3. CON LẮC ĐƠN BÀI TOÁN LIÊN QUAN ĐẾN VA CHẠ CON LẮC ĐƠN Phương pháp giải Vật m chuyển động vận tốc v đến va chạm với vật. Gọi vv, là vận tốc của m và ngay sau
Διαβάστε περισσότεραNăm Pascal xem tại [2]. A B C A B C. 2 Chứng minh. chứng minh sau. Cách 1 (Jan van Yzeren).
Định lý Pascal guyễn Văn Linh ăm 2014 1 Giới thiệu. ăm 16 tuổi, Pascal công bố một công trình toán học : Về thiết diện của đường cônic, trong đó ông đã chứng minh một định lí nổi tiếng và gọi là Định lí
Διαβάστε περισσότεραcó thể biểu diễn được như là một kiểu đạo hàm của một phiếm hàm năng lượng I[]
1 MỞ ĐẦU 1. Lý do chọn đề tài Chúng ta đều biết: không có lý thuyết tổng quát cho phép giải mọi phương trình đạo hàm riêng; nhất là với các phương trình phi tuyến Au [ ] = 0; (1) trong đó A[] ký hiệu toán
Διαβάστε περισσότεραTruy cập website: hoc360.net để tải tài liệu đề thi miễn phí
Tru cập website: hoc36net để tải tài liệu đề thi iễn phí ÀI GIẢI âu : ( điể) Giải các phương trình và hệ phương trình sau: a) 8 3 3 () 8 3 3 8 Ta có ' 8 8 9 ; ' 9 3 o ' nên phương trình () có nghiệ phân
Διαβάστε περισσότεραM c. E M b F I. M a. Chứng minh. M b M c. trong thứ hai của (O 1 ) và (O 2 ).
ài tập ôn đội tuyển năm 015 Nguyễn Văn inh Số 5 ài 1. ho tam giác nội tiếp () có + =. Đường tròn () nội tiếp tam giác tiếp xúc với,, lần lượt tại,,. Gọi b, c lần lượt là trung điểm,. b c cắt tại. hứng
Διαβάστε περισσότεραx = Cho U là một hệ gồm 2n vec-tơ trong không gian R n : (1.2)
65 TẠP CHÍ KHOA HỌC, Đại học Huế, Số 53, 2009 HỆ PHÂN HOẠCH HOÀN TOÀN KHÔNG GIAN R N Huỳnh Thế Phùng Trường Đại học Khoa học, Đại học Huế TÓM TẮT Một phân hoạch hoàn toàn của R n là một hệ gồm 2n vec-tơ
Διαβάστε περισσότεραChương 12: Chu trình máy lạnh và bơm nhiệt
/009 Chương : Chu trình máy lạnh và bơm nhiệt. Khái niệm chung. Chu trình lạnh dùng không khí. Chu trình lạnh dùng hơi. /009. Khái niệm chung Máy lạnh/bơmnhiệt: chuyển CÔNG thành NHIỆT NĂNG Nguồn nóng
Διαβάστε περισσότεραLecture-11. Ch-6: Phân tích hệ thống liên tục dùng biếnđổi Laplace
Ch-6: Phân tích hệ thống liên tục dùng biếnđổi Laplace Lecture- 6.. Phân tích hệ thống LTI dùng biếnđổi Laplace 6.3. Sơđồ hối và thực hiện hệ thống 6.. Phân tích hệ thống LTI dùng biếnđổi Laplace 6...
Διαβάστε περισσότεραA 2 B 1 C 1 C 2 B B 2 A 1
Sáng tạo trong hình học Nguyễn Văn Linh Sinh viên K50 TNH ĐH Ngoại thương 1 Mở đầu Hình học là một mảng rất đặc biệt trong toán học. Vẻ đẹp của phân môn này nằm trong hình vẽ mà muốn cảm nhận được chúng
Διαβάστε περισσότεραPhụ thuộc hàm. và Chuẩn hóa cơ sở dữ liệu. Nội dung trình bày. Chương 7. Nguyên tắc thiết kế. Ngữ nghĩa của các thuộc tính (1) Phụ thuộc hàm
Nội dung trình bày hương 7 và huẩn hóa cơ sở dữ liệu Nguyên tắc thiết kế các lược đồ quan hệ.. ác dạng chuẩn. Một số thuật toán chuẩn hóa. Nguyên tắc thiết kế Ngữ nghĩa của các thuộc tính () Nhìn lại vấn
Διαβάστε περισσότεραCÁC ĐỊNH LÝ CƠ BẢN CỦA HÌNH HỌC PHẲNG
CÁC ĐỊNH LÝ CƠ BẢN CỦA HÌNH HỌC PHẲNG Nguyễn Tăng Vũ 1. Đường thẳng Euler. Bài toán 1. Trong một tam giác thì trọng tâm, trực tâm và tâm đường tròn ngoại tiếp cùng nằm trên một đường thẳng. (Đường thẳng
Διαβάστε περισσότεραNội dung. 1. Một số khái niệm. 2. Dung dịch chất điện ly. 3. Cân bằng trong dung dịch chất điện ly khó tan
CHƯƠNG 5: DUNG DỊCH 1 Nội dung 1. Một số khái niệm 2. Dung dịch chất điện ly 3. Cân bằng trong dung dịch chất điện ly khó tan 2 Dung dịch Là hệ đồng thể gồm 2 hay nhiều chất (chất tan & dung môi) mà thành
Διαβάστε περισσότερα1.6 Công thức tính theo t = tan x 2
TÓM TẮT LÝ THUYẾT ĐẠI SỐ - GIẢI TÍCH 1 Công thức lượng giác 1.1 Hệ thức cơ bản sin 2 x + cos 2 x = 1 1 + tn 2 x = 1 cos 2 x tn x = sin x cos x 1.2 Công thức cộng cot x = cos x sin x sin( ± b) = sin cos
Διαβάστε περισσότεραTự tương quan (Autocorrelation)
Tự ương quan (Auocorrelaion) Đinh Công Khải Tháng 04/2016 1 Nội dung 1. Tự ương quan là gì? 2. Hậu quả của việc ước lượng bỏ qua ự ương quan? 3. Làm sao để phá hiện ự ương quan? 4. Các biện pháp khắc phục?
Διαβάστε περισσότεραDữ liệu bảng (Panel Data)
5/6/0 ữ lệu bảng (Panel ata) Đnh Công Khả Tháng 5/0 Nộ dung. Gớ thệu chung về dữ lệu bảng. Những lợ thế kh sử dụng dữ lệu bảng. Ước lượng mô hình hồ qu dữ lệu bảng Mô hình những ảnh hưởng cố định (FEM)
Διαβάστε περισσότεραTự tương quan (Autoregression)
Tự ương quan (Auoregression) Đinh Công Khải Tháng 05/013 1 Nội dung 1. Tự ương quan (AR) là gì?. Hậu quả của việc ước lượng bỏ qua AR? 3. Làm sao để phá hiện AR? 4. Các biện pháp khắc phục? 1 Tự ương quan
Διαβάστε περισσότερα(CH4 - PHÂN TÍCH PHƯƠNG SAI, SO SÁNH VÀ KIỂM ĐỊNH) Ch4 - Phân tích phương sai, so sánh và kiểm định 1
TIN HỌC ỨNG DỤNG (CH4 - PHÂN TÍCH PHƯƠNG SAI, SO SÁNH VÀ KIỂM ĐỊNH) Phan Trọng Tiến BM Công nghệ phần mềm Khoa Công nghệ thông tin, VNUA Email: phantien84@gmail.com Website: http://timoday.edu.vn Ch4 -
Διαβάστε περισσότερα1.3.3 Ma trận tự tương quan Các bài toán Khái niệm Ý nghĩa So sánh hai mô hình...
BÀI TẬP ÔN THI KINH TẾ LƯỢNG Biên Soạn ThS. LÊ TRƯỜNG GIANG Thành phố Hồ Chí Minh, ngày 0, tháng 06, năm 016 Mục lục Trang Chương 1 Tóm tắt lý thuyết 1 1.1 Tổng quan về kinh tế lượng......................
Διαβάστε περισσότεραCÁC CÔNG THỨC CỰC TRỊ ĐIỆN XOAY CHIỀU
Tà lệ kha test đầ xân 4 Á ÔNG THỨ Ự TỊ ĐỆN XOAY HỀ GÁO VÊN : ĐẶNG VỆT HÙNG. Đạn mạch có thay đổ: * Kh thì Max max ; P Max còn Mn ư ý: và mắc lên tếp nha * Kh thì Max * Vớ = hặc = thì có cùng gá trị thì
Διαβάστε περισσότεραĐỀ SỐ 16 ĐỀ THI THPT QUỐC GIA MÔN TOÁN 2017 Thời gian làm bài: 90 phút; không kể thời gian giao đề (50 câu trắc nghiệm)
THẦY: ĐẶNG THÀNH NAM Website: wwwvtedvn ĐỀ SỐ 6 ĐỀ THI THPT QUỐC GIA MÔN TOÁN 7 Thời gian làm bài: phút; không kể thời gian giao đề (5 câu trắc nghiệm) Mã đề thi 65 Họ, tên thí sinh:trường: Điểm mong muốn:
Διαβάστε περισσότεραBÀI TẬP. 1-5: Dòng phân cực thuận trong chuyển tiếp PN là 1.5mA ở 27oC. Nếu Is = 2.4x10-14A và m = 1, tìm điện áp phân cực thuận.
BÀI TẬP CHƯƠNG 1: LÝ THUYẾT BÁN DẪN 1-1: Một thanh Si có mật độ electron trong bán dẫn thuần ni = 1.5x10 16 e/m 3. Cho độ linh động của electron và lỗ trống lần lượt là n = 0.14m 2 /vs và p = 0.05m 2 /vs.
Διαβάστε περισσότεραTuyển chọn Đề và đáp án : Luyện thi thử Đại Học của các trường trong nước năm 2012.
wwwliscpgetl Tuyển chọn Đề và đáp án : Luyện thi thử Đại ọc củ các trường trong nước năm ôn: ÌN Ọ KÔNG GN (lisc cắt và dán) ÌN ÓP ài ho hình chóp có đáy là hình vuông cạnh, tm giác đều, tm giác vuông cân
Διαβάστε περισσότεραMALE = 1 nếu là nam, MALE = 0 nếu là nữ. 1) Nêu ý nghĩa của các hệ số hồi quy trong hàm hồi quy mẫu trên?
Chương 4: HỒI QUY VỚI BIẾN GIẢ VÀ ỨNG DỤNG 1. Nghiên cứu về tuổi thọ (Y: ngày) của hai loại bóng đèn (loại A, loại B). Đặt Z = 0 nếu đó là bóng đèn loại A, Z = 1 nếu đó là bóng đèn loại B. Kết quả hồi
Διαβάστε περισσότεραHỒI QUY TUYẾN TÍNH ĐƠN. GV : Đinh Công Khải FETP Môn: Các Phương Pháp Định Lượng
1 HỒI QUY TUYẾN TÍNH ĐƠN GV : Đnh Công Khả FETP Môn: Các Phương Pháp Định Lượng Knh tế lượng là gì? Knh tế lượng được quan tâm vớ vệc xác định các qu luật knh tế bằng thực nghệm (Thel, 1971) Knh tế lượng
Διαβάστε περισσότεραSỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP 10 NĂM HỌC NGÀY THI : 19/06/2009 Thời gian làm bài: 120 phút (không kể thời gian giao đề)
SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ TI TUYỂN SIN LỚP NĂM ỌC 9- KÁN OÀ MÔN : TOÁN NGÀY TI : 9/6/9 ĐỀ CÍN TỨC Thời gian làm bài: phút (không kể thời gian giao đề) ài ( điểm) (Không dùng máy tính cầm tay) a Cho biết
Διαβάστε περισσότεραÝ NGHĨA BẢNG HỒI QUY MÔ HÌNH BẰNG PHẦN MỀM EVIEWS
Ý NGHĨA BẢNG HỒI QUY MÔ HÌNH BẰNG PHẦN MỀM EVIEWS CẦN KÍ TÊN Ý NGHĨA XEM HIỆU 1 Dependent Variable Tên biến phụ thuộc Y Phương pháp bình Method: Least phương tối thiểu (nhỏ OLS Squares nhất) Date - Time
Διαβάστε περισσότεραChứng minh. Cách 1. EO EB = EA. hay OC = AE
ài tập ôn luyện đội tuyển I năm 2016 guyễn Văn inh ài 1. (Iran S 2007). ho tam giác. ột điểm nằm trong tam giác thỏa mãn = +. Gọi, Z lần lượt là điểm chính giữa các cung và của đường tròn ngoại tiếp các
Διαβάστε περισσότεραL P I J C B D. Do GI 2 = GJ.GH nên GIH = IJG = IKJ = 90 GJB = 90 GLH. Mà GIH + GIQ = 90 nên QIG = ILG = IQG, suy ra GI = GQ hay Q (BIC).
ài tập ôn đội tuyển I năm 015 Nguyễn Văn inh Số 7 ài 1. (ym). ho tam giác nội tiếp đường tròn (), ngoại tiếp đường tròn (I). G là điểm chính giữa cung không chứa. là tiếp điểm của (I) với. J là điểm nằm
Διαβάστε περισσότεραChương 11 HỒI QUY VÀ TƯƠNG QUAN ĐƠN BIẾN
Chương 11 HỒI QUY VÀ TƯƠNG QUAN ĐƠN BIẾN Ths. Nguyễn Tiến Dũng Viện Kinh tế và Quản lý, Trường ĐH Bách khoa Hà Nội Email: dung.nguyentien3@hust.edu.vn MỤC TIÊU CỦA CHƯƠNG Sau khi học xong chương này, người
Διαβάστε περισσότεραTính: AB = 5 ( AOB tại O) * S tp = S xq + S đáy = 2 π a 2 + πa 2 = 23 π a 2. b) V = 3 π = 1.OA. (vì SO là đường cao của SAB đều cạnh 2a)
Mặt nón. Mặt trụ. Mặt cầu ài : Trong không gin cho tm giác vuông tại có 4,. Khi quy tm giác vuông qunh cạnh góc vuông thì đường gấp khúc tạo thành một hình nón tròn xoy. b)tính thể tích củ khối nón 4 )
Διαβάστε περισσότεραΜπορείτε να με βοηθήσετε να γεμίσω αυτή τη φόρμα; Για να ρωτήσετε αν κάποιος μπορεί να σας βοηθήσει να γεμίσετε μια φόρμα
- Γενικά Πού μπορώ να βρω τη φόρμα για ; Tôi có thể tìm mẫu đơn đăng kí ở đâu? Για να ρωτήσετε που μπορείτε να βρείτε μια φόρμα Πότε εκδόθηκε το [έγγραφο] σας; Για να ρωτήσετε πότε έχει εκδοθεί ένα έγγραφο
Διαβάστε περισσότερα- Toán học Việt Nam
- Toán học Việt Nam PHƯƠNG PHÁP GIẢI TOÁN HÌNH HỌ KHÔNG GIN ẰNG VETOR I. Á VÍ DỤ INH HỌ Vấn đề 1: ho hình chóp S. có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S trên mặt phẳng () là điểm H thuộc
Διαβάστε περισσότεραБизнес Заказ. Заказ - Размещение. Официально, проба
- Размещение Εξετάζουμε την αγορά... Официально, проба Είμαστε στην ευχάριστη θέση να δώσουμε την παραγγελία μας στην εταιρεία σας για... Θα θέλαμε να κάνουμε μια παραγγελία. Επισυνάπτεται η παραγγελία
Διαβάστε περισσότεραCƠ HỌC LÝ THUYẾT: TĨNH HỌC
2003 The McGraw-Hill Companies, Inc. ll rights reserved. The First E CHƯƠNG: 01 CƠ HỌC LÝ THUYẾT: TĨNH HỌC ThS Nguyễn Phú Hoàng CÁC KHÁI NIỆM CƠ BẢN HỆ TIÊN ĐỀ TĨNH HỌC Khoa KT Xây dựng Trường CĐCN Đại
Διαβάστε περισσότερα(Complexometric. Chương V. Reactions & Titrations) Ts. Phạm Trần Nguyên Nguyên
Chương V PHẢN ỨNG TẠO T O PHỨC C & CHUẨN N ĐỘĐ (Complexometric Reactions & Titrations) Ts. Phạm Trần Nguyên Nguyên ptnnguyen@hcmus.edu.vn 1. Phức chất vàhằng số bền 2. Phương pháp chuẩn độ phức 3. Cân
Διαβάστε περισσότεραA E. A c I O. A b. O a. M a. Chứng minh. Do XA b giao CI tại F nằm trên (O) nên BXA b = F CB = 1 2 ACB = BIA 90 = A b IB.
Đường tròn mixtilinear Nguyễn Văn Linh Sinh viên K50 TNH ĐH Ngoại thương 1 Giới thiệu Đường tròn mixtilinear nội tiếp (bàng tiếp) là đường tròn tiếp xúc với hai cạnh tam giác và tiếp xúc trong (ngoài)
Διαβάστε περισσότεραMỤC LỤC LỜI NÓI ĐẦU...
MỤC LỤC LỜI NÓI ĐẦU... 5 Chƣơng I: Mở đầu... 8 1.1 Tập hợp và các cấu trúc đại số... 8 1.1.1 Tập hợp và các tập con... 8 1.1.2 Tập hợp và các phép toán hai ngôi... 9 1.3 Quan hệ và quan hệ tương đương...
Διαβάστε περισσότεραCHƯƠNG III NHIỆT HÓA HỌC 1. Các khái niệm cơ bản: a. Hệ: Là 1 phần của vũ trụ có giới hạn trong phạm vi đang khảo sát về phương diện hóa học.
CHƯƠNG III NHIỆT HÓA HỌC 1. Các khái niệm cơ bản: a. Hệ: Là 1 phần của vũ trụ có giới hạn trng phạm vi đang khả sát về phương diện hóa học. Phần còn lại của vũ trụ ba quanh hệ được gọi là môi trường ngài
Διαβάστε περισσότεραKỸ THUẬT ĐIỆN CHƯƠNG IV
KỸ THẬT ĐỆN HƯƠNG V MẠH ĐỆN PH HƯƠNG V : MẠH ĐỆN PH. Khái niệm chung Điện năng sử ụng trong công nghiệ ưới ạng òng điện sin ba ha vì những lý o sau: - Động cơ điện ba ha có cấu tạo đơn giản và đặc tính
Διαβάστε περισσότεραx i x k = e = x j x k x i = x j (luật giản ước).
1 Mục lục Chương 1. NHÓM.................................................. 2 Chương 2. NHÓM HỮU HẠN.................................... 10 Chương 3. NHÓM ABEL HỮU HẠN SINH....................... 14 2 CHƯƠNG
Διαβάστε περισσότεραĐỀ CƯƠNG CHI TIẾT HỌC PHẦN (Chương trình đào tạo tín chỉ, từ Khóa 2011)
Đề cương chi tiết Toán cao cấp 2 1 TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP. HCM KHOA CÔNG NGHỆ THÔNG TIN CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập Tự do Hạnh phúc 1. Thông tin chung về môn học ĐỀ CƯƠNG CHI TIẾT HỌC
Διαβάστε περισσότεραChương 2: Đại cương về transistor
Chương 2: Đại cương về transistor Transistor tiếp giáp lưỡng cực - BJT [ Bipolar Junction Transistor ] Transistor hiệu ứng trường FET [ Field Effect Transistor ] 2.1 KHUYẾCH ĐẠI VÀ CHUYỂN MẠCH BẰNG TRANSISTOR
Διαβάστε περισσότεραXác định nguyên nhân và giải pháp hạn chế nứt ống bê tông dự ứng lực D2400mm
Xác định nguyên nhân và giải pháp hạn chế nứt ống bê tông dự ứng lực D2400mm 1. Giới thiệu Ống bê tông dự ứng lực có nòng thép D2400 là sản phẩm cung cấp cho các tuyến ống cấp nước sạch. Đây là sản phẩm
Διαβάστε περισσότερα2.1 Tam giác. R 2 2Rr = d 2 (2.1.1) 1 R + d + 1. R d = 1 r (2.1.2) R d r + R + d r = ( R + d r. R d r
Một số vấn đề về đa giác lưỡng tâm Nguyễn Văn Linh Sinh viên K50 TNH ĐH Ngoại thương 1 Giới thiệu Một đa giác lồi được gọi là lưỡng tâm khi đa giác đó vừa nội tiếp vừa ngoại tiếp đường tròn. Những đa giác
Διαβάστε περισσότεραBatigoal_mathscope.org ñược tính theo công thức
SỐ PHỨC TRONG CHỨNG MINH HÌNH HỌC PHẲNG Batigoal_mathscope.org Hoangquan9@gmail.com I.MỘT SỐ KHÁI NIỆM CƠ BẢN. Khoảng cách giữa hai ñiểm Giả sử có số phức và biểu diễn hai ñiểm M và M trên mặt phẳng tọa
Διαβάστε περισσότεραcó nghiệm là:. Mệnh đề nào sau đây đúng?
SỞ GD & ĐT TỈNH HƯNG YÊN TRƯỜNG THPT MINH CHÂU (Đề có 6 trng) ĐỀ THI THỬ THPT QG MÔN TOÁN LẦN NĂM HỌC 7-8 MÔN TOÁN Thời gin làm bài : 9 Phút; (Đề có câu) Họ tên : Số báo dnh : Mã đề 84 Câu : Bất phương
Διαβάστε περισσότεραPHÂN TÍCH ẢNH HƢỞNG CỦA SÓNG HÀI TRONG TRẠM BÙ CÔNG SUẤT PHẢN KHÁNG KIỂU SVC VÀ NHỮNG GIẢI PHÁP KHẮC PHỤC
Luận văn thạc sĩ kỹ thuật 1 ĐẠI HỌC THÁI NGUYÊN TRƢỜNG ĐẠI HỌC CÔNG NGHIỆP --------------------------------------- VŨ THỊ VÒNG PHÂN TÍCH ẢNH HƢỞNG CỦA SÓNG HÀI TRONG TRẠM BÙ CÔNG SUẤT PHẢN KHÁNG KIỂU SVC
Διαβάστε περισσότεραQCVN 28:2010/BTNMT. National Technical Regulation on Health Care Wastewater
CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM QCVN 28:2010/BTNMT QUY CHUẨN KỸ THUẬT QUỐC GIA VỀ NƯỚC THẢI Y TẾ National Technical Regulation on Health Care Wastewater HÀ NỘI - 2010 Lời nói đầu QCVN 28:2010/BTNMT
Διαβάστε περισσότεραKỸ THUẬT ĐIỆN CHƯƠNG II
KỸ THẬT ĐỆN HƯƠNG DÒNG ĐỆN SN Khái niệm: Dòng điện xoay chiều biến đổi theo quy luật hàm sin của thời gian là dòng điện sin. ác đại lượng đặc trưng cho dòng điện sin Trị số của dòng điện, điện áp sin ở
Διαβάστε περισσότεραc) y = c) y = arctan(sin x) d) y = arctan(e x ).
Trường Đại học Bách Khoa Hà Nội Viện Toán ứng dụng và Tin học ĐỀ CƯƠNG BÀI TẬP GIẢI TÍCH I - TỪ K6 Nhóm ngành 3 Mã số : MI 3 ) Kiểm tra giữa kỳ hệ số.3: Tự luận, 6 phút. Nội dung: Chương, chương đến hết
Διαβάστε περισσότεραTứ giác BLHN là nội tiếp. Từ đó suy ra AL.AH = AB. AN = AW.AZ. Như thế LHZW nội tiếp. Suy ra HZW = HLM = 1v. Vì vậy điểm H cũng nằm trên
MỘT SỐ ÀI TOÁN THẲNG HÀNG ài toán 1. (Imo Shortlist 2013 - G1) ho là một tm giác nhọn với trực tâm H, và W là một điểm trên cạnh. Gọi M và N là chân đường co hạ từ và tương ứng. Gọi (ω 1 ) là đường tròn
Διαβάστε περισσότεραNgày 18 tháng 3 năm 2015
Giải Tích Phần Tử Hữu Hạn Đại Học Khoa Học Tự Nhiên, Tp. HCM Ngày 18 tháng 3 năm 2015 Giới thiệu Giới thiệu Phương trình đạo hàm riêng-ptđhr (Partial Differential Equations-PDE) được sử dụng mô tả các
Διαβάστε περισσότεραTRANSISTOR MỐI NỐI LƯỠNG CỰC
hương 4: Transistor mối nối lưỡng cực hương 4 TANSISTO MỐI NỐI LƯỠNG Ự Transistor mối nối lưỡng cực (JT) được phát minh vào năm 1948 bởi John ardeen và Walter rittain tại phòng thí nghiệm ell (ở Mỹ). Một
Διαβάστε περισσότεραΜετανάστευση Σπουδές. Σπουδές - Πανεπιστήμιο. Για να δηλώσετε ότι θέλετε να εγγραφείτε
- Πανεπιστήμιο Θα ήθελα να εγγραφώ σε πανεπιστήμιο. Για να δηλώσετε ότι θέλετε να εγγραφείτε Tôi muốn ghi danh vào một trường đại học Θα ήθελα να γραφτώ για. Tôi muốn đăng kí khóa học. Για να υποδείξετε
Διαβάστε περισσότεραLẤY MẪU VÀ KHÔI PHỤC TÍN HIỆU
LẤY MẪU VÀ KHÔI PHỤC TÍN HIỆU Nội dung: 2.1 Lấy mẫu tín hiệu 2.2 Bộ tiền lọc 2.3 Lượng tử hóa 2.4 Khôi phục tín hiệu tương tự 2.5 Các bộ biến đổi ADC và DAC Bài tập 1 2.1 Lấy mẫu tín hiệu: Quá trình biến
Διαβάστε περισσότεραA. ĐẶT VẤN ĐỀ B. HƯỚNG DẪN HỌC SINH SỬ DỤNG PHƯƠNG PHÁP VECTƠ GIẢI MỘT SỐ BÀI TOÁN HÌNH HỌC KHÔNG GIAN
. ĐẶT VẤN ĐỀ Hình họ hông gin là một hủ đề tương đối hó đối với họ sinh, hó ả áh tiếp ận vấn đề và ả trong tìm lời giải ài toán. Làm so để họ sinh họ hình họ hông gin dễ hiểu hơn, hoặ hí ít ũng giải đượ
Διαβάστε περισσότεραĐẠI CƯƠNG VỀ HÒA TAN. Trần Văn Thành
ĐẠI CƯƠNG VỀ HÒA TAN Trần Văn Thành 1 VAI TRÒ CỦA SỰ HÒA TAN Nghiên cứu phát triển Bảo quản Sinh khả dụng 2 CÁC KHÁI NIỆM CƠ BẢN - CHẤT TAN - DUNG MÔI - DUNG DỊCH (THẬT/GIẢ) 3 NỒNG ĐỘ DUNG DỊCH 4 CÁC KHÁI
Διαβάστε περισσότεραB. chiều dài dây treo C.vĩ độ địa lý
ĐỀ THI THỬ LẦN 1 TRƯỜNG THPT CHUYÊN HẠ LONG QUẢNG NINH MÔN VẬT LÝ LỜI GIẢI: LẠI ĐẮC HỢP FACEBOOK: www.fb.com/laidachop Group: https://www.facebook.com/groups/dethivatly.moon/ Câu 1 [316487]: Đặt điện áp
Διαβάστε περισσότεραBài Giảng Môn học: OTOMAT VÀ NGÔN NGỮ HÌNH THỨC
Bài Giảng Môn học: OTOMAT VÀ NGÔN NGỮ HÌNH THỨC TS. Nguyễn Văn Định, Khoa CNTT Lời nói đầu Ngôn ngữ là phương tiện để giao tiếp, sự giao tiếp có thể hiểu là giao tiếp giữa con người với nhau, giao tiếp
Διαβάστε περισσότεραBiên soạn và giảng dạy : Giáo viên Nguyễn Minh Tuấn Tổ Hóa Trường THPT Chuyên Hùng Vương Phú Thọ
B. PHƯƠNG PHÁP GIẢI BÀI TẬP VỀ AMIN I. Phản ứng thể hiện tính bazơ của amin Phương pháp giải Một số điều cần lưu ý về tính bazơ của amin : + Các amin đều phản ứng được với các dung dịch axit như HCl, HNO,
Διαβάστε περισσότεραgặp của Học viên Học viên sử dụng khái niệm tích phân để tính.
ĐÁP ÁN Bài 1: BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Tình huống dẫn nhập STT câu hỏi Nội dung câu hỏi Những ý kiến thường gặp của Học viên Kiến thức liên quan (Giải đáp cho các vấn đề) 1 Tính diện tích Hồ Gươm?
Διαβάστε περισσότεραCHƯƠNG 3: NHIỆT ĐỘNG HÓA HỌC
CHƯƠNG 3: NHIỆT ĐỘNG HÓA HỌC I. Nguyên lý 1 nhiệt động học: Q= U + A hay U = Q A a) Quy ước dấu công và nhiệt: - Hệ thu nhiệt: Q > 0 ; Hệ phát nhiệt: Q < 0 - Hệ nhận công: A < 0 ; Hệ sinh công ( thực hiện
Διαβάστε περισσότερα7. Phương trình bậc hi. Xét phương trình bậc hi x + bx + c 0 ( 0) Công thức nghiệm b - 4c Nếu > 0 : Phương trình có hi nghiệm phân biệt: b+ b x ; x Nế
TỔNG HỢP KIẾN THỨC VÀ CÁCH GIẢI CÁC DẠNG ÀI TẬP TÁN 9 PHẦN I: ĐẠI SỐ. KIẾN THỨC CẦN NHỚ.. Điều kiện để căn thức có nghĩ. có nghĩ khi 0. Các công thức biến đổi căn thức.. b.. ( 0; 0) c. ( 0; > 0) d. e.
Διαβάστε περισσότεραVectơ và các phép toán
wwwvnmathcom Bài 1 1 Các khái niệm cơ bản 11 Dẫn dắt đến khái niệm vectơ Vectơ và các phép toán Vectơ đại diện cho những đại lượng có hướng và có độ lớn ví dụ: lực, vận tốc, 1 Định nghĩa vectơ và các yếu
Διαβάστε περισσότεραĐỀ SỐ 1. ĐỀ SỐ 2 Bài 1 : (3 điểm) Thu gọn các biểu thức sau : Trần Thanh Phong ĐỀ THI HỌC KÌ 1 MÔN TOÁN LỚP O a a 2a
Trần Thanh Phong 0908 456 ĐỀ THI HỌC KÌ MÔN TOÁN LỚP 9 ----0O0----- Bài :Thưc hiên phép tính (,5 đ) a) 75 08 b) 8 4 5 6 ĐỀ SỐ 5 c) 5 Bài : (,5 đ) a a a A = a a a : (a > 0 và a ) a a a a a) Rút gọn A b)
Διαβάστε περισσότεραCHƯƠNG I NHỮNG KHÁI NIỆM CƠ BẢN
Chương Những khái niệm cơ bản - CHƯƠNG I NHỮNG KHÁI NIỆM CƠ BẢN DẠNG SÓNG CỦA TÍN HIỆU Hàm mũ Hàm nấc đơn vị Hàm dốc Hàm xung lực Hàm sin Hàm tuần hoàn PHẦN TỬ ĐIỆN Phần tử thụ động Phần tử tác động ĐIỆN
Διαβάστε περισσότεραBài giảng Giải tích 3: Tích phân bội và Giải tích vectơ HUỲNH QUANG VŨ. Hồ Chí Minh.
Bài giảng Giải tích 3: Tích phân bội và Giải tích vectơ HUỲNH QUANG VŨ Khoa Toán-Tin học, Đại học Khoa học Tự nhiên, Đại học Quốc gia Thành phố Hồ Chí Minh. E-mail: hqvu@hcmus.edu.vn e d c f 1 b a 1 TÓM
Διαβάστε περισσότεραChương 7: AXIT NUCLEIC
Chương 7: AXIT UCLEIC Khái niệm Thành phần hóa học ucloside, ucleotide Chức năng và sự phân bố của axit nucleic Cấu trúc của axit nucleic Sự tái bản, sao mã DA và tổng hợp protein Khái niệm Định nghĩa:
Διαβάστε περισσότεραXác định cỡ mẫu nghiên cứu
VIỆN NGHIÊN CỨU Y XÃ HỘI HỌC Xác định cỡ mẫu nghiên cứu Nguyễn Trương Nam Copyright Bản quyền thuộc về tác giả và thongke.info. Khi sử dụng một phần hoặc toàn bộ bài giảng đề nghị mọi người trích dẫn:
Διαβάστε περισσότεραCHƯƠNG 8: NGUYÊN LÝ THỨ NHẤT CỦA NHIỆT ĐỘNG LỰC HỌC DẠNG 1: ĐỊNH LUẬT THỨ NHẤT
1 CHƯƠNG 8: NGUYÊN LÝ THỨ NHẤT CỦA NHIỆT ĐỘNG LỰC HỌC 1.1. Kiến thức cơ bản: DẠNG 1: ĐỊNH LUẬT THỨ NHẤT - Dạng này là dạng ứng dụng định luật thứ nhất nhiệt động lực học để giải các bài toán về nhiêt.
Διαβάστε περισσότερα(Instrumental Variables and Regression Discontinuity Design)
Mô hình Biến Công cụ và Hồi quy Gián đoạn (Instrumental Variables and Regression Discontinuity Design) Kinh tế lượng ứng dụng Lê Việt Phú Chương trình Giảng dạy Kinh tế Fulbright Ngày 20 tháng 5 năm 2015
Διαβάστε περισσότερα+ = k+l thuộc H 2= ( ) = (7 2) (7 5) (7 1) 2) 2 = ( ) ( ) = (1 2) (5 7)
Nhớm 3 Bài 1.3 1. (X,.) là nhóm => a X; ax= Xa= X Ta chứng minh ax=x Với mọi b thuộc ax thì b có dạng ak với k thuộc X nên b thuộc X => Với mọi k thuộc X thì k = a( a -1 k) nên k thuộc ax. Vậy ax=x Tương
Διαβάστε περισσότερα