1. a. Έστω b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα του A Έστω A και ( x) [ x]

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1. a. Έστω b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα του A Έστω A και ( x) [ x]"

Transcript

1 σκήσεις Ασκήσεις Ιδιοτιμές και ιδιοδιανύσματα Βασικά σημεία Ορισμός ιδιοτιμών και ιδιοδιανυσμάτων, υπολογισμός τους Ιδιόχωροι, διάσταση ιδιόχωρου, εύρεση βάσης ιδιόχωρου Σε διακεκριμένες ιδιοτιμές αντιστοιχούν γραμμικά ανεξάρτητα ιδιοδιανύσματα Αν ΑΧ=λΧ, τότε φ(α)χ=φ(λ)χ Σχέση ιδιοτιμών και ιδιοδιανυσμάτων γραμμικής απεικόνισης και πίνακα αναπαράστασης της Ορισμός και πρώτες ιδιότητες χαρακτηριστικού πολυωνύμου Σχέση ιδιοτιμών με ίχνος και ορίζουσα Όμοιοι πίνακες έχουν το ίδιο χαρακτηριστικό πολυώνυμο Συνιστώμενες ασκήσεις: -6, 8-4, 7-, -5, -6 a Έστω και X 5 5 Είναι το X ιδιοδιάνυσμα του ; Είναι το 6 ιδιοτιμή του ; b Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα του 4 Έστω και ( x) [ x] a Δείξτε ότι αν το είναι ιδιοτιμή του με αντίστοιχο ιδιοδιάνυμσα X, τότε το ( ) είναι ιδιοτιμή του ( ) με αντίστοιχο διάνυσμα το X b Έστω 4 8 Βρείτε (χωρίς να γίνουν πράξεις) μια ιδιοτιμή και ένα αντίστοιχο ιδιοδιάνυσμα του B I c * Έστω ότι Δείξτε ότι για κάθε ιδιοτιμή του ( ) υπάρχει ιδιοτιμή i του τέτοια ώστε ( i ) 5 Έστω και X a Αληθεύει ότι το X είναι ιδιοδιάνυσμα του ; Αν ναι, να βρεθούν δύο διαφορετικές βάσεις του ιδιόχωρου V ( ), όπου η ιδιοτιμή στην οποία αντιστοιχεί το παραπάνω ιδιοδιάνυσμα 8 b Αληθεύει ότι το X είναι ιδιοδιάνυσμα του I ; c Βρείτε πίνακα B με X V B () 4 Βρείτε τα ιδιοδιανύσματα του στις περιπτώσεις a F και b F 5 Να βρεθεί μια βάση για κάθε ιδιόχωρο των πινάκων Με * σημειώνονται οι ασκήσεις που ίσως είναι οι περισσότερο απαιτητικές της ενότητας

2 σκήσεις a b B 4 a 4 6 Υπολογίστε για τις διάφορες τιμές του a τις διαστάσεις των ιδιόχωρων του 7 Έστω ( a ij ) τέτοιος ώστε για κάθε j,,, ισχύει a Υπάρχει μη μηδενικό b * Αν ο είναι αντιστρέψιμος και X τέτοιο ώστε X X b ij i a ij Δείξτε τα εξής ( ), τότε για κάθε j,,, ισχύει 8 Έστω δυο ιδιοτιμές πίνακα με αντίστοιχα ιδιοδιανύσματα u, v Τότε a τα u, v είναι γραμμικά ανεξάρτητα και b για κάθε a, b {}, το au bv δεν είναι ιδιοδιάνυσμα του 9 a Αληθεύει ότι το είναι ιδιοτιμή της γραμμικής απεικόνισης 4 4 :, ( x, y, z, w) ( x w, y z, z w, x w) ; Αληθεύει ότι το (,,, ) είναι ιδιοδιάνυσμα της ; b Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης :, ( x, y, z) ( x y,x y z, x y z) bij c Έστω : η γραμμική απεικόνιση που ορίζεται από ( e ) e, ( e ) e, όπου e { e, e} είναι η συνήθης βάση του Να υπολογιστούν οι ιδιοτιμές και τα ιδιοδιανύσματα της όταν i) και ii) Δώστε μια γεωμετρική ερμηνεία του αποτελέσματος στο i ) a Να βρεθούν οι πιθανές ιδιοτιμές της γραμμικής απεικόνισης : V περιπτώσεις i, V i V σε καθεμία από τις επόμενες ii b Στη συνέχεια δείξτε την εξής πρόταση Αν ( ) για κάποιο ( x) [ x], τότε κάθε ιδιοτιμή της - γραμμικής απεικόνισης : V V είναι ρίζα του ( x) c Δείξτε την εξής πρόταση Αν ( ) για κάποιο ( x) [ x] και, τότε κάθε ιδιοτιμή του είναι ρίζα του ( x) a Για ποια a το (,) είναι ένα ιδιοδιάνυσμα της γραμμικής απεικόνισης :, ( x, y) ( x ay, x y) ; b Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα των γραμμικών απεικονίσεων :, ( x, y, z) (4 x,y 5 z, y z), g :, ( x, y, z) (4 x,y 5 z, y z) Δίνεται η γραμμική απεικόνιση : [ x] [ x], με

3 σκήσεις 4 ( x x) x x, ( x ) x, () x a Βρείτε τα ιδιοδιανύσματα της και μια βάση για κάθε ιδιόχωρο της b Αληθεύει ότι η είναι ισομορφισμός; 4 c Αληθεύει ότι η 6 4 V είναι ισομορφισμός; 4 d Βρείτε δύο γραμμικά ανεξάρτητα ιδιοδιανύσματα της 6 4 V Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα των γραμμικών απεικονίσεων a g : [ x] [ x], g( ( x)) () x h : [ x] [ x], h( ( x)) ( x), όπου ( x) είναι η παράγωγος του ( x) b 4 Έστω με ( x ) x x x a Είναι ο αντιστρέψιμος; b Είναι ο ( I)( 4 I) αντιστρέψιμος; c Υπολογίστε την ορίζουσα του 5I d Αληθεύει ότι υπάρχει διατεταγμένη βάση ˆ ώστε για τη γραμμική απεικόνιση :, ( x, y, z) ( x y z,y z, z), να ισχύει ( : ˆ, ˆ ) ; e Να βρεθεί το ( x) k * Αληθεύει ότι υπάρχει B τέτοιος ώστε B B για κάποιο θετικό ακέραιο k ; k t t g Αληθεύει ότι υπάρχει ακέραιος k με, όπου είναι ο ανάστροφος του ; 5 Έστω, B, όπου ο είναι αντιστρέψιμος Δείξτε ότι B ( x) B( x) (Σημείωση: Ισχύει το συμπέρασμα και χωρίς την υπόθεση ότι ο Α είναι αντιστρέψιμος, βλ άσκηση 7) 6 Έστω αντιστρέψιμος και ( x ) ( ) x a x a x a, οπότε Δείξτε ότι a a ( ) ( x) ( ) ( x x x ) a a a 7 Έστω a a a a a Δείξτε ότι το χαρακτηριστικό πολυώνυμο του είναι το ( ) ( x a x a ) b Δείξτε ότι αν είναι μια ιδιοτιμή του, τότε το t είναι ένα ιδιοδιάνυσμα του 8 Βρείτε το χαρακτηριστικό πολυώνυμο του 9 Να βρεθούν οι ιδιοτιμές του

4 σκήσεις C Έστω αντιστρέψιμος a Δείξτε ότι το είναι ιδιοτιμή του αν και μόνο αν το είναι ιδιοτιμή του b Έστω ότι ο είναι όμοιος με τον και περιττός Δείξτε ότι το ή το είναι ιδιοτιμή του 44 Έστω τέτοιο ώστε ( x ) [ x ], det, Tr ( ) 4 και μια ιδιοτιμή του είναι το i Να βρεθούν οι ιδιοτιμές του Έστω αντιστρέψιμος Δείξτε ότι αν ο είναι όμοιος με τον, τότε το είναι άρτιος,, και το χαρακτηριστικό πολυώνυμο του είναι της μορφής ( x )( x ), j t Βρείτε τους ιδιόχωρους της γραμμικής απεικόνισης :,, όπου 4 Θεωρούμε δυο διαγώνιους πίνακες a b, B a b Δείξτε ότι οι ακόλουθες προτάσεις είναι ισοδύναμες a Οι, B είναι όμοιοι b Υπάρχει μετάθεση S τέτοια ώστε bi a ( i) για κάθε i,, c ( x) B ( x) 5 Έστω a, b Βρείτε το χαρακτηριστικό πoλυώνυμο, τις ιδιοτιμές και τα ιδιοδιανύσματα του a b b b b a b b b b a b b b b a 6 Έστω a, b με a b Δείξτε ότι το χαρακτηριστικό πολυώνυμο του a a a b a a b b a b b b ( ) είναι το a( x b) b( x a) ab 7 * Έστω και B Δείξτε ότι ( ) x ( x) ( ) x ( x) (Συνεπώς αν, τότε B ( x) ( x) ) B 8 Έστω a,, a, b,, b και C aib j βρείτε το C ( x ) και τις ιδιοτιμές του C 9 Έστω και B Χρησιμοποιώντας την προηγούμενη άσκηση ή αλλιώς B

5 σκήσεις 6 Βρείτε το χαρακτηριστικό πολυώνυμο, τις ιδιοτιμές και τα ιδιοδιανύσματα του Βρείτε τη διάσταση κάθε ιδιόχωρου του B B Έστω, B, C και D Τότε B B a ( x) ( x) ( x) C B B b ( x) ( x) ( x) D ib ib c Αν οι ιδιοτιμές του είναι οι,,, τότε οι ιδιοτιμές του Έστω a, b Δίνεται ότι οι πίνακες Να βρεθούν οι a, b είναι οι,,,,,, B είναι όμοιοι, όπου a a b, B b Να βρεθεί τo χαρακτηριστικό πολυώνυμο της γραμμικής απεικόνισης Δίνεται διατεταγμένη βάση uˆ ( u, u, u ) του πίνακα ( : ˆ, ˆ u u) a Βρείτε το ( x) και το ( x) :, ( x, y, z) (, x, y) και η γραμμική απεικόνιση, όπου : b Αληθεύει ότι το u u u είναι ιδιοδιάνυσμα της ; Ίδιο ερώτημα για το u c Bρείτε μια βάση κάθε ιδιόχωρου του d Bρείτε μια βάση κάθε ιδιόχωρου της e Ξέρουμε ότι ισχύει V () V () Αληθεύει ότι έχουμε ισότητα; Αληθεύει ότι υπάρχει γραμμική απεικόνιση g : έτσι ώστε ( g( v)) με αντίστοιχο v για κάθε v ; 4 Έστω και :, ( X ) X X Αφού δείξετε ότι η είναι γραμμική, βρείτε μια βάση για κάθε ιδιόχωρο της 5 Θεωρούμε το διανυσματικό χώρο F(, ) των συναρτήσεων και τον υπόχωρο V που παράγεται από τις συναρτήσεις sin x, cos x Βρείτε μια βάση κάθε ιδιόχωρου των γραμμικών απεικονίσεων: a : V V, ( ( x)) ( x) (παράγωγος), b g : V V, g( ( x)) ( x) (δεύτερη παράγωγος) 6 Επαναληπτική άσκηση κατανόησης Εξετάστε ποιες από τις ακόλουθες προτάσεις αληθεύουν Σε κάθε περίπτωση δώστε μια απόδειξη ή ένα αντιπαράδειγμα a Αν το είναι ιδιοτιμή του και το είναι ιδιοτιμή του B, τότε το είναι ιδιοτιμή του B b Αν το είναι ιδιοτιμή του και το είναι ιδιοτιμή του B, τότε το είναι ιδιοτιμή του B

6 σκήσεις 7 c Κάθε έχει τουλάχιστον μια πραγματική ιδιοτιμή d Κάθε έχει τουλάχιστον μια πραγματική ιδιοτιμή e Αν το είναι ιδιοτιμή του, όπου, τότε το είναι ιδιοτιμή του Αν ( x) ( x), όπου, B, τότε οι, B είναι όμοιοι B g Έστω ότι οι Α, Β είναι όμοιοι Τότε οι ( ), ( B) είναι όμοιοι για κάθε ( x) [ x] h Υπάρχει με ιδιοτιμές τις,,, i Αν v είναι ιδιοδιάνυσμα της γραμμικής απεικόνισης : V V και v ker, τότε το είναι ιδιοτιμή της j Έστω με ( x ) ( x )( x 5) Τότε υπάρχει γραμμική απεικόνιση : και διατεταγμένη βάση ˆ του με (,,) (,,) και ( : ˆ, ˆ ) k Έστω Αν το είναι ιδιοτιμή του, τότε υπάρχει μη μηδενικό X με X X

7 σκήσεις 8 Υποδείξεις/Απαντήσεις Ασκήσεις Λύση: a Έχουμε Επειδή, το είναι ένα ιδιοδιάνυσμα του Έχουμε det( 6 I4) det, γιατί στον τελευταίο πίνακα δυο γραμμές είναι ίσες Άρα το 6 είναι μια ιδιοτιμή του Α b Έχουμε x ( x) det( xi) det x 4 x x 4 ( x)det ( x ) ( x ) x και άρα οι ιδιοτιμές είναι, Ιδιoδιανύσματα που αντιστοιχούν στην ιδιοτιμή : Έχουμε x x x ( I) X 4 x 4x 4x x x x και το τελευταίο σύστημα ισοδυναμεί με το x x που έχει λύσεις τις x x x x, x, x x x Άρα τα αντίστοιχα ιδιοδιανύσματα είναι τα x x x, x, x, όπου τουλάχιστον ένα από τα x x, x δεν είναι Ιδιοδιανύσματα που αντιστοιχούν στην ιδιοτιμή : x x x x x x x ( I) X 4 x x 4x x x x x 4x Οι λύσεις του τελευταίου συστήματος είναι

8 σκήσεις 9 x x x, x x x Άρα τα ιδιοδιανύσματα που αντιστοιχούν στην ιδιοτιμή είναι τα x x, x {} x a Βλ Παράδειγμα b Λύση: Λόγω της δεύτερης στήλης του Α (που είναι της μορφής E ), μια ιδιοτιμή αυτού είναι το και ένα αντίστοιχο ιδιοδιάνυσμα είναι το X E 8 Από το a έπεται ότι μια ιδιοτιμή του B είναι το ( ) και ένα αντίστοιχο ιδιοδιάνυσμα είναι το X c Λύση: Είναι σαφές ότι ισχύει το ζητούμενο αν το ( x) c είναι σταθερό πολυώνυμο, γιατί τότε ( ) ci και κάθε ιδιοτιμή του ci είναι ίση με το c Ξέρουμε ότι ο έχει τουλάχιστον μια ιδιοτιμή Αν i είναι οποιαδήποτε ιδιοτιμή του, τότε ( i ) Μπορούμε λοιπόν να υποθέσουμε ότι deg ( x) Έστω μια ιδιοτιμή του ( ) με αντίστοιχο ιδιοδιάνυσμα X Από το Θεμελιώδες Θεώρημα της Άλγεβρας (βλ Θεώρημα 5) υπάρχουν c,,, k, c, τέτοια ώστε ( x) c( x )( x ) Άρα έχουμε ( ) I c( I )( k I ) και από ( ( ) I ) X παίρνουμε c( I )( I ) X Επειδή X και c, συμπεραίνουμε ότι κάποιος πίνακας i I έχει ορίζουσα ίση με Άρα το i είναι ιδιοτιμή του Έχουμε ( i ) Σημείωση: Βλ Θεώρημα 6 για ένα ισχυρότερο αποτέλεσμα Λύση: a Επειδή και, το είναι ιδιοδιάνυσμα του Λύνοντας κατά τα γνωστά το σύστημα ( I) X, βρίσκουμε x x V() { y x y z } { y x, y } { x y x, y }, z x y Δηλαδή τα στοιχεία,, παράγουν τον ιδιόχωρο V () Αυτά είναι γραμμικά ανεξάρτητα καθώς αν a b, τότε προκύπτει a b Άρα μια βάση του V () είναι το σύνολο {, } Μια k k Οι παραπομπές της μορφής Θεώρημα, αναφέρονται στο Μέρος ΙΙ του βιβλίου Μια Εισαγωγή στη Γραμμική Άλγεβρα, Δ Βάρσος, Δ Δεριζιώτης, Ι Εμμανουήλ, Μ Μαλιάκας, Α Μελάς, Ο Ταλέλλη, Εκδόσεις Σοφία,, ISBN:

9 σκήσεις άλλη βάση είναι το σύνολο {, } {, } Πράγματι, επειδή το πλήθος είναι dim V (), αρκεί να δείξουμε ότι αυτά είναι γραμμικά ανεξάρτητα, πράγμα άμεσο καθώς αν a b, τότε a b b Eπειδή το X είναι ιδιοδιάνυσμα του, ξέρουμε ότι είναι ιδιοδιάνυσμα του ( ) για κάθε ( x) [ x] Άρα το X είναι ιδιοδιάνυσμα του 8 I c Από X X έπεται ότι ( I) X X και επομένως μια επιλογή είναι B I Εναλλακτικά, αν αναζητήσουμε διαγώνιο πίνακα, μια επιλογή είναι B για κάθε a Ειδικά θα a μπορούσαμε να θέσουμε B I Στη λύση B I θα μπορούσαμε να φτάσουμε άμεσα με την παρατήρηση ότι V I () Διαφορετικός τρόπος και πιο πεζός: Θα μπορούσαμε να αναζητήσουμε λύση ως προς b ij του γραμμικού συστήματος που προκύπτει από B, B ( b ij ) 4 Απάντηση a Επειδή det( I ) για κάθε, δεν υπάρχουν ιδιοτιμές και ιδιοδιανύσματα b Οι ιδιοτιμές είναι i, αντίστοιχα i με αντίστοιχα ιδιοδιανύσματα x, x {} i και x, x {}, i 5 a Επειδή det( I) det ( ) οι διακεκριμένες ιδιοτιμές του είναι οι, Έχουμε x V() { X X } { y x y z } z x { y x, y } { x y x, y }, x y Δηλαδή τα στοιχεία,, παράγουν τον ιδιόχωρο V () Αυτά είναι γραμμικά ανεξάρτητα καθώς αν a b, τότε προκύπτει a b Άρα μια βάση του V () είναι το σύνολο {, }

10 σκήσεις Με ανάλογο τρόπο αποδεικνύεται ότι V () και μια βάση του V () είναι το σύνολο { } b Απάντηση: Μια βάση του V B () :{ } Μια βάση του V B () :{ } a 4 6 Λύση: Καθώς det( I) det ( ) ( ), οι διακεκριμένες ιδιοτιμές του είναι οι και Για τις διαστάσεις των ιδιόχωρων έχουμε a 4, a 4 dim V() rank( I) rank, 4, a a 4 dim V() rank( I) rank a 7 Λύση: Αρκεί να δειχτεί ότι το είναι ιδιοτιμή του Ένας τρόπος είναι να παρατηρήσουμε ότι το είναι t ιδιοτιμή του καθότι από τον πολλαπλασιασμό πινάκων έχουμε a i i t a i i Από την Πρόταση έπεται ότι το είναι ιδιοτιμή του Άλλος τρόπος είναι δείξουμε (πχ με στοιχειώδεις πράξεις γραμμών) ότι det( ) b Υπόδειξη: Δείξτε ότι 8 Λύση: a Έστω ότι όπου a, b Έχουμε au bv, () ( au bv) au bv au bv δηλαδή, au bv () Από την () παίρνουμε au bv οπότε αφαιρώντας τη () παίρνουμε b( ) v Επειδή v (το v είναι ιδιοδιάνυσμα), έχουμε b( ) και επειδή παίρνουμε b Τότε από την () έχουμε au, οπότε a αφού u b: Έστω ότι υπάρχουν a, b, με ( au bv) ( au bv) Έχουμε ( au bv) a( u) b( v) au bv και άρα au bv au bv Από το προηγούμενο ερώτημα τα u, v είναι γραμμικά ανεξάρτητα και επομένως παίρνουμε a a, b b Αν ήταν a και b, τότε θα είχαμε, άτοπο από την υπόθεση Δείξαμε ότι δεν υπάρχει στοιχείο της μορφής au bv, όπου a, b {}, που είναι ιδιοδιάνυσμα του I

11 σκήσεις 9 Λύση a Σύμφωνα με τον ορισμό της ιδιοτιμής, το είναι ιδιοτιμή της αν και μόνο αν υπάρχει μη μηδενικό (,,, ) 4 x y z w με ( x, y, z, w) ( x, y, z, w) Παρατηρούμε ότι ( x, y, z, w) ( x, y, z, w) ( x w, y z, z w, x w) ( x, y, z, w) x w x x w y z y z x z w, y z w z z w x w w x w 4 Άρα το είναι ιδιοτιμή της (και τα αντίστοιχα ιδιοδιανύσματα είναι τα (, y,,), όπου y ) Υπολογίζοντας βρίσκουμε (,,, ) (,,, ) Από τη σχέση αυτή είναι σαφές ότι δεν υπάρχει με (,,, ) (,,, ) Άρα το (,,, ) δεν είναι ιδιοδιάνυσμα της b Έστω και ( z, y, z) Έχουμε ( ) x y ( x, y, z) ( x, y, z) x ( ) y z x y ( ) z Το σύστημα () έχει μη τετριμμένη λύση ως προς x, y, z αν και μόνο αν det ( ) det ( ) det ( )(( )( ) ) ( ) ( )(( )( ) ) ( )( )( ),, Άρα οι ιδιοτιμές είναι,, Ιδιοδιανύσματα που αντιστοιχούν στην ιδιοτιμή : y y Για, το σύστημα () γίνεται x y z που ισοδυναμεί με το Οι λύσεις του x z x y z τελευταίου είναι x(,, ), x Άρα τα ιδιοδιανύσματα που αντιστοιχούν στη είναι τα x(,, ), x {} Ιδιοδιανύσματα που αντιστοιχούν στην ιδιοτιμή : x y x y Για, το σύστημα () γίνεται x y z που ισοδυναμεί με το Οι λύσεις αυτού x y z x y είναι x(,, ), x Άρα τα ζητούμενα ιδιοδιανύσματα είναι τα x(,, ), x {} Ιδιοδιανύσματα που αντιστοιχούν στην ιδιοτιμή : x y x y Για, το σύστημα () γίνεται x z που ισοδυναμεί με το Οι λύσεις αυτού είναι x z x y z x(,, ), x Άρα τα ζητούμενα ιδιοδιανύσματα είναι τα x(,, ), x {} ()

12 σκήσεις c Για ( x, y) έχουμε ( x, y) x ( e ) y ( e) xe ye ( y, x) Έστω Τότε x y ( x, y) ( x, y) Ζητάμε μη μηδενικές λύσεις του συστήματος ως προς x, y Έχουμε x y det ( ) i) Έστω Τότε ( ) για κάθε και άρα το παραπάνω σύστημα έχει μόνο τη μηδενική λύση Άρα δεν υπάρχουν ιδιοτιμές και ιδιοδιανύσματα της ii) Έστω Τότε το σύστημα έχει μη μηδενική λύση αν και μόνο αν ( ), δηλαδή αν και μόνο x y αν i, i Άρα οι ιδιοτιμές είναι οι i, i Λύνοντας το σύστημα για τις τιμές αυτές x y βρίσκουμε αντίστοιχα τα ιδιοδιανύσματα x( i,), x {} και x( i,), x {} Γεωμετρική ερμηνεία του i) Η παριστάνει στροφή κατά 9 ο στη φορά της κίνησης των δεικτών του ρολογιού Άρα δεν υπάρχει ευθεία δεν έχει ιδιοδιάνυσμα U που διέρχεται από το (,) τέτοια ώστε ( U ) U Συνεπώς η U (U) Η ευθεία U δεν απεικονίζεται στον εαυτό της a Λύση: Έστω ότι υπάρχει μια ιδιοτιμή λ της με αντίστοιχο ιδιοδιάνυσμα v Τότε ( v) v, v Επομένως v v v v v ( ) ( ( )) ( ) ( ) Οι πιθανές ιδιοτιμές έχουν ως εξής ( v) v v v Αφού v, έχουμε V v v v v v, οπότε ( ) ( ) Αφού v, έχουμε, οπότε, b Υπόδειξη: Ξέρουμε ότι αν ( v) v, όπου, v V, τότε ( ) v ( ) v για κάθε ( x) [ x] c Υπόδειξη: Ξέρουμε ότι αν X X, όπου, X, τότε ( ) X ( ) X για κάθε ( x) [ x] a a Λύση: Έστω Έχουμε (,) (,) Παρατηρούμε ότι το τελευταίο σύστημα έχει λύση ως προς αν και μόνο αν a bαπάντηση: Υπάρχει μοναδική ιδιοτιμή 4 και το σύνολο των ιδιοδιανυσμάτων είναι {( x,,) x } Οι ιδιοτιμές είναι 4, i, i με αντίστοιχα σύνολα ιδιοδιανυσμάτων τα { x(,,) x },{ x(, i,) x }, { x(, i,) x } Λύση a Εύκολα επαληθεύεται ότι τα σύνολο { v, v, v } είναι βάση του [ x] (πώς;) όπου v x x, v x, v Επειδή ( v ) x x v v v, ( v ) x ( x ) v v v, ( v) x ( x ) v v v, ο πίνακας της ως προς την προηγούμενη διατεταγμένη βάση είναι

13 σκήσεις 4 To χαρακτηριστικό πολυώνυμο του είναι x det x ( x)(( x) ) ( x)( x)( x) x και επομένως οι ιδιοτιμές της είναι οι,, Ενδεικτικά υπολογίζουμε τα ιδιοδιανύσματα που αντιστοιχούν στην ιδιοτιμή ος τρόπος (με την απεικόνιση) Είναι βολικό να χρησιμοποιήσουμε την παραπάνω βάση για παραστάσεις πολυωνύμων Έστω λοιπόν ( x) av bv cv [ x] με ( ( x)) ( x) Έχουμε ( ( x)) ( av bv cv ) a ( v ) b ( v ) c ( v ) a( v ) b( v v ) c( v v ) ( a) v ( b c) v ( b c) v Άρα από την ισότητα ( ( x)) ( x) παίρνουμε a a b c b b c c και επομένως a, b c υτό σημαίνει ότι τα ιδιοδιανύσματα της που αντιστοιχούν στην ιδιοτιμή είναι τα bv bv b( x ) b bx b, b {} και μια βάση του ιδιόχωρου V () είναι το { v v} ος τρόπος (με τον πίνακα) Βρίσκουμε κατά τα γνωστά τον ιδιόχωρο V () του πίνακα, V () Άρα V () v v Με παρόμοιο τρόπο αποδεικνύεται ότι τα ιδιοδιανύσματα που αντιστοιχουν στην ιδιοτιμή είναι τα av, a {}, και μια βάση του ιδιόχωρου V () είναι το { v }, και τα ιδιοδιανύματα που αντιστοιχούν στην ιδιοτιμή είναι τα bv, {}, bv b και μια βάση του ιδιόχωρου V () είναι το { v v} b Επειδή το δεν είναι ιδιοτιμή της, η είναι ισομορφισμός c Επειδή οι,, είναι ιδιοτιμες της, καθεμιά από τις (), (), () είναι ιδιοτιμή της ( ) Για ( x) x 6x 4, το () είναι ιδιοτιμή της 6 4 V Άρα η 6 4 V δεν είναι ισομορφισμός Ξέρουμε ότι κάθε ιδιοδιάνυσμα της είναι ιδιοδιάνυσμα της ( ), για κάθε ( x) [ x] Συνεπώς κάθε δύο γραμμικά ανεξάρτητα ιδιοδιανύσματα της παραμένουν γραμμικά ανεξάρτητα ιδιοδιανύσματα της V Μια επιλογή τέτοιων είναι, για παράδειγμα, τα v v, v όπως είδαμε στο υποερώτημα a Ότι αυτά είναι γραμμικά ανεξάρτητα έπεται από το ότι αντιστοιχούν σε διαφορετικές ιδιοτιμές της Φυσικά και με άμεσο υπολογισμό επαληθεύεται ότι είναι γραμμικά ανεξάρτητα Απάντηση: a Οι ιδιοτιμές είναι, με αντίστοιχα σύνολα ιδιοδιανυσμάτων τα { ax bx c [ x] a b c, ( a, b, c) (,,)}, { bx [ x] b }

14 σκήσεις 5 b Υπάρχει μοναδική ιδιοτιμή, το, και το σύνολο των αντίστοιχων ιδιοδιανυσμάτων είναι { ax bx c [ x] a b, c } 4 Λύση: a Όχι, γιατί ο σταθερός όρος του χαρακτηριστικού πολυωνύμου του είναι (βλ Πρόταση 5) b Έχουμε ( x ) x ( x )( x ) και άρα οι ιδιοτιμές του είναι,, Αφού το δεν είναι ιδιοτιμή του, έχουμε det( I ) Όμοια det( 4 I) Άρα det(( I )( 4 I )) det( I )det( 4 I )) και ο ( I)( 4 I) είναι αντιστρέψιμος c Έχουμε det( 5 I ) det(( 5 I )( I )) det( 5 I ) det( I ) (5) ( ) 6 d Δεν αληθεύει Καθώς ( : eˆ, eˆ ) τριγωνικός το είναι ιδιοτιμή της Αν υπήρχε διατεταγμένη βάση ˆ ώστε ( : ˆ, ˆ ), τότε το θα ήταν ιδιοτιμή του, πράγμα αδύνατο ( καθώς είδαμε πριν ότι οι ιδιοτιμές του Α είναι οι,,) e Επειδή,, είναι ιδιοτιμές του, οι,, είναι ιδιοτιμές του και επειδή ο είναι πίνακας αυτές είναι όλες οι ιδιοτιμές του Άρα ( x) x( x )( x 4) k k k k Υπόδειξη: Θεωρήστε ίχνη στη σχέση B B για να λάβετε, που είναι άτοπο k g Όπως στο d βλέπουμε ότι οι ιδιοτιμές του είναι οι,, k και επομένως το δεν είναι ιδιοτιμή του Όμως το είναι ιδιοτιμή του t 5 Λύση: Από τη σχέση ( B) B έπεται ότι οι B, B είναι όμοιοι και άρα έχουν το ίδιο χαρακτηριστικό πολυώνυμο (βλ Πρόταση 8) 6 Λύση: Ξέρουμε ότι a det (Πρόταση 5) Επειδή ο είναι αντιστρέψιμος έχουμε det Εργαζόμενοι με ρητές συναρτήσεις και χρησιμοποιώντας ιδιότητες οριζουσών έχουμε ( x) det xi det xi det I x det ( ) det x I det ( ) x det I a ( ) a x ( ) x x ( ) a x ( ) a a a x x x a a ( ) ( ) a a a x x x 7 Υπόδειξη: a Χρησιμοποιείστε επαγωγή και το ανάπτυγμα ορίζουσας του det( xi ) b a a a a k B 8 Υπόδειξη : Ο D είναι της μορφής D C, όπου, B, ( x) ( x) ( x) (βλ Πρόταση 4) Με πράξεις βρίσκουμε D C ( x) x x 4, C ( x) ( x )( x 5 x) C και ξέρουμε ότι

15 σκήσεις 6 9 Υπόδειξη: Ξέρουμε ότι ο σταθερός όρος του ( x ) είναι το γινόμενο των ιδιοτιμών του (Πρόταση 5 και Πρόταση 6) Υπόδειξη για το b: Στη λύση της άσκησης 6 είδαμε ότι ( ) ( ) (det ) ( ) x Δείξτε ότι από την προηγούμενη σχέση έπεται ότι αν ( x ) ( x )( x ), i, τότε ( x) ( x)( x) Άρα αν,, είναι οι ιδιοτιμές του, τότε,, είναι πάλι οι ιδιοτιμές n του (με ενδεχομένως άλλη σειρά) Χρησιμοποιήστε την εξής παρατήρηση: Αν X είναι ένα πεπερασμένο σύνολο με περιττό πλήθος στοιχείων και : X X μια απεικόνιση τέτοια ώστε X, τότε υπάρχει x X με ( x) x Βλ Παράδειγμα μετά το Πόρισμα 7 x x Λύση: Επειδή ο είναι όμοιος με τον έχουμε det det( ) Αλλά det( ) ( ) det, οπότε det ( ) det Επειδή det, έχουμε ( ), δηλαδή ο είναι άρτιος, Επειδή ο είναι όμοιος με τον έχουμε ( x) ( x) σύμφωνα με την Πρόταση 8, δηλαδή ( x ) det( xi ) Αλλά det( xi ) det( ( xi )) ( ) det( xi ) det( xi ) ( x) Άρα ( x) ( x) Από την τελευταία σχέση έπεται ότι αν ( x ) x a x a x a, τότε ai για κάθε περιττό i Άρα υπάρχει μονικό πολυώνυμο ( x) [ x] βαθμού, τέτοιο ώστε ( x ) ( x ) Από το Θεμελιώδες Θεώρημα της Άλγεβρας υπάρχουν,,, τέτοια ώστε ( x) ( x )( x ) Άρα ( x ) ( x ) ( x )( x ) Σημείωση: Μια άλλη λύση θα δούμε στις Ασκήσεις4 Απάντηση: Οι ιδιόχωροι είναι οι () t t V, V ( ), δηλαδή το σύνολο των συμμετρικών πινάκων και το σύνολο των αντισυμμετρικών πινάκων αντίστοιχα 4 Υπόδειξη: Οι συνεπαγωγές a b, b c είναι άμεσες Για τη c a, έστω ότι ( x) ( x) Τότε οι, B έχουν τις ίδιες ιδιοτιμές Οι ιδιοτιμές του είναι οι a, a,, και οι ιδιοτιμές του B είναι οι b, b,, γιατί οι, B είναι διαγώνιοι πίνακες Άρα υπάρχει μετάθεση S τέτοια ώστε b για κάθε i,, i a b a ( i) O πίνακας είναι ο πίνακας της γραμμικής απεικόνισης : ( e ) a e, i,,, όπου {,,, } Έχουμε i i i e e e είναι μια διατεταγμένη βάση του ( e ) a e b e ( i) ( i) ( i) i ( i) Άρα ο πίνακας B είναι ο πίνακας της ίδιας γραμμικής απεικόνισης : βάση { e, e, e } () (), ( ) που ορίζεται από ως προς τη διατεταγμένη B

16 σκήσεις 7 του Συνεπώς οι, B είναι όμοιοι 5 Υπόδειξη: Το ( x ) μπορεί να υπολογιστεί με στοιχειώδεις μετασχηματισμούς γραμμών και στηλών του πίνακα xi (Για παράδειγμα, ξεκινήστε προσθέτοντας στην πρώτη στήλη του xi κάθε άλλη στήλη Στη συνέχεια μετατρέψτε τον πίνακα σε άνω τριγωνικό αφαιρώντας την πρώτη γραμμή από κάθε άλλη γραμμή) Απάντηση για b : Το χαρακτηριαστικό πολυώνυμο είναι ( x ) ( ) ( x a ( ) b )( x a b ), οι ιδιοτιμές είναι a ( ) b (με πολλαπλότητα ) και a b (με πολλαπλότητα ), και οι ιδιόχωροι είναι V ( ) E E και V ( ) E E, E E,, E E, όπου E,, E είναι η συνήθης βάση του Απάντηση για b : Το χαρακτηριαστικό πολυώνυμο είναι ( x ) ( ) ( x a ), οι ιδιοτιμές είναι a (με πολλαπλότητα ) και ο ιδιόχωρος είναι V ( ) 6 Υπόδειξη: Πρώτα εφαρμόστε στον xi την ακολουθία στοιχειωδών πράξεων γραμμών,,, και δείξτε αναπτύσσοντας την ορίζουσα του προκύπτοντος πίνακα ότι det( xi ) ( x a)det( xi ) ( ) a( x b), Στη συνέχεια, εργαζόμενοι με στήλες δείξτε ότι det( xi ) ( x b)det( xi ) ( ) b( x a), Από τις δυο σχέσεις προκύπτει το ζητούμενο Σημείωση: Η δεύτερη σχέση προκύπτει άμεσα εφαρμόζοντας την πρώτη σχέση στον ανάστροφο του 7 Υπόδειξη: Δείξτε την εξής ισότητα ( ) ( ) πινάκων B xi I I xi xi B I B I B xi xi 8 Λύση a ος τρόπος Έστω και B b b a Τότε από τον πολλαπλασιασμό πινάκων έχουμε C B και ο B είναι ο πίνακας ( Tr( C)) ( a b a b ) Από την προηγούμενη άσκηση παίρνουμε δηλαδή Άρα: x ( ) ( ) x ( x) B B B( ) ( ) x B( x) ( ) x ( x Tr( C)) ( ) x ( x Tr( C)), ( x ) ( ) x C ( x Tr ( C ))

17 σκήσεις 8 Αν Tr( C), τότε υπάρχει μοναδική ιδιοτιμή, το (με πολλαπλότητα ) Αν Tr( C), τότε οι ιδιοτιμές είναι (με πολλαπλότητα ) και Tr( C) ab a b (με πολλαπλότητα ) a ος τρόπος Έστω και B b b a Τότε από τον πολλαπλασιασμό πινάκων έχουμε C B και ο B είναι ο πίνακας ( Tr( C)) ( ab a b ) Επίσης C ( B) B ( TrC) C Θεωρούμε ότι C Από C ( TrC) C έπεται ότι αν είναι μια ιδιοτιμή του C, τότε ή TrC Επειδή το άθροισμα των ιδιοτιμών του C είναι ίσο με TrC (Πρόταση 7), συμπεραίνουμε ότι οι ιδιοτιμές του C είναι οι,,,trc Άρα ( x ) ( ) x C ( x Tr ( C )) Σημείωση: Ένας άλλος τρόπος απόδειξης του βιβλίου ( x ) ( ) x C ( x Tr ( C )) προκύπτει με βάση την άσκηση 6 ii) του 9 Λύση: Έστω ο δοσμένος πίνακας Αναπτύσσοντας την ορίζουσα του x x xi x x ως προς την πρώτη γραμμή έχουμε x x det( xi ) x det ( ) det x x x Αναπτύσσουμε τις δυο ορίζουσες στο δεξιό μέλος ως προς την τελευταία γραμμή και έχουμε det( xi ) x det( xi ) det( xi ) ( ) ( ) ( ) ( ) Με βάση την προηγούμενη σχέση, μια εύκολη επαγωγή στο δίνει det( xi ) ( x ) ( x ) για κάθε, δηλαδή ( x) ( x) ( x ) Άρα οι ιδιοτιμές είναι, και η καθεμιά έχει πολλαπλότητα Λύνοντας το σύστημα ( I ) X για βλέπουμε ότι ο αντίστοιχος ιδιόχωρος παράγεται από το σύνολο E E, E E,, E E, όπου E,, E είναι η συνήθης βάση του Όμοια, για βλέπουμε ότι ο αντίστοιχος ιδιόχωρος παράγεται από το E E, E E,, E E τότε Αν a ( E E ) a( E E ) a ( E E ), ai, a E a E a E a E a E a E και επειδή τα E,, E είναι γραμμικά ανεξάρτητα παίρνουμε a a a Δηλαδή το E E, E E,, E E είναι γραμμικά ανεξάρτητο Επομένως είναι μια βάση του ιδιόχωρου που αντιστοιχεί στο

18 σκήσεις 9 Όμοια, το σύνολο E E, E E,, E E είναι μια βάση του ιδόχωρου που αντιστοιχεί στο Άρα καθένας από τους ιδιόχωρους έχει διάσταση Σημείωση: Μπορεί να δοθεί άλλη λύση που βασίζεται στην παρατήρηση ότι I (άσκηση) a Λύση: Με στοιχειώδεις πράξεις γραμμών στον πίνακα C xi (αφαιρούμε τις γραμμές,,,v από τις γραμμές v, v,, v αντίστοιχα) έχουμε xi B xi B det( C xi ) det det B xi B ( xi ) xi B xi B det B xi B xi Με στοιχειώδεις πράξεις στηλών στον τελευταίο πίνακα (προσθέτουμε στις στήλες,,,v τις στήλες v, v,, v αντίστοιχα) έχουμε xi B xi B B det det B xi B xi B xi ( B xi ) B xi B xi B det det( B xi )det( B xi ) B xi ( x) ( x) B B b Υπόδειξη: Τροποποιήστε κατάλληλα την απόδειξη του a c Προκύπτει άμεσα από το a για B Υπόδειξη: Από την Πρόταση 8 έχουμε ( x) ( x) Απάντηση: a b Λύση: ( : ˆ, ˆ) ( : ˆ, ˆ e e e e) ( x) x Απαντήσεις: a ( x) ( x) x ( x) b To πρώτο είναι, το δεύτερο δεν είναι c V() :{ }, V() :{ } V () :{ u u }, V () :{ u u u } d e Δεν αληθεύει καθώς dim V () rank(( : uˆ, uˆ )) rank(( : uˆ, uˆ ) ) rank( ) ( ) dim V () B Δεν αληθεύει αφού η δεν είναι επί (καθώς dim Im dim u u, u u ) Άλλη δικαιολόγηση ότι η δεν είναι επί: ιδιοτιμή της όχι - όχι επί

19 σκήσεις 4 Υπόδειξη: Δείξτε ότι ( : Eˆ, Eˆ ) και ( x) x ( x )( x ) Απάντηση: V () :{, }, V ( ) :{ }, V () :{ } 5 Απάντηση: a Δεν υπάρχουν ιδιοδιανύσματα b Μια βάση του Vg ( ) : {sin x, cos x } 6 Απάντηση: a Λ Παράδειγμα: Το είναι ιδιοτιμή του, το είναι ιδιοτιμή του, αλλά το δεν είναι ιδιοτιμή του b Λ Παράδειγμα: Το είναι ιδιοτιμή του, το είναι ιδιοτιμή του, αλλά το δεν είναι ιδιοτιμή του c Λ Παράδειγμα: Ο δεν έχει ιδιοτιμή (στο ) αφού το χαρακτηριστικό πολυώνυμό του είναι το x d Σ Πράγματι, το χαρακτηριστικό πολυώνυμο του είναι περιττού βαθμού και έχει πραγματικούς συντελεστές Από την Πρόταση 8 έχει τουλάχιστον μια πραγματική ρίζα e Λ Παράδειγμα: Λ Παράδειγμα: I και B Τότε ( x) B ( x) ( x ), αλλά οι, B δεν είναι όμοιοι γιατί αν υπήρχε αντιστρέψιμος P με B P P, τότε B P I P I, άτοπο g Σ Απόδειξη: Από την υπόθεση υπάρχει αντιστρέψιμος P με B P P Με μια άμεση επαγωγή αποδεικνύεται ότι k k B P P για κάθε θετικό ακέραιο k (πως;) n Έστω ότι ( x) anx ax a Τότε n n ( B) a B a B a I a P P a P P a P P n n n n P ( a a a I ) P P ( ) P, δηλαδή ( B) P ( ) P και άρα οι ( ), ( B) είναι όμοιοι h Λ Πράγματι, το πολυώνυμο ( x ) έχει βαθμό και άρα δεν μπορεί να έχει περισσότερες από ρίζες στο i Σ Πράγματι, έχουμε v και ( v) v j Λ Έστω ότι υπάρχουν και ˆ με τις δοσμένες ιδιότητες Από (,,) (,,) έχουμε ότι το είναι μια ιδιοτιμή της και άρα είναι μια ιδιοτιμή του ( : ˆ, ˆ ) σύμφωνα με την Πρόταση 6 Αλλά το δεν είναι ρίζα του ( x ) ( x )( x 5) k Σ Αφού το είναι ιδιοτιμή του, το ( ) είναι ιδιοτιμή του X με X X Άρα υπάρχει μη μηδενικό

20 σκήσεις

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3 Ασκήσεις 8 Ασκήσεις Ιδιοτιμές και ιδιοδιανύσματα Βασικά σημεία Ορισμός ιδιοτιμων και ιδιοδιανυσμάτων, υπολογισμός τους Σε διακεκριμένες ιδιοτιμές αντιστοιχούν γραμμικά ανεξάρτητα ιδιοδιανύσματα Αν ΑΧ=λΧ,

Διαβάστε περισσότερα

Γραμμική Άλγεβρα II. Ασκήσεις με Υποδείξεις - Απαντήσεις. Περιεχόμενα

Γραμμική Άλγεβρα II. Ασκήσεις με Υποδείξεις - Απαντήσεις. Περιεχόμενα Γραμμική Άλγεβρα II Ασκήσεις με Υποδείξεις - Απαντήσεις ΜΜ Περιεχόμενα Ασκήσεις0: Όμοιοι Πίνακες Ασκήσεις: Πολυώνυμα 6 Ασκήσεις: Ιδιοτιμές και Ιδιοδιανύσματα Ασκήσεις: Διαγωνισιμότητα Ασκήσεις4: Τριγωνισιμότητα

Διαβάστε περισσότερα

Γραμμική Άλγεβρα II Εαρινό εξάμηνο

Γραμμική Άλγεβρα II Εαρινό εξάμηνο Γραμμική Άλγεβρα II Εαρινό εξάμηνο 0-0 Υποδείξεις/Απαντήσεις των Ασκήσεων Περιεχόμενα Ασκήσεις Πολυώνυμα Ασκήσεις Ιδιοτιμές-Ιδιοδιανύσματα 6 Ασκήσεις Διαγωνίσιμες γραμμικές απεικονίσεις 9 Ασκήσεις4 Τριγωνίσιμες

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις Ασκήσεις 5 Βασικά σημεία Ιδιότητες ιδιόχωρων: Έστω,, Ισχύουν τα εξής Ασκήσεις Διαγωνίσιμες Γραμμικές Απεικονίσεις κάποιες διακεκριμένες ιδιοτιμές της γραμμικής απεικόνισης : V V, όπου o Αν v v 0, όπου

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα.

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα. Ασκήσεις 0 Ασκήσεις Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα o H -στήλη του P P είναι E αν και μόνο αν η -στήλη του P είναι ιδιοδιάνυσμα του που αντιστοιχεί στην ιδιοτιμή

Διαβάστε περισσότερα

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0.

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0. Ασκήσεις4 46 Ασκήσεις 4 Τριγωνίσιμες γραμμικές απεικονίσεις, Θεώρημα των Cayley-Hamilton Βασικά σημεία Ορισμός τριγωνίσιμου πίνακα, ορισμός τριγωνίσιμης γραμμικής απεικόνισης Κριτήριο τριγωνισιμότητας

Διαβάστε περισσότερα

Ασκήσεις1 Πολυώνυμα. x x c. με το. b. Να βρεθούν όλες οι τιμές των a, Να βρεθεί ο μκδ και το εκπ τους

Ασκήσεις1 Πολυώνυμα. x x c. με το. b. Να βρεθούν όλες οι τιμές των a, Να βρεθεί ο μκδ και το εκπ τους Aσκήσεις1 1 Βασικά σημεία Ευκλείδεια διαίρεση πολυωνύμων Ορισμός και ιδιότητες μκδ και εκπ Ιδιότητες σχετικών πρώτων πολυωνύμων Τα ανάγωγα πολυώνυμα στο [ ] και [ ] Ασκήσεις1 Πολυώνυμα Ανάλυση πολυωνύμου

Διαβάστε περισσότερα

A, και εξετάστε αν είναι διαγωνίσιμη.

A, και εξετάστε αν είναι διαγωνίσιμη. Ασκήσεις 6 Ασκήσεις Ελάχιστο Πολυώνυμο Βασικά σημεία Ορισμός ελαχίστου πολυωνύμου πίνακα και ιδιότητές του Θεώρημα (Κριτήριο διαγωνισιμότητας) Ένας είναι διαγωνίσιμος αν και μόνο αν ( x) γινόμενο διακεκριμένων

Διαβάστε περισσότερα

βαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των

βαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των Ασκήσεις 6 Ασκήσεις Ελάχιστο Πολυώνυμο Βασικά σημεία Ορισμός ελαχίστου πολυωνύμου πίνακα και ιδιότητές του Ορισμός ελαχίστου πολυωνύμου γραμμικής απεικόνισης και ιδιότητές του Κριτήριο διαγωνισιμότητας

Διαβάστε περισσότερα

Ασκήσεις4 48. P AP τριγωνικό. Αφού δείξτε ότι ο A δεν είναι διαγωνίσιμος, βρείτε αντιστρέψιμο A 1 3 1

Ασκήσεις4 48. P AP τριγωνικό. Αφού δείξτε ότι ο A δεν είναι διαγωνίσιμος, βρείτε αντιστρέψιμο A 1 3 1 Ασκήσεις4 48 Ασκήσεις4 Τριγωνισιμότητα Βασικά σημεία Ορισμός τριγωνίσιμου πίνακα, ορισμός τριγωνίσιμης γραμμικής απεικόνισης Θεώρημα: είναι τριγωνίσιμος αν και μόνο αν ( x ) γινόμενο πρωτοβάθμιων παραγόντων

Διαβάστε περισσότερα

,..., v n. W πεπερασμένα παραγόμενοι και dimv. Τα ακόλουθα είναι ισοδύναμα f είναι ισομορφιμός. f είναι 1-1. f είναι επί.

,..., v n. W πεπερασμένα παραγόμενοι και dimv. Τα ακόλουθα είναι ισοδύναμα f είναι ισομορφιμός. f είναι 1-1. f είναι επί. Γραμμική Άλγεβρα Ι, 07-8 Ασκήσεις7: Γραμμικές Απεικονίσεις Βασικά σημεία Ορισμός και παραδείγματα γραμμικών απεικονίσεων Σύνθεση γραμμικών απεικονίσεων, ισομορφισμοί Κάθε γραμμική απεικόνιση f : V W, όπου

Διαβάστε περισσότερα

Ασκήσεις6 Διαγωνοποίηση Ερμιτιανών Πινάκων

Ασκήσεις6 Διαγωνοποίηση Ερμιτιανών Πινάκων 7 Βασικά σημεία Ασκήσεις6 Διαγωνοποίηση Ερμιτιανών Πινάκων Το σύνηθες εσωτερικό γινόμενο στο και Ορθοκανονικές βάσεις και η μέθοδος Gram-Schmidt Ορισμός, Ερμιτιανού πίνακα και μοναδιαίου πίνακα Ιδιότητες

Διαβάστε περισσότερα

1. Για καθένα από τους ακόλουθους διανυσματικούς χώρους βρείτε μια βάση και τη διάσταση. 3. U x y z x y z x y. {(,, ) } a b. c d

1. Για καθένα από τους ακόλουθους διανυσματικούς χώρους βρείτε μια βάση και τη διάσταση. 3. U x y z x y z x y. {(,, ) } a b. c d Γραμμική Άλγεβρα Ι, 07-8 Ασκήσεις6: Βάση και Διάσταση Βασικά σημεία Βάση διανυσματικού χώρου (ορισμός, παραδείγματα, μοναδικότητα συντελεστών) Θεώρημα (ύπαρξη, πρώτη μορφή) Έστω V K μη μηδενικός με K πεπερασμένο

Διαβάστε περισσότερα

Ασκήσεις6 Το σύνηθες εσωτερικό γινόμενο στο

Ασκήσεις6 Το σύνηθες εσωτερικό γινόμενο στο Ασκήσεις6 7 Ασκήσεις6 Το σύνηθες εσωτερικό γινόμενο στο και Βασικά σημεία Το σύνηθες εσωτερικό γινόμενο στο και (ορισμοί και ιδιότητες) Ορθοκανονικές βάσεις και η μέθοδος Gram-Schmidt Ορθογώνιο συμπλήρωμα

Διαβάστε περισσότερα

Κεφάλαιο 6 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 6 Ιδιοτιμές και Ιδιοδιανύσματα Κεφάλαιο 6 Ορισμοί Έστω Α ένας πίνακας με πραγματικά στοιχεία Ο πραγματικός ή μιγαδικός αριθμός λ καλείται ιδιοτιμή του πίνακα Α εάν υπάρχει μη μηδενικό διάνυσμα v με πραγματικά ή μιγαδικά στοιχεία τέτοιο

Διαβάστε περισσότερα

t t Αν κάποιος από αυτούς είναι αντιστρέψιμος, υπολογίστε τον αντίστροφό του. 2. Υπολογίστε την ορίζουσα του Δείξτε τα εξής.

t t Αν κάποιος από αυτούς είναι αντιστρέψιμος, υπολογίστε τον αντίστροφό του. 2. Υπολογίστε την ορίζουσα του Δείξτε τα εξής. Γραμμική Άλγεβρα Ι, 07-8 Ασκήσεις4: Ορίζουσες Βασικά σημεία Ορισμός και ιδιότητες οριζουσών (ιδιότητες γραμμών και στηλών, αναπτύγματα οριζουσών, det( B) det( )det( B)) Ένας τετραγωνικός πίνακας είναι

Διαβάστε περισσότερα

B είναι ισοδύναμοι αν και μόνο αν υπάρχουν διατεταγμένες βάσεις ˆv του. , b, έχει λύση αν και μόνο αν rank( A) rank( A b)

B είναι ισοδύναμοι αν και μόνο αν υπάρχουν διατεταγμένες βάσεις ˆv του. , b, έχει λύση αν και μόνο αν rank( A) rank( A b) Ασκήσεις8: Γραμμικές Απεικονίσεις και Πίνακες Βασικά σημεία Ορισμός πίνακα γραμμικής απεικόνισης, παραδείγματα Ανάκτηση γραμμικής απεικόνισης από πίνακά της Ιδιότητες (πίνακας που αντιστοιχεί στο άθροισμα,

Διαβάστε περισσότερα

, b, έχει λύση αν και μόνο αν rank( A) rank( A b) είναι οι συνήθεις διατεταγμένες βάσεις των,

, b, έχει λύση αν και μόνο αν rank( A) rank( A b) είναι οι συνήθεις διατεταγμένες βάσεις των, Γραμμική Άλγεβρα Ι, 07-8 Ασκήσεις8: Γραμμικές Απεικονίσεις και Πίνακες Βασικά σημεία Ορισμός πίνακα γραμμικής απεικόνισης, παραδείγματα Ανάκτηση γραμμικής απεικόνισης από πίνακά της Ιδιότητες (πίνακας

Διαβάστε περισσότερα

Γραμμική Άλγεβρα ΙΙ Εξέταση Σεπτεμβρίου Όνομα συνοπτικές ενδεικτικές λύσεις

Γραμμική Άλγεβρα ΙΙ Εξέταση Σεπτεμβρίου Όνομα συνοπτικές ενδεικτικές λύσεις Γραμμική Άλγεβρα ΙΙ Εξέταση Σεπτεμβρίου 009 Όνομα συνοπτικές ενδεικτικές λύσεις ΑΜ Ημ/ία Αίθουσα 1 Σύνολο Η εξέταση αποτελείται από θέματα. Κάθε θέμα αξίζει 4 μονάδες. Το άριστα είναι μονάδες και η βάση

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 17 Οκτωβρίου 2011

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 17 Οκτωβρίου 2011 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 7 Οκτωβρίου 0 Ημερομηνία παράδοσης της Εργασίας: 5 Νοεμβρίου 0 Οι ασκήσεις

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος 6/6/06 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 0 Δίνεται ο πίνακας A =. Nα υπολογίσετε την βαθμίδα του και να βρείτε τη διάσταση και από μία βάση α) του μηδενοχώρου

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 2 η Ημερομηνία Αποστολής στον Φοιτητή: 28 Νοεμβρίου 2011

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 2 η Ημερομηνία Αποστολής στον Φοιτητή: 28 Νοεμβρίου 2011 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 8 Νοεμβρίου 0 Ημερομηνία παράδοσης της Εργασίας: 6 Ιανουαρίου 0 Οι ασκήσεις

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 0 Οκτωβρίου 008 Ημερομηνία παράδοσης της Εργασίας: Νοεμβρίου 008 Πριν

Διαβάστε περισσότερα

Βασική Άλγεβρα. Ασκήσεις (εκδοχή )

Βασική Άλγεβρα. Ασκήσεις (εκδοχή ) Βασική Άλγεβρα Ασκήσεις 05-6 (εκδοχή 8--05) Βασική Άλγεβρα Ασκήσεις Υποδείξεις/Απαντήσεις Περιεχόμενα σελίδα Ασκήσεις Διαιρετότητα στους ακέραιους, ισοτιμίες Ασκήσεις Ακέραιοι odulo, Θεώρημα του Euler

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 19/6/2018 Διδάσκων: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 19/6/2018 Διδάσκων: Ι. Λυχναρόπουλος Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Άσκηση (Μονάδες.) Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 9/6/08 Διδάσκων: Ι. Λυχναρόπουλος Έστω A= k και w = 3 0. Να βρεθεί η τιμή του k για την οποία

Διαβάστε περισσότερα

Δακτύλιοι και Πρότυπα Ασκήσεις 6. Η ύλη των ασκήσεων αυτών είναι η Ενότητα6, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα.

Δακτύλιοι και Πρότυπα Ασκήσεις 6. Η ύλη των ασκήσεων αυτών είναι η Ενότητα6, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα. Δακτύλιοι και Πρότυπα 0-7 Ασκήσεις Η ύλη των ασκήσεων αυτών είναι η Ενότητα, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα Βρείτε τη ρητή κανονική μορφή και μια κανονική μορφή Jorda του M( ) 0 0 Έστω

Διαβάστε περισσότερα

Γραμμική Άλγεβρα Ι,

Γραμμική Άλγεβρα Ι, Γραμμική Άλγεβρα Ι, 207-8 Ασκήσεις2 και Ασκήσεις3: Γραμμοϊσοδύναμοι Πίνακες και Επίλυση Γραμμικών Συστημάτων Βασικά σημεία Γραμμοϊσοδυναμία πινάκων o Στοιχειώδεις πράξεις γραμμών o Ανηγμένη κλιμακωτή μορφή

Διαβάστε περισσότερα

Βασική Άλγεβρα. Ασκήσεις (εκδοχή )

Βασική Άλγεβρα. Ασκήσεις (εκδοχή ) Βασική Άλγεβρα Ασκήσεις 0-4 (εκδοχή 5--04) Βασική Άλγεβρα Ασκήσεις Υποδείξεις/Απαντήσεις Περιεχόµενα σελίδα Ασκήσεις ιαιρετότητα στους ακέραιους, ισοτιµίες Ασκήσεις Ακέραιοι odulo, Θεώρηµα του Euler 7

Διαβάστε περισσότερα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β ΠΕΡΙΤΤΟΙ Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii8/laii8html Παρασκευή 4 Ιουνίου

Διαβάστε περισσότερα

2 3x 5x x

2 3x 5x x ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕ ΚΑΤΕΥΘΥΝΣΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΑΣΚΗΣΕΙΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Ι ΙΩΑΝΝΗΣ Σ ΣΤΑΜΑΤΙΟΥ ΣΑΜΟΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι Επιμέλεια: Ι. Λυχναρόπουλος. Δείξτε ότι ο V R εφοδιασμένος με τις ακόλουθες πράξεις (, a b) + (, d) ( a+, b+ d) και k ( ab, ) ( kakb,

Διαβάστε περισσότερα

Γραμμική Άλγεβρα Ι Εξέταση Φεβρουαρίου. Επώνυμο. Όνομα. ΑΜ (13 ψηφία) Σύνολο

Γραμμική Άλγεβρα Ι Εξέταση Φεβρουαρίου. Επώνυμο. Όνομα. ΑΜ (13 ψηφία) Σύνολο 1 Γραμμική Άλγεβρα Ι 009-10 Εξέταση Φεβρουαρίου Επώνυμο Όνομα ΑΜ (1 ψηφία) Ημ/ία Αίθουσα 1 5 Σύνολο Α Η εξέταση αποτελείται από 5 Θέματα. Το άθροισμα των μονάδων είναι 1, το άριστα 10 και η βάση 5. Απαντήστε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Burnside

ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Burnside ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Bursde a b Θα αποδείξουμε εδώ ότι κάθε ομάδα τάξης pq ( p, q πρώτοι) είναι επιλύσιμη Το θεώρημα αυτό αποδείχτηκε από τον Bursde το 904 ο οποίος χρησιμοποίησε τη νέα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι

Διαβάστε περισσότερα

ΠΛΗ ΛΥΣΕΙΣ ΕΡΓ_2 ΣΕΛ. 1/11

ΠΛΗ ΛΥΣΕΙΣ ΕΡΓ_2 ΣΕΛ. 1/11 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: Νοεμβρίου 007 Ημερομηνία παράδοσης της Εργασίας: 4 Δεκεμβρίου 007 Πριν από την λύση κάθε άσκησης καλό

Διαβάστε περισσότερα

1 x x x x 1 x x x x 1 x x x x 1 (10) B 2, B 1. (10)

1 x x x x 1 x x x x 1 x x x x 1 (10) B 2, B 1. (10) Γραμμική Άλγεβρα, Τμήμα Β (Τζουβάρας/Χαραλάμπους) Φεβρουάριος 07 (I) Εστω n n πίνακας A τέτοιος ώστε A = 6A, έστω δ.χ. V με dim(v ) = n και f : V V η γραμμική απεικόνιση με πίνακα A ως πρός κάποια βάση

Διαβάστε περισσότερα

Δακτύλιοι και Πρότυπα Ασκήσεις 3. Στις παρακάτω ασκήσεις κάθε δακτύλιος είναι μη τετριμμένος μεταθετικός δακτύλιος. N ( a)

Δακτύλιοι και Πρότυπα Ασκήσεις 3. Στις παρακάτω ασκήσεις κάθε δακτύλιος είναι μη τετριμμένος μεταθετικός δακτύλιος. N ( a) 11 Δακτύλιοι και Πρότυπα 2016-17 Ασκήσεις 3 Η ύλη των ασκήσεων αυτών είναι η Ενότητα3, Ελεύθερα πρότυπα Στις παρακάτω ασκήσεις κάθε δακτύλιος είναι μη τετριμμένος μεταθετικός δακτύλιος 1 Δείξτε ότι το

Διαβάστε περισσότερα

Μία απεικόνιση από ένα διανυσματικό χώρο V στον εαυτό του, L : V V την ονομάζουμε γραμμικό τελεστή στο V (ή ενδομορφισμό του V ). Ορισμός. L : V V γρα

Μία απεικόνιση από ένα διανυσματικό χώρο V στον εαυτό του, L : V V την ονομάζουμε γραμμικό τελεστή στο V (ή ενδομορφισμό του V ). Ορισμός. L : V V γρα Γραμμική Άλγεβρα ΙΙ Διάλεξη 15 Αναλλοίωτοι Υπόχωροι, Ιδιόχωροι Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης 2/5/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 15 2/5/2014 1 / 12 Μία απεικόνιση από ένα διανυσματικό

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικοί Χώροι Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Διανυσματικός Χώρος επί του F Αλγεβρική δομή που αποτελείται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 00 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ9) Ηράκλειο, 7 Ιανουαρίου 00 Θέμα. (μονάδες.5) α) [μονάδες:.0]. Υπολογίστε

Διαβάστε περισσότερα

8.1 Διαγωνοποίηση πίνακα

8.1 Διαγωνοποίηση πίνακα Κεφάλαιο 8 Κανονικές μορφές από 6 Κεφάλαιο 8 Κ Α Ν Ο Ν Ι Κ Ε Σ Μ Ο Ρ Φ Ε Σ 8. Διαγωνοποίηση πίνακα Ορισμός 8.α Ένας πίνακας M n ( ) oνομάζεται διαγωνοποιήσιμος στο αν υπάρχει αντιστρέψιμος πίνακας P M

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

= k. n! k! (n k)!, k=0

= k. n! k! (n k)!, k=0 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Συμπληρωματικές Ασκήσεις Χειμερινό Εξάμηνο 2015 Χρήστος Α Αθανασιάδης Συμβολίζουμε με O το μηδενικό πίνακα καταλλήλων διαστάσεων, με I (ορισμένες φορές, με I n τον n n ταυτοτικό πίνακα,

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικοί Χώροι Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Διανυσματικός Χώρος επί του F Αλγεβρική δομή που αποτελείται

Διαβάστε περισσότερα

Κεφάλαιο 5 Γραμμικοί Μετασχηματισμοί

Κεφάλαιο 5 Γραμμικοί Μετασχηματισμοί Κεφάλαιο 5 Γραμμικοί Μετασχηματισμοί 5 Γενικά Γραμμικοί Μετασχηματισμοί Μία σχέση μεταξύ των στοιχείων δύο συνόλων Α,Β αντιστοιχίζει στοιχεία του Α με στοιχεία του Β άλλου μέσω ενός κανόνα που μπορεί να

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάμε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων Αυτές συνδέονται μεταξύ τους με την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10 Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 0 Επαναληπτικες Ασκησεις ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθοι Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laiihtml

Διαβάστε περισσότερα

( A = A = 3 5 A 2 + B 2.

( A = A = 3 5 A 2 + B 2. ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Χειμερινό Εξάμηνο 25 Ασκήσεις Για πίνακες A R m n και B R p q ορίζονται οι πίνακες AB και BA και ισχύει AB = BA Τι συμπεραίνετε για τα m, n, p, q; 2 Για A, B R n n : (α Δείξτε ότι (A

Διαβάστε περισσότερα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα A 4. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές πολλαπλότητες των ιδιοτιμών.

Διαβάστε περισσότερα

1 1 A = x 1 x 2 x 3. x 4. R 2 3 : a + b + c = x + y + z = 0. R 2 3 : a + x = b + y = c + z = 0

1 1 A = x 1 x 2 x 3. x 4. R 2 3 : a + b + c = x + y + z = 0. R 2 3 : a + x = b + y = c + z = 0 Γραμμική Άλγεβρα Ι Θέματα Εξετάσεων Ιανουαρίου 6. (α Υπολογίστε τον πίνακα X R και την ορίζουσα det(x 5 αν AX = B + C και ( ( ( 3 3 A = B = C =. 4 3 (β Θεωρούμε πίνακα A R n n τέτοιον ώστε A = 4A 4I n.

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο.

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο. Κεφάλαιο Πρότυπα Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο Ορισμοί και Παραδείγματα Παραδοχές Στo βιβλίο αυτό θα κάνουμε τις εξής παραδοχές Χρησιμοποιούμε προσθετικό συμβολισμό

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ ΔΕΥΤΕΡΟ - Διανύσματα - Πράξεις με πίνακες - Διαφορικός λογισμός (1D) ΜΑΘΗΜΑΤΙΚΟ ΥΠΟΒΑΘΡΟ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ 7 ης ΕΒΔΟΜΑΔΑΣ

ΑΣΚΗΣΕΙΣ 7 ης ΕΒΔΟΜΑΔΑΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Ακαδηµαϊκό έτος 5-6 ΜΑΘΗΜΑ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Καθηγητής: Σ Πνευµατικός ΑΣΚΗΣΕΙΣ 7 ης ΕΒΔΟΜΑΔΑΣ ΟΙ ΚΑΝΟΝΙΚΕΣ ΜΟΡΦΕΣ JORDAN Θεωρούµε ένα n-διάστατο διανυσµατικό χώρο E στο σώµα Κ = ή και

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασμένων Ομάδων Ι

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασμένων Ομάδων Ι ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασμένων Ομάδων Ι Χρησιμοποιώντας το θεώρημα του Weddebu για ημιαπλούς δακτυλίους, αναπτύσσουμε εδώ τις πρώτες προτάσεις από τη θεωρία των αναπαραστάσεων και αρακτήρων πεπερασμένων

Διαβάστε περισσότερα

Λύσεις και Υποδείξεις Επιλεγµένων Ασκήσεων

Λύσεις και Υποδείξεις Επιλεγµένων Ασκήσεων Λύσεις και Υποδείξεις Επιλεγµένων Ασκήσεων 11 1 i) ii) 1 1 1 0 1 1 0 0 0 x = 0 x +x 4 +x 5 = x = 1 Λύνοντας ως προς x και στη συνέχεια ως προς x 4, ϐρίσκουµε ότι η γενική λύση του συστήµατος είναι η 5άδα

Διαβάστε περισσότερα

ΜΑΣ121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ I Εαρινό εξάμηνο , Διδάσκων: Γιώργος Γεωργίου ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ, Διάρκεια: 2 ώρες 18 Νοεμβρίου, 2017

ΜΑΣ121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ I Εαρινό εξάμηνο , Διδάσκων: Γιώργος Γεωργίου ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ, Διάρκεια: 2 ώρες 18 Νοεμβρίου, 2017 ΜΑΣ: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ I Εαρινό εξάμηνο 07-08, Διδάσκων: Γιώργος Γεωργίου ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ, Διάρκεια: ώρες 8 Νοεμβρίου, 07 Δίνονται 4 προβλήματα που αντιστοιχούν σε 0 μονάδες με άριστα το 00! ΟΝΟΜΑ: Αρ.

Διαβάστε περισσότερα

Θέμα 1. με επαυξημένο 0 1 1/ 2. πίνακα. και κλιμακωτή μορφή αυτού

Θέμα 1. με επαυξημένο 0 1 1/ 2. πίνακα. και κλιμακωτή μορφή αυτού ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΗΣ Ιουλίου 0 Θέμα α) (Μον.6) Να βρεθεί η τιμή του πραγματικού

Διαβάστε περισσότερα

Διαγωνοποίηση μητρών. Στοιχεία Γραμμικής Άλγεβρας

Διαγωνοποίηση μητρών. Στοιχεία Γραμμικής Άλγεβρας Διαγωνοποίηση μητρών Στοιχεία Γραμμικής Άλγεβρας Όμοιες μήτρες Ορισμός: Οι τετραγωνικές μήτρες Α=[α ij ] nxn & B=[b ij ] nxn όμοιες (Α~Β): αν υπάρχει ομαλή μήτρα Ρ τ.ώ. Β = Ρ -1 Α Ρ A~B Β~ Α Ρ ομαλή μήτρα

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι ΚΕΦΑΛΑΙΟ : Ημιαπλοί Δακτύλιοι Είδαμε στο κύριο θεώρημα του προηγούμενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισμα απλών προτύπων Εδώ θα χαρακτηρίσουμε όλους

Διαβάστε περισσότερα

Κεφάλαιο 6 Ιδιοτιµές και Ιδιοδιανύσµατα

Κεφάλαιο 6 Ιδιοτιµές και Ιδιοδιανύσµατα Κεφάλαιο 6 Ιδιοτιµές και Ιδιοδιανύσµατα Ορισµοί Ιδιοτιµές και Ιδιοδιανύσµατα Έστω Α ένας πίνακας µε πραγµατικά στοιχεία Ο πραγµατικός ή µιγαδικός αριθµός λ καλείται ιδιοτιµή του πίνακα Α εάν υπάρχει µη

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-9) ΜΕΡΟΣ 7: ΙΔΙΟΤΙΜΕΣ & ΙΔΙΟΔΙΑΝΥΣΜΑΤΑ ΔΙΑΓΩΝΙΟΠΟΙΗΣΗ ΠΙΝΑΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΑΠΟ ΤΙΣ ΠΑΡΑΔΟΣΕΙΣ

Διαβάστε περισσότερα

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις 1. Εισαγωγή Δίνεται η συνάρτηση μεταφοράς = = 1 + 6 + 11 + 6 = + 6 + 11 + 6 =. 2 Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις L = 0 # και L $ % &'

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο συμβολίζουμε με Σε αυτό το σύνολο γνωρίζουμε

Διαβάστε περισσότερα

Κεφάλαιο 7 Ορθογώνιοι Πίνακες

Κεφάλαιο 7 Ορθογώνιοι Πίνακες Κεφάλαιο 7 Ορθογώνιοι Πίνακες Εσωτερικό Γινόμενο και ορθογωνιότητα Έστω V ένας διανυσματικός χώρος, υπόχωρος του n. Κάθε συνάρτηση ορισμένη στο VV (την οποία θα συμβολίζουμε με ) ορίζει ένα εσωτερικό γινόμενο

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ , Β= 1 y, όπου y 0. , όπου y 0.

ΑΠΑΝΤΗΣΕΙΣ , Β= 1 y, όπου y 0. , όπου y 0. ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ 9 Ιουνίου 8:-: ΑΠΑΝΤΗΣΕΙΣ Θέμα (Α) ( 5 μονάδες) Δίδονται οι πίνακες Α=,

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 3

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 3 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 3 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii2018/laii2018html Παρασκευή 23 Μαρτίου

Διαβάστε περισσότερα

ΧΑΡΑΚΤΗΡΙΣΤΙΚΟ ΠΟΛΥΩΝΥΜΟ ΠΙΝΑΚΑ: Έστω Α ένας n nπίνακας επί ενός σώματος F. Για χ στο F, ορίζεται το πολυώνυμο ( ως προς χ ) : h ( x) = det( A- xi ).

ΧΑΡΑΚΤΗΡΙΣΤΙΚΟ ΠΟΛΥΩΝΥΜΟ ΠΙΝΑΚΑ: Έστω Α ένας n nπίνακας επί ενός σώματος F. Για χ στο F, ορίζεται το πολυώνυμο ( ως προς χ ) : h ( x) = det( A- xi ). 1 ΧΑΡΑΚΤΗΡΙΣΤΙΚΟ ΠΟΛΥΩΝΥΜΟ ΠΙΝΑΚΑ: Έστω Α ένας n nπίνακας επί ενός σώματος F. Για χ στο F, ορίζεται το πολυώνυμο ( ως προς χ ) : h ( x) = det( A- xi ). A n Πόρισμα 1: Ο βαθμός του χαρ/κου πολυωνύμου ενός

Διαβάστε περισσότερα

Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ

Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Στο πρώτο μέρος αυτού του κεφαλαίου συνοψίζουμε όσα είναι απαραίτητα για την εύρεση ιδιοτιμών και ιδιοδιανυσμάτων ενός τετραγωνικού πίνακα Στο δεύτερο μέρος αναπτύσσονται

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 6

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 6 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 6 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii2018/laii2018.html Παρασκευή 4 Μαίου 2018 Ασκηση

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ Ονοματεπώνυμο:......... Α.Μ....... Ετος... ΑΙΘΟΥΣΑ:....... I. (περί τις 55μ. = ++5++. Σωστό ή Λάθος: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - //8 ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ (αʹ Αν AB = BA όπου A, B τετραγωνικά και

Διαβάστε περισσότερα

1 ιαδικασία διαγωνιοποίησης

1 ιαδικασία διαγωνιοποίησης ιαδικασία διαγωνιοποίησης Εστω V ένας R-διανυσματικός χώρος (ή έναςc-διανυσματικός χώρος) διάστασης n. Είναι γνωστό ότι κάθε διάνυσμα (,,..., n ) του χώρου V μπορεί να παρασταθεί και σαν πίνακας στήλη

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: 6 Νοεµβρίου 005 Ηµεροµηνία Παράδοσης της Εργασίας

Διαβάστε περισσότερα

{ } ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι 2 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ. Απαντήσεις. 1. (15 µονάδες)

{ } ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι 2 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ. Απαντήσεις. 1. (15 µονάδες) Σελίδα από 8 (5 µονάδες) ΠΛΗ : ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Απαντήσεις i Εξηγείστε γιατί κάθε ένα από τα παρακάτω υποσύνολα του R δεν είναι υπόχωρος του R {[ xyz,, ] T z } {[ xyz,,

Διαβάστε περισσότερα

Κεφάλαιο 7 Βάσεις και ιάσταση

Κεφάλαιο 7 Βάσεις και ιάσταση Κεφάλαιο 7: Βάσεις και ιάσταση Σελίδα από 9 Κεφάλαιο 7 Βάσεις και ιάσταση n Στο Κεφάλαιο 5 είδαµε την έννοια της βάσης στο και στο Κεφάλαιο 6 µελετήσαµε διανυσµατικούς χώρους. Στο παρόν κεφάλαιο θα ασχοληθούµε

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 8/6/2017 Διδάσκων: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 8/6/2017 Διδάσκων: Ι. Λυχναρόπουλος Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Άσκηση (Μονάδες.5) Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 8/6/07 Διδάσκων: Ι. Λυχναρόπουλος Προσδιορίστε το c R ώστε το διάνυσμα (,, 6 ) να ανήκει στο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ12 «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 16 Ιουλίου 2003

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ12 «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 16 Ιουλίου 2003 http://edueapgr/pli/pli/studetshtm Page of 6 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 6 Ιουλίου Απαντήστε όλα

Διαβάστε περισσότερα

n! k! (n k)!, = k k 1

n! k! (n k)!, = k k 1 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Συμπληρωματικές Ασκήσεις Χειμερινό Εξάμηνο 2015 Χρήστος Α Αθανασιάδης Συμβολίζουμε με O το μηδενικό πίνακα καταλλήλων διαστάσεων, με I (ορισμένες φορές, με I n ) τον n n ταυτοτικό πίνακα,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΣ 121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟΥ 3

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΣ 121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟΥ 3 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΣ 11: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟΥ 3 1. Να βρείτε τις ιδιοτιμές και τα ιδιοδιανύσματα των πιο κάτω πινάκων: 1 0 3 1 1 1 1 1 3 1 1 4 a b.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ Α ΕΡΓΑΣΙΑΣ. ( 8 µον.) Η άσκηση αυτή αναφέρεται σε διαιρετότητα και ρίζες πολυωνύµων. a. Να λυθεί η εξίσωση

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 8 Ημερομηνία παράδοσης της Εργασίας: Φεβρουαρίου 8 Πριν από την λύση κάθε άσκησης καλό

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy 4 Εισαγωγή Kεφάλαιο 4 Συστήματα διαφορικών εξισώσεων Εστω διανυσματικό πεδίο F : : F = Fr, όπου r x, και είναι η ταχύτητα στο σημείο πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουμε τις τροχιές κίνησης των

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ 00- ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ. (5 µον.) ίνεται ο πίνακας 0 0 A. 0 (α) (α) Να βρεθούν όλες οι ιδιοτιµές και τα ιδιοδιανύσµατα του πίνακα Α. (β) Είναι δυνατή η διαγωνιοποίηση

Διαβάστε περισσότερα

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι)

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι) 77 78 7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7. ΕΙΣΑΓΩΓΗ Η Άλγεβρα των μητρών οι πινάκων είναι ιδιαίτερα χρήσιμη για την επίλυση συστημάτων καθώς επίσης στις επιστήμες της οικονομετρίας και της στατιστικής. ΟΡΙΣΜΟΣ: Μήτρα

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ηµεροµηνία Αποστολής στον Φοιτητή: 12 Οκτωβρίου 2007

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ηµεροµηνία Αποστολής στον Φοιτητή: 12 Οκτωβρίου 2007 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 1) ΕΡΓΑΣΙΑ 1 η Ηµεροµηνία Αποστολής στον Φοιτητή: 1 Οκτωβρίου 007 Ηµεροµηνία παράδοσης της Εργασίας: 9 Νοεµβρίου 007. Πριν από την λύση κάθε άσκησης

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ Οι πρώτες δύο ασκήσεις αναφέρονται στις έννοιες γραµµική ανεξαρτησία, γραµµικός

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Σεπτεμβρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Σεπτεμβρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Λύσεις των Θεμάτων της Εξέτασης Σεπτεμβρίου 00 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ9) Ηράκλειο, Αυγούστου 00 Θέμα. (μονάδες.5) α) [μονάδες: 0.5] Υπολογίστε

Διαβάστε περισσότερα

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παράδειγμα Έστω το σύνολο V το σύνολο όλων των θετικών πραγματικών αριθμών εφοδιασμένο με την ακόλουθη πράξη της πρόσθεσης: y y με, y V και του πολλαπλασιασμού

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobso Στο κεφάλαιο αυτό μελετάμε δακτυλίους του Art χρησιμοποιώντας το ριζικό του Jacobso. Ως εφαρμογή αποδεικνύουμε ότι κάθε δακτύλιος του Art είναι και της Noether. 4.1. Δακτύλιοι

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii2019/laii2019html Παρασκευή 1 Μαρτίου 2019 Ασκηση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Επιστήμης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Επιστήμης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Επιστήμης Υπολογιστών «Γραμμική Άλγεβρα» (ΗΥ119) Χειμερινό Εξάμηνο 009-010 Διδάσκων: Ι. Τσαγράκης 6 Ο ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ Άσκηση 1: Δείξτε ότι η απεικόνιση τον ker f. Είναι η

Διαβάστε περισσότερα

( ) 10 ( ) εποµ ένως. π π π π ή γενικότερα: π π. π π. π π. Άσκηση 1 (10 µον) Θεωρούµε το µιγαδικό αριθµό z= i.

( ) 10 ( ) εποµ ένως. π π π π ή γενικότερα: π π. π π. π π. Άσκηση 1 (10 µον) Θεωρούµε το µιγαδικό αριθµό z= i. http://elern.mths.gr/, mths@mths.gr, Τηλ: 697905 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ 00-0: Άσκηση (0 µον) Θεωρούµε το µιγαδικό αριθµό z= i. α) (5 µον) Βρείτε την τριγωνοµετρική µορφή του z.

Διαβάστε περισσότερα

Πορίσματα της Κανονικής Μορφής Smith (συμπλήρωμα για την Ενότητα 4)

Πορίσματα της Κανονικής Μορφής Smith (συμπλήρωμα για την Ενότητα 4) Πορίσματα της Κανονικής Μορφής Smh (συμπλήρωμα για την Ενότητα 4 Θα δείξουμε εδώ ότι από την κανονική μορφή Smh πινάκων πάνω από περιοχή κυρίων ιδεωδών R, έπονται τα εξής Το Θεώρημα Βάσεων Το Θεώρημα Ανάλυσης

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 6 / ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ Γραμμικές απεικονίσεις, Αλλαγή βάσης, Ιδιοτιμές, Ιδιοδιανύσματα

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 6 / ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ Γραμμικές απεικονίσεις, Αλλαγή βάσης, Ιδιοτιμές, Ιδιοδιανύσματα ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 6 / 009-0 ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ Γραμμικές απεικονίσεις, Αλλαγή βάσης, Ιδιοτιμές, Ιδιοδιανύσματα Έστω η γραμμική απεικόνιση T : με (α) Βρείτε τον πίνακα της T, I Ως προς την κανονική βάση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 4 Ιουνίου 009 Θέμα (0 μονάδες) α) (7 μον) Για τις διάφορες τιμές του k R, να λυθεί το σύστημα y+ kz =

Διαβάστε περισσότερα