Măsurări în Electronică şi Telecomunicaţii 3. Osciloscopul
|
|
- Ιολανθη Ζαΐμης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 3. Osciloscopul 3.6 Sistemul de sincronizare şi baza de timp
2 Caracteristici generale Funcţionarea în modul Y(t) în acest caz osciloscopul reprezintă variaţia în timp a semnalului de intrare. n y u y C t y n y (x,y) t n C x x n x
3 Poziţionarea spotului pe orizontala Osciloscopul analogic: spotul trebuie să se deplaseze cu viteză constantă pe orizontală, realizând astfel o scară liniară de timp tensiunea care realizează acest deziderat este o tensiune liniar variabilă. baza de timp este circuitul care are rolul de a genera această tensiune. => Pe plăcile de deflexie pe orizontală trebuie aplicată o tensiune liniar variabilă
4 Tensiunea generată de baza de timp t x intervalul de timp corespunzător întregii axe orizontale gradate. N x = 10 div. C x - coeficientul de deflexie pe orizontală t N C x x x t d durata cursei directe (osciloscop analogic) t (1,1 1,2) N C d x x u x (t) t x t d t
5 Reglajele bazei de timp Coeficientul de deflexie pe orizontală C x exprimat în secunde (milisecunde, microsecunde, nanosecunde)/diviziune. Pot fi trei moduri de reglaj: În trepte fixe (ex: 1ms/div, 0,5ms/div, 20μs/div) Continuu (necalibrat) Extensie pe X (de obicei în treptele x5, x10, x50)
6 Reglajele bazei de timp Poziţia pe orizontală (POZ X sau ) se realizează prin însumarea unei componente continue reglabile peste tensiunea liniar variabilă. poate fi folosit pentru aducerea unui anumit element al imaginii în dreptul unei gradaţii a ecranului în vederea măsurării unui interval de timp.
7 Sincronizarea osciloscopului Osciloscopul fără memorie este cel mai frecvent utilizat pentru vizualizarea unor semnale repetitive, periodice. Osciloscopul va capta şi afişa segmente de durată limitată (cadre): Cadrul n Cadrul n+1 Cadrul n+2 T s =perioada semnalului
8 Sincronizarea osciloscopului Pentru a avea o imagine stabilă pe ecran, ar trebui ca toate aceste cadre să fie identice. În acest caz, se spune că imaginea este sincronizată. Cadrele succesive vor fi şi ele periodice T v perioada cadrelor sau perioada de vizualizare. T v
9 Sincronizarea osciloscopului Dacă semnalul are perioada T s, în situaţia în care sincronizarea a fost realizată, avem relaţia: De exemplu: k=2 T kt k N v, s T s T v T s
10 Sincronizarea osciloscopului Realizarea condiţiei de sincronizare, T kt k N v, s depinde de reglarea lui T v T t t v v a t v este dependent de coeficientul de deflexie C x. pentru realizarea sincronizării poate fi utilizat doar timpul de aşteptare t a. t v t a T v
11 Sincronizarea osciloscopului Pentru sincronizare, vizualizarea semnalului trebuie să înceapă întotdeauna în acelaşi punct corespunzator perioadei semnalului. Pentru aceasta osciloscopul dispune de câteva elemente de reglaj: Nivelul de declanşare (sau pragul triggerului, marcat de obicei prin LEVEL) U p Frontul semnalului de sincronizare pe care are loc declanşarea (marcat prin SLOPE).
12 Sincronizarea osciloscopului Condiţia de declanşare a triggerului: Declanşarea se produce în momentul când semnalul atinge nivelul U p pe frontul precizat (+ crescător sau scăzător). Triggerul din sistemul de sincronizare al osciloscopului este un circuit care generează un impuls, numit impuls syncro (Sy), când sunt îndeplinite condiţiile anterioare FRONT + FRONT - U p U p S y S y
13 Sincronizarea osciloscopului Osciloscopul digital permite vizualizarea semnalului parţial înainte (pretrigger) şi parţial după semnalul Sy (posttrigger). Osciloscop analogic Osciloscop digital S y S Y t v - posttrigger Pretrigger Posttrigger t v
14 Sincronizarea osciloscopului Reglajul timpului de reţinere, t RET (HOLDOFF) A= 3V; Uprag=1V; Tsemnal=60us; Cx=5us/div; tret=100 us; Cadrul Cadrul Cadrul n n+1 n+2 t v t a t RET RET Sy
15 Sincronizarea osciloscopului Daca t RET e ales incorect -> desincronizarea osc. tret=70 us; Cadrul n Cadrul n+1 Cadrul n+2 t v t a t RET RET Sy
16 Sincronizarea osciloscopului Prima afişare A doua afişare Prima afişare A doua afişare a) imagine nesincronizată b) imagine sincronizată
17 Sincronizarea osciloscopului y(t) V p u BT (t) T t 1 t 2 Declanşare greşită 2T t t RET A=2V, Uprag=1.5V; Cx=25us/div; Tsemnal=300us; tret=400us; Din cauza intervalului de reţinere declanşarea nu se poate face la momentul t 1, ci la momentul t 2 ; Imaginea este sincronizată? t
18 Sincronizarea osciloscopului y(t) V p u BT (t) T t 1 t 2 Declanşare greşită 2T t t RET t
19 Sincronizarea osciloscopului y(t) V p u BT (t) T t 2 t 1 2T t 3 t t RET t RET t tret =?; Dacă timpul de reţinere este reglat corect, declanşarea se face la momentele t 1 sau t 3, caz în care pe ecran se obţine o imagine sincronizată
20 Moduri de lucru ale bazei de timp A. După modul în care se face declanşarea bazei de timp Declanşat (Normal - NORM) O nouă cursă începe numai când există semnal de sincronizare şi acesta îndeplineşte condiţiile de prag şi de front ale triggerului. În absenţa semnalului de sincronizare nu există desfăşurare.
21 Moduri de lucru ale bazei de timp Automat (AUTO) Desfăşurarea are loc şi în absenţa semnalului. În acest caz dacă semnalul de sincronizare nu este găsit, după un anumit interval de timp este declanşată automat afişarea obţinându-se o imagine nesincronizată. Dacă semnalul există, el este cel care declanşează baza de timp.
22 Moduri de lucru ale bazei de timp C. În funcţie de semnalul folosit pentru sincronizare Sincronizare internă Se foloseşte pentru sincronizare semnalul furnizat de preamplificatorul canalului Y. Dacă osciloscopul are două canale putem avea mai multe cazuri de sincronizare externă CH1 sursa de sincronizare este luată de pe canalul 1 CH2 - sursa de sincronizare este luată de pe canalul 2.
23 Moduri de lucru ale bazei de timp VERT MODE semnalul de sincronizare este luat alternativ de pe canalul 1 respectiv canalul 2 în modul de vizualizare ALT. În modul CHOP sursa de sincronizare este dată de suma semnalelor de pe cele două canale. Sincronizare externă Se foloseşte pentru sincronizare semnalul aplicat la borna TRG EXT.
24 Moduri de lucru ale bazei de timp EXEMPLU: Semnalele periodice din figură se aplică pe intrarea Y respectiv la intrarea TRG EXT a unui osciloscop cu bază de timp simplă. Reglajele osciloscopului sunt: U p = 0,5V; Front = ; t RET = 1,1ms; C x = 0,1ms/div; C y = 0,5V/div, sincronizare externă. u 1 [V] -1-2 u 2 [V] 1 0,2 0,4 0,6 0,8 1 1,2 1,4 t[ms] La momentul iniţial a trecut intervalul de reţinere şi se aşteaptă declanşarea bazei de timp. a) Să se deseneze imaginea care apare pe ecran. Discuţie. 2 1
25 Moduri de lucru ale bazei de timp Semnalul de sincronizare va fi u 2 La momentul t Start =0,1 ms semnalul u 2 atinge valoarea U p =0,5V pe front negativ => impulsul de sincronizare La declanşarea cursei directe, semnalul u 1 are valoarea 1V Durata cursei directe este: t x =N X C x =1 ms şi se termină la momentul t Stop =t Start +t x =1,1 ms U P =0,5V u 2 [V] 1 u 1 [V] Declanşare BT 0,2 0,4 0,6 0,8 1 1,2 1,4 t[ms] t Start =0,1 t Stop =1,1
26 Moduri de lucru ale bazei de timp în intervalul 1,1ms 1,2ms este activ semnalul de reţinere. După momentul t = 1,2ms semnalul de reţinere este dezactivat şi se aşteaptă generarea impulsului de pornire a bazei de timp. u 1 [V] La momentul t = 1,3ms se va declanşa baza de timp Semnalul u 1 (t) are la acest moment valoarea 1V => imaginea obţinută nu este sincronizată U P =0,5V La următoarele curse semnalul va repeta cursa 1 respectiv cursa 2, alternativ u 2 [V] 1 Declanşare BT t Start =0,1 t Stop =1,1 t RET Declanşare BT cursa 2 0,2 0,4 0,6 0,8 1 1,2 1,4 t[ms]
27 Moduri de lucru ale bazei de timp 2 1 u 1 [V] Imaginea obţinută -1-2 u 2 [V] 1 U P =0,5V Declanşare BT t Start =0,1 t Stop =1,1 t RET Declanşare BT cursa 2 0,2 0,4 0,6 0,8 1 1,2 1,4 t[ms] Cursele 1,3,5 Cursele 2,4,6
28 Moduri de lucru ale bazei de timp b) Dacă u 1, u 2 se aplică la intrarea YA(CH1) respectiv YB(CH2) a unui osciloscop cu două canale să se reprezinte imaginea care apare pe ecran pentru cele 3 poziţii ale comutatorului de sincronizare: CH1, CH2. Reglajele bazei de timp rămân cele de la punctul anterior. C ya =C yb =0,5 V/div.
29 Moduri de lucru ale bazei de timp 1) Sincronizarea dupa CH1 (semnalul u 1 ) u 1 [V] u 2 [V] 0,2 0,4 0,6 0,8 1 1,2 1,4 t[ms] U P =0,5V u 2 u 1
30 Moduri de lucru ale bazei de timp 2) Sincronizarea după CH2 (semnalul u 2 ) u 1 [V] u 2 [V] 0,2 0,4 0,6 0,8 1 1,2 1,4 t[ms] U P =0,5V u 2 u 1
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
Διαβάστε περισσότερα4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
Διαβάστε περισσότερα5.4. MULTIPLEXOARE A 0 A 1 A 2
5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării
Διαβάστε περισσότεραMetode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
Διαβάστε περισσότερα11.2 CIRCUITE PENTRU FORMAREA IMPULSURILOR Metoda formării impulsurilor se bazează pe obţinerea unei succesiuni periodice de impulsuri, plecând de la semnale periodice de altă formă, de obicei sinusoidale.
Διαβάστε περισσότεραMăsurări în Electronică şi Telecomunicaţii 2. Osciloscopul
2. Osciloscopul 2.5 Canalul Y Rolul şi funcţiunile canalului Y Asigură impedanţa de intrare de valoare ridicată a osciloscopului; Realizează amplificarea în tensiune pentru sistemului de deflexie (osciloscopul
Διαβάστε περισσότερα(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
Διαβάστε περισσότεραComponente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice
Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională
Διαβάστε περισσότερα5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
Διαβάστε περισσότερα11.3 CIRCUITE PENTRU GENERAREA IMPULSURILOR CIRCUITE BASCULANTE Circuitele basculante sunt circuite electronice prevăzute cu o buclă de reacţie pozitivă, folosite la generarea impulsurilor. Aceste circuite
Διαβάστε περισσότεραFig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].
Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie
Διαβάστε περισσότεραAnaliza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
Διαβάστε περισσότεραPlanul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
Διαβάστε περισσότερα5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
Διαβάστε περισσότεραFunctii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
Διαβάστε περισσότεραLucrarea Nr. 2 Aparatura de laborator-ii
Lucrarea Nr. 2 Aparatura de laborator-ii Scopul lucrarii: - Deprinderea utilizării aparatelor de laborator (generator de semnal, osciloscop catodic) necesare studiului experimental a unor dispozitive şi
Διαβάστε περισσότεραLucrarea de laborator 1 Generarea şi vizualizarea semnalelor. Reglajele osciloscopului
1 Lucrarea de laborator 1 Generarea şi vizualizarea semnalelor Rev 19 Scop: Familiarizarea cu funcţiile de bază ale unui osciloscop şi generator de semnal. Reglarea și măsurarea parametrilor specifici
Διαβάστε περισσότεραFunctii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
Διαβάστε περισσότεραIntegrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
Διαβάστε περισσότερα2 Osciloscopul. 2.1 Prezentare generală MĂSURĂRI ÎN ELECTRONICĂ ŞI TELECOMUNICAŢII
1 MĂSURĂRI ÎN ELECTRONICĂ ŞI TELECOMUNICAŢII Osciloscopul.1 Prezentare generală Osciloscopul este un instrument având ca funcţie principală vizualizarea şi măsurarea semnalelor electrice în domeniul timp.
Διαβάστε περισσότεραDISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
Διαβάστε περισσότεραCIRCUITE LOGICE CU TB
CIRCUITE LOGICE CU T I. OIECTIVE a) Determinarea experimentală a unor funcţii logice pentru circuite din familiile RTL, DTL. b) Determinarea dependenţei caracteristicilor statice de transfer în tensiune
Διαβάστε περισσότεραSisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
Διαβάστε περισσότεραSubiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
Διαβάστε περισσότεραa n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
Διαβάστε περισσότεραV.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
Διαβάστε περισσότεραCurs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
Διαβάστε περισσότεραAplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
Διαβάστε περισσότεραLucrarea Nr. 11 Amplificatoare de nivel mare
Lucrarea Nr. 11 Amplificatoare de nivel mare Scopul lucrării - asimilarea conceptului de nivel mare; - studiul etajului de putere clasa B; 1. Generalităţi Caracteristic etajelor de nivel mare este faptul
Διαβάστε περισσότεραProblema a II - a (10 puncte) Diferite circuite electrice
Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător
Διαβάστε περισσότερα4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice
4. Măsurarea tensiunilor şi a curenţilor electrici oltmetre electronice analogice oltmetre de curent continuu Ampl.c.c. x FTJ Protectie Atenuator calibrat Atenuatorul calibrat divizor rezistiv R in const.
Διαβάστε περισσότεραRĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,
REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii
Διαβάστε περισσότεραCOLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
Διαβάστε περισσότεραOSCILOSCOPUL ANALOGIC
OSCILOSCOPUL ANALOGIC 1. Scopul aplicaţiei Se urmăreşte studierea osciloscopului analogic HM303-6 al firmei germane HAMEG. Lucrarea prezintă principiul de funcţionare al osciloscopului la nivel de schemă
Διαβάστε περισσότεραDCE Lucrarea nr. 1 Aparatura de laborator Măsurarea diferitelor componente, realizarea de montaje
DCE Lucrarea nr. 1 Aparatura de laborator Măsurarea diferitelor componente, realizarea de montaje I. OBIECTIVE a) Deprinderea utilizării aparatelor de laborator (sursă de tensiune, multimetru digital,
Διαβάστε περισσότεραCurs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
Διαβάστε περισσότεραAparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1
Aparate de măsurat Măsurări electronice Rezumatul cursului 2 MEE - prof. dr. ing. Ioan D. Oltean 1 1. Aparate cu instrument magnetoelectric 2. Ampermetre şi voltmetre 3. Ohmetre cu instrument magnetoelectric
Διαβάστε περισσότεραMARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
Διαβάστε περισσότεραAPARATURA DE LABORATOR
APARATURA DE LABORATOR I. OBIECTIV Deprinderea utilizării aparatelor de laborator (sursă de tensiune, multimetru digital, generator de semnale, osciloscop catodic) necesare studiului experimental a unor
Διαβάστε περισσότεραSeminar 5 Analiza stabilității sistemelor liniare
Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare
Διαβάστε περισσότερα1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB
1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul
Διαβάστε περισσότεραMetode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
Διαβάστε περισσότεραConice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
Διαβάστε περισσότεραProbleme propuse IEM
Probleme propuse IEM Convertoare numeric-analogice 1. Unui CNA unipolar de 3 biţi cu i se aplică pe MSB un semnal periodic dreptunghiular cu perioada 1ms, factor de umplere 0,5, având cele două nivele
Διαβάστε περισσότεραLaborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
Διαβάστε περισσότεραDefiniţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
Διαβάστε περισσότεραL2. REGIMUL DINAMIC AL TRANZISTORULUI BIPOLAR
L2. REGMUL DNAMC AL TRANZSTRULU BPLAR Se studiază regimul dinamic, la semnale mici, al tranzistorului bipolar la o frecvenţă joasă, fixă. Se determină principalii parametrii ai circuitului echivalent natural
Διαβάστε περισσότεραTitlul: Prezentarea şi modelarea aparaturii de laborator.
LABORATOR S.C.S. LUCRAREA NR. 1 Titlul: Prezentarea şi modelarea aparaturii de laborator. Scopul lucrării: Prezentarea aparaturii folosite în cadrul laboratorului, explicarea principiilor de funcţionare,
Διαβάστε περισσότεραAsupra unei inegalităţi date la barajul OBMJ 2006
Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale
Διαβάστε περισσότεραCurs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
Διαβάστε περισσότεραMăsurări în Electronică şi Telecomunicaţii 3. Osciloscopul
3. Osciloscopul 3.1 Prezentare generală Cuprins Utilitate, clasificare, schema bloc Analog vs. digital? (A) Tubul catodic (TK) realizare sensibilitatea în regim static sensibilitatea în regim dinamic TK
Διαβάστε περισσότεραCOMPUNEREA OSCILAŢIILOR ARMONICE PERPENDICULARE
UNIVERSITATEA "POLITEHNICA" DIN BUCUREŞTI DEPARTAMENTUL DE FIZICĂ LABORATORUL DE FIZICĂ BN - 1 B COMPUNEREA OSCILAŢIILOR ARMONICE PERPENDICULARE 004-005 COMPUNEREA OSCILAŢIILOR ARMONICE PERPENDICULARE
Διαβάστε περισσότεραCurs 2 DIODE. CIRCUITE DR
Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu
Διαβάστε περισσότεραSTUDIUL, VERIFICAREA SI UTILIZAREA OSCILOSCOPULUI
Lucrarea nr. STUDIUL, VERIFICAREA SI UTILIZAREA OSCILOSCOPULUI. GENERALITĂŢI DESPRE OSCILOSCOP Osciloscopul permite măsurarea semnalelor prin vizualizarea amplitudinii în timp. Cele două axe ale ecranului
Διαβάστε περισσότεραSERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0
SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................
Διαβάστε περισσότερα10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea
Διαβάστε περισσότεραa. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
Διαβάστε περισσότεραIII. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
Διαβάστε περισσότεραEsalonul Redus pe Linii (ERL). Subspatii.
Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste
Διαβάστε περισσότεραR R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
Διαβάστε περισσότεραSubiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
Διαβάστε περισσότεραComponente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent
Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului
Διαβάστε περισσότεραV O. = v I v stabilizator
Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,
Διαβάστε περισσότεραEcuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
Διαβάστε περισσότεραSEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0
Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,
Διαβάστε περισσότερα3.4. Blocuri funcţionale ale osciloscopului cu eşantionare în timp real COMUT
3.4. Blocuri funcţionale ale osciloscopului cu eşantionare în timp real 3.4. Blocul de achiziţie a semnalului! În figura 8 este dată schema-bloc a secţiunii de achiziţie a osciloscopului 468 Tektronix.
Διαβάστε περισσότεραLucrarea Nr. 5 Circuite simple cu diode (Aplicaţii)
ucrarea Nr. 5 Circuite simple cu diode (Aplicaţii) A.Scopul lucrării - Verificarea experimentală a rezultatelor obţinute prin analiza circuitelor cu diode modelate liniar pe porţiuni ;.Scurt breviar teoretic
Διαβάστε περισσότεραFunctii Breviar teoretic 8 ianuarie ianuarie 2011
Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)
Διαβάστε περισσότεραSeminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
Διαβάστε περισσότεραOSCILOSCOPUL NUMERIC
OSCILOSCOPUL NUMERIC apărut din necesitatea de a face şi acest instrument apt pentru a fi inclus într-un sistem automat de măsură controlat de un calculator iniţial ca un instrument destinat doar vizualizării
Διαβάστε περισσότεραCâmp de probabilitate II
1 Sistem complet de evenimente 2 Schema lui Poisson Schema lui Bernoulli (a bilei revenite) Schema hipergeometrică (a bilei neîntoarsă) 3 4 Sistem complet de evenimente Definiţia 1.1 O familie de evenimente
Διαβάστε περισσότερα1. PROPRIETĂȚILE FLUIDELOR
1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea
Διαβάστε περισσότεραOvidiu Gabriel Avădănei, Florin Mihai Tufescu,
vidiu Gabriel Avădănei, Florin Mihai Tufescu, Capitolul 6 Amplificatoare operaţionale 58. Să se calculeze coeficientul de amplificare în tensiune pentru amplficatorul inversor din fig.58, pentru care se
Διαβάστε περισσότεραMăsurări în Electronică şi Telecomunicaţii 4. Măsurarea impedanţelor
4. Măsurarea impedanţelor 4.2. Măsurarea rezistenţelor în curent continuu Metoda comparaţiei ceastă metodă: se utilizează pentru măsurarea rezistenţelor ~ 0 montaj serie sau paralel. Montajul serie (metoda
Διαβάστε περισσότεραProfesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
Διαβάστε περισσότεραCapitolul 4. Integrale improprii Integrale cu limite de integrare infinite
Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval
Διαβάστε περισσότεραCapitolul ASAMBLAREA LAGĂRELOR LECŢIA 25
Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 LAGĂRELE CU ALUNECARE!" 25.1.Caracteristici.Părţi componente.materiale.!" 25.2.Funcţionarea lagărelor cu alunecare.! 25.1.Caracteristici.Părţi componente.materiale.
Διαβάστε περισσότεραriptografie şi Securitate
riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare
Διαβάστε περισσότεραVII.2. PROBLEME REZOLVATE
Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea
Διαβάστε περισσότεραElemente de circuit rezistive. Uniporţi şi diporţi rezistivi. Caracteristici de intrare şi de transfer.
Elemente de circuit rezistive. Uniporţi şi diporţi rezistivi. Caracteristici de intrare şi de transfer. Scopul lucrării: Învăţarea folosirii osciloscopului în mod de lucru X-Y. Vizualizarea caracteristicilor
Διαβάστε περισσότεραExamen AG. Student:... Grupa:... ianuarie 2011
Problema 1. Pentru ce valori ale lui n,m N (n,m 1) graful K n,m este eulerian? Problema 2. Să se construiască o funcţie care să recunoască un graf P 3 -free. La intrare aceasta va primi un graf G = ({1,...,n},E)
Διαβάστε περισσότεραTEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:
TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi
Διαβάστε περισσότεραTranzistoare bipolare cu joncţiuni
Tranzistoare bipolare cu joncţiuni 1. Noţiuni introductive Tranzistorul bipolar cu joncţiuni, pe scurt, tranzistorul bipolar, este un dispozitiv semiconductor cu trei terminale, furnizat de către producători
Διαβάστε περισσότεραElectronică anul II PROBLEME
Electronică anul II PROBLEME 1. Găsiți expresiile analitice ale funcției de transfer şi defazajului dintre tensiunea de ieşire şi tensiunea de intrare pentru cuadrupolii din figurile de mai jos și reprezentați-le
Διαβάστε περισσότεραCOMPARATOARE DE TENSIUNE CU AO FĂRĂ REACŢIE
COMPARATOARE DE TENSIUNE CU AO FĂRĂ REACŢIE I. OBIECTIVE a) Determinarea caracteristicilor statice de transfer în tensiune pentru comparatoare cu AO fără reacţie. b) Determinarea tensiunilor de ieşire
Διαβάστε περισσότεραT R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.
Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică
Διαβάστε περισσότερα2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3
SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest
Διαβάστε περισσότερα2. Circuite logice 2.4. Decodoare. Multiplexoare. Copyright Paul GASNER
2. Circuite logice 2.4. Decodoare. Multiplexoare Copyright Paul GASNER Definiţii Un decodor pe n bits are n intrări şi 2 n ieşiri; cele n intrări reprezintă un număr binar care determină în mod unic care
Διαβάστε περισσότεραFENOMENE TRANZITORII Circuite RC şi RLC în regim nestaţionar
Pagina 1 FNOMN TANZITOII ircuite şi L în regim nestaţionar 1. Baze teoretice A) ircuit : Descărcarea condensatorului ând comutatorul este pe poziţia 1 (FIG. 1b), energia potenţială a câmpului electric
Διαβάστε περισσότερα2.2.1 Măsurători asupra semnalelor digitale
Lucrarea 2 Măsurători asupra semnalelor digitale 2.1 Obiective Lucrarea are ca obiectiv fixarea cunoştinţelor dobândite în lucrarea anterioară: Familiarizarea cu aparatele de laborator (generatorul de
Διαβάστε περισσότεραCapitolul 14. Asamblari prin pene
Capitolul 14 Asamblari prin pene T.14.1. Momentul de torsiune este transmis de la arbore la butuc prin intermediul unei pene paralele (figura 14.1). De care din cotele indicate depinde tensiunea superficiala
Διαβάστε περισσότεραIII. Reprezentarea informaţiei în sistemele de calcul
Metode Numerice Curs 3 III. Reprezentarea informaţiei în sistemele de calcul III.1. Reprezentarea internă a numerelor întregi III. 1.1. Reprezentarea internă a numerelor întregi fără semn (pozitive) Reprezentarea
Διαβάστε περισσότεραCodificatorul SN74148 este un codificator zecimal-bcd de trei biţi (fig ). Figura Codificatorul integrat SN74148
5.2. CODIFICATOAE Codificatoarele (CD) sunt circuite logice combinaţionale cu n intrări şi m ieşiri care furnizează la ieşire un cod de m biţi atunci când numai una din cele n intrări este activă. De regulă
Διαβάστε περισσότερα3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4
SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei
Διαβάστε περισσότεραCAPITOLUL 1. AMPLIFICATOARE CU TRANZISTOARE BIPOLARE
CAPIOLUL 1. AMPLIFICAOARE CU RANZISOARE BIPOLARE 1.1. AMPLIFICAOARE DE SEMNAL MIC 1.1.1 MĂRIMI DE CUREN ALERNAIV. CARACERISICI. Amplificatorul electronic este un cuadripol (circuit electronic prevăzut
Διαβάστε περισσότεραREDRESOARE MONOFAZATE CU FILTRU CAPACITIV
REDRESOARE MONOFAZATE CU FILTRU CAPACITIV I. OBIECTIVE a) Stabilirea dependenţei dintre tipul redresorului (monoalternanţă, bialternanţă) şi forma tensiunii redresate. b) Determinarea efectelor modificării
Διαβάστε περισσότεραwscopul lucrării: prezentarea modului de realizare şi de determinare a valorilor parametrilor generatoarelor de semnal.
wscopul lucrării: prezentarea modului de realizare şi de determinare a valorilor parametrilor generatoarelor de semnal. Cuprins I. Generator de tensiune dreptunghiulară cu AO. II. Generator de tensiune
Διαβάστε περισσότεραExamen. Site Sambata, S14, ora (? secretariat) barem minim 7 prezente lista bonus-uri acumulate
Curs 12 2015/2016 Examen Sambata, S14, ora 10-11 (? secretariat) Site http://rf-opto.etti.tuiasi.ro barem minim 7 prezente lista bonus-uri acumulate min. 1pr. +1pr. Bonus T3 0.5p + X Curs 8-11 Caracteristica
Διαβάστε περισσότεραReflexia şi refracţia luminii.
Reflexia şi refracţia luminii. 1. Cu cat se deplaseaza o raza care cade sub unghiul i =30 pe o placa plan-paralela de grosime e = 8,0 mm si indicele de refractie n = 1,50, pe care o traverseaza? Caz particular
Διαβάστε περισσότεραBARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)
BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul
Διαβάστε περισσότερα