Record Values from Exponentiated Pareto Distribution and Associated Inference
|
|
- Λήδα Κρεστενίτης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Recod Vaue o Epoetated Paeto Dtbuto ad Aocated Ieece A. I. Shaw * ad Haaa H. Abu-Zadah ** G Coege o Educato Jeddah Scetc Secto Kg Abduazz Uvet P. O. Bo 369 Jeddah 438 Saud Aaba. Abtact I th pape we code the epoetated Paeto EP dtbuto wth two hape paaete ad. We t deve the eact o o ea vaace ad covaace o ecod vaue. The au ehood etato ME' o the two hape paaete ad ae deved. Baed o the oet o owe ecod vaue we obtaed the ecea coecet o the bet ea ubaed etato BUE' o the ocato ad cae paaete o EP dtbuto. The vaace ad covaace o thee etato ae ao gve. The bet ea ubaed pedcto BUP o the utue ecod vaue ao dcued. Ke wod: owe ecod vaue; Epoetated Paeto dtbuto; Moet o ecod vaue; Mau ehood etato; he oato; Bet ea ubaed etato; Bet ea ubaed pedcto.. Itoducto Recod vaue ae atua a ea e appcato vovg data eatg to weathe pot ecooc ad e tetg tude. Ma autho have tuded ecod vaue ad aocated tattc; o eape ee Abd-E-Ha ad Suta Aod et a. 998 Baaha ad Cha 993 Suta ad Mohe Suta et a. ad Suta et a.. Gupta et a. 998 popoed to ode aue data b *tt] whee t the baee dtbuto ucto ad a potve ea ube. Th ebe eough to accoodate both ootoc a we a o- ootoc aue ate eve though the baee aue ate ootoc. Modeg uvva data b oootoc aue ate deabe o eape whe the coue o the deae uch that otat eache a pea ate oe te peod ad the ow dece. Recet Mudhoa ad Huto 996 Mudhoa ad Svatava 993 * Peaet adde: ac. o Eg. at Shouba P.O. Bo 6 E Maad 78 Cao Egpt E-a adde: ** E-a adde: haaa_abuzadah@ahoo.co.
2 - - Mudhoa et a. 995 Naa ad Ea 3 4 ad Sgh et a. 5 tuded the popoed ode wth Webu a the baee dtbuto ae the epoetated Webu a. I ae wa Gupta ad Kudu999 ab 6 Raqab 4 Raqab ad Ahauah ad Zheg tuded the popoed ode wth epoeta a the baee dtbuto whch the geeazed epoeta a o epoetated- epoeta dtbuto. I th pape we tae the popoed ode wth Paeto dtbuto a the baee dtbuto epoetated Paeto dtbuto EP wth pobabt det ucto pd ] > > >. ad cuuatve dtbuto ucto cd ] > > >. whee ad ae two hape paaete. o oe popete ee Shaw ad Abu- Zadah 6. Whe the above dtbuto coepod to the tadad Paeto dtbuto o the ecod d. et be a equece o..d. ado vaabe wth cd ad pd. Set Y a { }. We a a uppe owe ecod vaue o th equece Y > < Y >. B deto a uppe a we a a owe ecod vaue. Oe ca tao o uppe ecod to owe ecod b epacg the oga equece o { } b { } o P > o a b { }; the owe ecod vaue o th equece w coepod to the uppe ecod vaue o the oga equece. We w coe ou atteto to ut owe ecod vaue. I th pape we deve the eact o o ea vaace ad covaace o owe ecod vaue o the EP dtbuto Secto. I Secto 3 the au ehood etato ME' o the hape paaete ad ae deved. a Secto 4 we obtaed the ecea coecet o the bet ea ubaed etato BUE' o the ocato ad cae paaete o EP dtbuto ad the vaace ad covaace o thee etato baed o the oet o owe ecod vaue. I addto we dcued the bet ea ubaed pedcto BUP o the utue ecod vaue o EP dtbuto. et. Moet o owe ecod vaue... be the t owe ecod vaue o the EP dtbuto. the the ge ad doube oet ae deved a oow:
3 Sge oet The pd o ca be wtte ee Aod et a. 998] a. ] > Γ. o.. ad. the ge oet o the owe ecod vaue ae Γ ] d E µ. B ettg ] t we d that Γ ]! dt t t µ whee >. ; ;... a a a a B puttg w - t we obta >...! ad µ.. Whe we get >.! µ.3 Whe we have >.! µ.4 o.3 ad.4 the vaace o. Va µ µ σ.5. Doube oet The ot pd o two owe ecod vaue < ca be wtte ee Aod et a. 998] a ] ] Γ Γ. < < <.6
4 - 4 - o.. ad.6 the doube oet o the owe ecod vaue ad ae gve b d d E ] ] Γ Γ µ ] d I Γ Γ.7 whee. ] d I Settg w we get. ]! Γ I Puttg I.7 we obta ] ]! d A µ whee. A Γ B ettg ] t we d that. ]!!. dt t t A µ Puttg w - t we have!! µ... a > ad..8
5 - 5 - Whe we get!! > µ..9 The covaace betwee the two owe ecod vaue ad < gve b Cov µ µ µ σ.. 3. Mau ehood etato The ot det ucto o the t owe ecod vaue... o EP dtbuto ehood ucto gve b ] ]... >. 3. The og-ehood ucto o 3. gve b ] ]. 3. The oa equato becoe: v 3.3 v v v v v 3.4 whee.... v o 3.3 we obta the au ehood etato ME o a a ucto o a ˆ whee
6 - 6 - ˆ. v ] Puttg ˆ 3. we obta 3.5 g ˆ v ] v. v ] 3.6 Theeoe ME o a ˆ ca be obtaed b azg 3.6 wth epect to. It ca be how that the au o 3.6 ca be obtaed a a ed pot outo o the oowg equato; h 3.7 whee v v v h. 3.8 v v v Ve pe teatve pocedue ca be ued to d a outo o 3.7 ad t wo ve we. Oce we obta ˆ the ME o a ˆ ca be obtaed o 3.5 a ˆ ˆ ˆ. Now we tate the aptotc oat eut to obta the aptotc vaace o the etate. It ca be tated a oow: ˆ ˆ N I 3.9 R whee I the he oato at ee Ahad ad Agha ].e. I R R E E E E The eeet o the he oato at ae a oow: J J J e e e d! J J J J.
7 - 7 - J ] e e e d! ]. e e e d e! Aug that the hape paaete ow o 3. we ca obta the ME ˆ o the hape paaete a ˆ. 3. v ] o the aptotc popete o the ME t oow that ˆ ˆ E ad Va J. Now code the ME o whe the hape paaete ow. o ow the ME o a ˆ ca be obtaed b azg u v v v wth epect to. It ca be ea how that u a uoda ucto o ad ˆ whch aze u ca be obtaed a the ed pot outo o 3. whee v v v. v v o the aptotc popete o the ME t oow that ˆ ˆ E ad Va J. I Tabe we have uated baed o Mote Cao u the vaue o ba ad oot ea quae eo RMSE' o ME' o that whe ow o ad 5. o th tabe we ote that the RMSE' o the ME' o deceae a ceae. We ca ee ao the RMSE' o the ME' o ot o the te ceae a vaue o ceae o ed. Thee o potat eect o the etato whe have deet vaue.
8 - 8 - Tabe. Suated vaue o ba ad RMSE' o ME o whe ow Note: The t et the uated ba. The ecod et the uated RMSE. I Tabe we have uated baed o Mote Cao u the vaue o ba ad RMSE' o ME' o that whe ow o ad 5. o th tabe we ote that the RMSE' o the ME' o deceae a ceae. We ca ee ao the RMSE' o the ME' o deceae a vaue o ceae o ed. o ed ot o the te the RMSE' o the ME' o ceae a vaue o ceae.
9 - 9 - Tabe. Suated vaue o ba ad RMSE' o ME o whe ow Note: The t et the uated ba. The ecod et the uated RMSE. I Tabe 3 we have uated baed o Mote Cao u the vaue o ba ad RMSE' o ˆ ad ˆ whe both o the ae uow o ad 5. o th tabe we ote that the RMSE' o ˆ ad ˆ ot o the te ceae deceae that whe a ceae. We ca ee ao ot o the te the RMSE' o ˆ ceae ad the RMSE' o ˆ deceae
10 - - that whe the vaue o ceae o ed. o ed ot o the te the RMSE' o ˆ deceae ad the RMSE' o ˆ ceae a vaue o ceae. Tabe 3. Suated vaue o ba ad RMSE' o ME' o ad whe both o the uow ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ Note: The t et the uated ba. The ecod et the uated RMSE.
11 BUE' o ocato ad cae Paaete ad BUP o the utue ecod vaue The eact ad epct epeo o the t ad ecod ge oet o owe ecod vaue gve.3 ad.4 aow u to evauate the ea ad vaace o a owe ecod vaue. o the coputato o vaace ad covaace the poduct oet µ wee coputed t. The dagoa eeet µ µ ae obtaed o the eact epeo gve.4. Net the eact ad epct epeo gve.9 wa ued o the coputato o the poduct oet o two owe ecod vaue. Thee vaue wee ued to evauate the covaace.. The vaue o ea vaace ad covaace wee coputed b ug Matheatca 4.. It potat to ea hee that a ou coputato o the tadad Paeto dtbuto o the ecod d ca be obtaed whe. Aue Y... to be a te equece o d ado vaabe o the Y EP dtbuto wth pd µ ; ] µ µ σ σ σ σ 4. µ < < σ >. et Y Y... Y be the t obeved owe ecod vaue o the above equece. The... whee Y µ σ... the vecto o obeved ecod vaue o a popuato wth the tadad EP dtbuto wth pd ad cd gve. ad. epectve. The we ca wte the BUE' o µ ad σ ee Aod et a. 998] a ˆ µ a Y a Y... a Y 4. ˆ σ b Y b Y... b Y 4.3 whee a' ad b' ae the ete o the at T T C A V A A V ;
12 - - T µ T... µ µ µ... µ A V the vee o the covaace at V etato ae gve b whee σ. Vaace ad covaace o thee Va ˆ µ d σ Va ˆ σ d σ ad Cov ˆ µ ˆ σ d σ 4.4 d d T D. d A V A d Tabe 4: ea o owe ecod vaue
13 - 3 - Tabe 5: Covaace o owe ecod vaue
14 - 4 - Tabe 5: Cotued
15 - 5 - Tabe 6: Coecet o the BUE o µ
16 - 6 - Tabe 6: Cotued
17 - 7 - Tabe 7: Coecet o the BUE o σ
18 - 8 - Tabe 7: Cotued
19 - 9 - Tabe 8: Vaace ad Covaace o the BUE' o µ ad σ te o σ
20 - - Tabe 8: Cotued The ecea coecet 4. ad 4.3 equed o the BUE' o µ ad σ epectve ca be ea obtaed baed o the coputato o the ea vaace ad covaace o owe ecod vaue o the EP dtbuto. Tabe 4 peet the ea o 5 o 5 ad.5.54 to ve deca pace. Tabe 5 povde the vaace ad covaace o owe ecod vaue to ve deca pace o ad Tabe 6 ad 7 povde the coecet o the BUE' o the ocato ad cae paaete epectve o 5 5 ad The accuac o the cacuato have bee checed though the dette
21 - - a ad b. I Tabe 8 we copute the vaace ad covaace o the BUE' gve 4.4. o th tabe we ote that the vaace o the BUE' o µ ad σ deceae ad the covaace o thee etato ceae whe the vaue o o o ed ceae. o ed the vaace o the BUE' o µ ceae ad the BUE' o σ ad the covaace o thee etato deceae a the vaue o ceae. Eape: et u code the cae whee the copoet have aue te whch oow a EP dtbuto 4. wth 3 4 µ 6 ad σ. Suppoe that we obeve the oowg uated obeved aue te o EP µ σ : Theeoe we obeve the owe ecod vaue o the obeved data a oow: Hee the o the ecoded data aa wth 4 3 ad 4 µ ad V ae obtaed o Tabe 4 ad 5 epectve. The coecet 4. ad 4.3 ae peeted Tabe 6 ad 7 epectve. Theeoe the BUE' o µ ad σ ae coputed to be µˆ ad σˆ.695. The coepodg vaace ad covaace o µˆ ad σˆ ee Tabe 8 ae coputed to be Va ˆ µ.463 σ Va ˆ σ.8784 σ ad Cov ˆ µ ˆ σ.789 σ. et u code the tue popuato ea ζ E Y µ 3B33 4 σ. Had we ued ζ * Y Y Y Y 4 the ea o the obeved ecod. We woud 3 4 have ζ * ad tadad eo S.E. ζ *.398. The BUE o ζ ˆ ζ ˆ µ 3 B 33 4 ˆ σ The tadad eo o ζˆ coputed to be S.E.ζˆ.995. Theeoe the BUE' peo bette tha the ea o obeved ecod the ee o tadad eo. I the cotet o pedcto o the utue ecod obevato uppoe we obeve o the t ecoded obevato Y Y Y... Y ad the goa to pedct Y whee <. The ot we-ow pedcto the bet ea ubaed pedcto BUP ee Aod Baaha ad Nagaaa 998 o Y gve b ˆ Y ˆ ˆ T µ σ µ w Y ˆ µ ˆ V σµ
22 - - whee µ the ea o the t ecod vaue ad w the vecto o the covaace betwee the th utue ecod vaue ad the t ecoded obevato. The ea quae pedcto eo MSPE o Y ˆ oud to be ee Raqab MSPE Yˆ T T σ { E V E σ E w} whee T T T T T T E µ A V A A V w V I A A V A A V. I ou data etup we have obeved ou ecod vaue. Tabe 4-7 ae ued to copute the BUP o the utue ecod vaue Y baed o the t ou obeved ecod vaue. The vaue coputed to be Y ˆ ad the coepodg MSPE gve b ˆ MSPE Y.7539σ. 5 Acowedgeet. We ae cee thau to the eeee o the vauabe ad cotuctve coet that had poved ou oga pape. Reeece ] Abd-E-Ha N. S. ad Suta K. S.. Mau ehood etate o Webu paaete baed o ecod vaue. J. Egpt. Math. Soc ] Ahad J. ad Agha N. R.. O the he oato ecod vaue. Meta ] Aod B. C. Baaha N. ad Nagaaa H. N Recod. Joh We New Yo. 4] Baaha N. ad Cha P. S Recod vaue o Raegh ad Webu dtbuto ad aocated eece. Natoa Ittute o Stadad ad Techoog Joua o Reeach Speca Pubcato ] Gupta R. C. Gupta R. D. ad Gupta P Modeg aue te data b eha ateatve. Cou. Statt. - Theo Meth ] Gupta R. D. ad Kudu D Geeazed epoeta dtbuto. New Zeaad J. Statt ] Gupta R. D. ad Kudu D. a. Geeazed epoeta dtbuto: Deet ethod o etato. J. Statt. Coput. Su ] Gupta R. D. ad Kudu D. b. Epoetated epoeta a: A ateatve to gaa ad Webu dtbuto. Boetca Joua 7-3.
23 - 3-9] Gupta R. D. ad Kudu D. 6. O the copao o he oato o the Webu ad GE dtbuto. Joua o Stattca Pag ad Ieece I Pe. ] Mudhoa G. S. ad Huto A. D The epoetated Webu a: Soe popete ad a ood data appcato. Cou. Statt. - Theo Meth ] Mudhoa G. S. ad Svatava D. K Epoetated Webu a o aazg bath tub aue data. IEEE Ta. Reabt ] Mudhoa G. S. Svatava D. K. ad ee M The epoetated Webu a: A eaa o the bu -oto- aue data. Techoetc ] Naa M. M. ad Ea. H. 3. O the epoetated Webu dtbuto. Cou. Statt. - Theo Meth ] Naa M. M. ad Ea. H. 4. Baea etato o the epoetated Webu ode. Cou. Statt.-Theo Meth ] Raqab M. Z.. Ieece o geeazed epoeta dtbuto baed o ecod tattc. Joua o Stattca Pag ad Ieece ] Raqab M. Z. 4. Geeazed epoeta dtbuto: Moet o ode tattc. Stattc ] Raqab M. Z. ad Ahauah M.. Etato o ocato ad cae paaete o geeazed epoeta dtbuto baed o ode tattc. J. Statt. Coput. Su ] Shaw A. I. ad Abu-Zadah H. H. 6. Soe chaactezato o the epoetated Paeto dtbuto. Subtted. 9] Sgh U. Gupta P. K. ad Upadha S. K. 5. Etato o paaete o epoetated- Webu a ude tpe-ii ceog chee. Coputatoa Stattc & Data Aa ] Suta K. S. ad Mohe M. E.. Recod vaue o geeazed Paeto dtbuto ad aocated eece. Meta ] Suta K. S. Mohe M. E. ad Abd-E-Ha N. S.. Etato o paaete o oa dtbuto baed o ecod vaue. The Egpta Stattca Joua ] Suta K. S. Mohe M. E. ad Chd A.. Recod vaue o geeazed powe ucto dtbuto ad aocated eece. Joua o Apped Stattca Scece ] Zheg G.. O the he oato at tpe II ceoed data o the epoetated epoeta a. Boetca Joua
The Neutrix Product of the Distributions r. x λ
ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece
Finite Integrals Pertaining To a Product of Special Functions By V.B.L. Chaurasia, Yudhveer Singh University of Rajasthan, Jaipur
Global Joal of Scece oe eeac Vole Ie 4 Veo Jl Te: Doble Bld Pee eewed Ieaoal eeac Joal Pble: Global Joal Ic SA ISSN: 975-5896 e Iegal Peag To a Podc of Secal co B VBL Caaa Ydee Sg e of aaa Ja Abac - A
Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa
Cytotoxcty of oc lqud ad precuror compoud toward huma cell le HeLa Xuefeg Wag, a,b C. Adré Ohl, a Qghua Lu,* a Zhaofu Fe, c Ju Hu, b ad Paul J. Dyo c a School of Chemtry ad Chemcal Techology, Shagha Jao
Estimators when the Correlation Coefficient. is Negative
It J Cotemp Math Sceces, Vol 5, 00, o 3, 45-50 Estmators whe the Correlato Coeffcet s Negatve Sad Al Al-Hadhram College of Appled Sceces, Nzwa, Oma abur97@ahoocouk Abstract Rato estmators for the mea of
George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media
Geoge S. A. Shake C477 Udesadg Reflecos Meda Refleco Meda Ths hadou ages a smplfed appoach o udesad eflecos meda. As a sude C477, you ae o equed o kow hese seps by hea. I s jus o make you udesad how some
Nonlinear Motion. x M x. x x. cos. 2sin. tan. x x. Sextupoles cause nonlinear dynamics, which can be chaotic and unstable. CHESS & LEPP CHESS & LEPP
Georg.otaetter@Corell.eu USPAS Avace Accelerator Phic - ue 6 CESS & EPP CESS & EPP 56 Setupole caue oliear aic which ca be chaotic a utable. l M co i i co l i i co co i i co l l l l ta ta α l ta co i i
Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải.
Đường tròn cung dây tiếp tuyến BÀI 1 : Cho tam giác ABC. Đường tròn có đường kính BC cắt cạnh AB, AC lần lượt tại E, D. BD và CE cắt nhau tại H. chứng minh : 1. AH vuông góc BC (tại F thuộc BC). 2. FA.FH
On Quasi - f -Power Increasing Sequences
Ieaioal Maheaical Fou Vol 8 203 o 8 377-386 Quasi - f -owe Iceasig Sequeces Maheda Misa G Deae of Maheaics NC College (Auooous) Jaju disha Mahedaisa2007@gailco B adhy Rolad Isiue of echoy Golahaa-76008
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3
Q. No. The fist d lst tem of A. P. e d l espetively. If s be the sum of ll tems of the A. P., the ommo diffeee is Optio l - s- l+ Optio Optio Optio 4 Coet Aswe ( ) l - s- - ( l ) l + s+ + ( l ) l + s-
) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +
Techical Appedix o Hamig eposis ad Helpig Bowes: The ispaae Impac of Ba Cosolidaio (o o be published bu o be made available upo eques. eails of Poofs of Poposiios 1 ad To deive Poposiio 1 s exac ad sufficie
Tutorial Note - Week 09 - Solution
Tutoial Note - Week 9 - Solution ouble Integals in Pola Coodinates. a Since + and + 5 ae cicles centeed at oigin with adius and 5, then {,θ 5, θ π } Figue. f, f cos θ, sin θ cos θ sin θ sin θ da 5 69 5
ECE145a / 218a Tuned Amplifier Design -basic gain relationships
ca note, M. Rodwe, copyrighted 009 ECE45a / 8a uned Ampifier Deign -aic ga reationhip -deign the (impe) uniatera imit it Mark Rodwe Univerity of Caifornia, anta Barara rodwe@ece.uc.edu 805-893-344, 805-893-36
ΤΟ ΟΜΟΓΕΝΕΣ MΑΡΚΟΒΙΑΝΟ ΣΥΣΤΗΜΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ ΜΕ ΠΕΠΕΡΑΣΜΕΝΗ ΧΩΡΗΤΙΚΟΤΗΤΑ ΣΕ ΜΙΑ ΚΑΤΑΣΤΑΣΗ
Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 2 ου Πανελληνίου Συνεδρίου Στατιστικής (27) σελ 3- ΤΟ ΟΜΟΓΕΝΕΣ MΑΡΚΟΒΙΑΝΟ ΣΥΣΤΗΜΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ ΜΕ ΠΕΠΕΡΑΣΜΕΝΗ ΧΩΡΗΤΙΚΟΤΗΤΑ ΣΕ ΜΙΑ ΚΑΤΑΣΤΑΣΗ Γ Βασιλειάδης Γ Τσακλίδης
Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com
Eeel FP Hpeoli Futios PhsisAMthsTuto.om . Solve the equtio Leve lk 7seh th 5 Give ou swes i the fom l whee is tiol ume. 5 7 Sih 5 Cosh osh 7 Sih 5osh's 7 Ee e I E e e 4 e te 5e 55 O 5e 55 te e 4 O Ge 45
The following are appendices A, B1 and B2 of our paper, Integrated Process Modeling
he followng ae appendes A, B1 and B2 of ou pape, Integated Poess Modelng and Podut Desgn of Bodesel Manufatung, that appeas n the Industal and Engneeng Chemsty Reseah, Deembe (2009). Appendx A. An Illustaton
Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com
Eecel FP Hpeolic Fuctios PhsicsAMthsTuto.com . Solve the equtio Leve lk 7sech th 5 Give ou swes i the fom l whee is tiol ume. 5 7 Sih 5 Cosh cosh c 7 Sih 5cosh's 7 Ece e I E e e 4 e te 5e 55 O 5e 55 te
On Hypersurface of Special Finsler Spaces. Admitting Metric Like Tensor Field
It J otem Mat Sceces Vo 7 0 o 9 99-98 O Hyersurface of Seca Fser Saces Admttg Metrc Lke Tesor Fed H Wosoug Deartmet of Matematcs Isamc Azad Uversty Babo Brac Ira md_vosog@yaoocom Abstract I te reset work
RMTP Journal of Software. Vol.13, No /2002/13(08) , )
000-985/00/3(08)70-08 00 Joun of oftwe Vo3, No8 T,,, (, 00876) E-m: {b0073056,wdwng,chd}@bupteducn http://wwwbupteducn : T(ebe mutct tnpot potoco) (ep eve) T,T ;,T,,T : ; ; ; : T393 : A Intenet,, T ],
Homework 4.1 Solutions Math 5110/6830
Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits
Japanese Fuzzy String Matching in Cooking Recipes
1 Japanese Fuzzy String Matching in Cooking Recipes Michiko Yasukawa 1 In this paper, we propose Japanese fuzzy string matching in cooking recipes. Cooking recipes contain spelling variants for recipe
Example 1: THE ELECTRIC DIPOLE
Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2
Υπόδειγµα Προεξόφλησης
Αρτίκης Γ. Παναγιώτης Υπόδειγµα Προεξόφλησης Μερισµάτων Γενικό Υπόδειγµα (Geeral Model) Ταµειακές ροές από αγορά µετοχών: Μερίσµατα κατά την διάρκεια κατοχής των µετοχών Μια αναµενόµενη τιµή στο τέλος
S 5 S 1 S 2 S 6 S 9 S 7 S 3 S 4 S 8
4.9.. HM-..,,.... :, HM-,,,,.... " " - ",.. " ".,,,,,,.,,.,,..,.,. Byfy, Zaa..,,.. W-F-,, (W-F -. :,,, -,,,,,.,, :, (, W-F, (Byfy, Zaa, GSM,..,.,, (...,,,. HM(Howad-Maays- [5, 6, 9, ],. S S 5 S 9 S S 6
Chapter 6 ( )( ) 8 ( ) 1.145 0.7 ( )( ) Exercise Solutions. Microelectronics: Circuit Analysis and Design, 4 th edition Chapter 6. EX6.
Micelectnic: icuit Analyi and Dein, 4 th editin hapte 6 y D. A. Neaen xecie Slutin xecie Slutin X6. (a ( n 0.85 0.7 80 ( 0 ( 0.000833 0. 0 Q 3.3 0. 5. β A 0. (b 3. 846 A/ 0.06 β ( 0( 0.06 0. 8 3. k Ω hapte
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
Examples of Cost and Production Functions
Dvso of the Humates ad Socal Sceces Examples of Cost ad Producto Fuctos KC Border October 200 v 20605::004 These otes sho ho you ca use the frst order codtos for cost mmzato to actually solve for cost
Latent variable models Variational approximations.
CS 3750 Mache Learg Lectre 9 Latet varable moel Varatoal appromato. Mlo arecht mlo@c.ptt.e 539 Seott Sqare CS 750 Mache Learg Cooperatve vector qatzer Latet varable : meoalty bary var Oberve varable :
Byeong-Joo Lee
yeg-j ee OTECH - ME alphad@psteh.a.k yeg-j ee www.psteh.a.k/~alphad ufae Tast ad Allyg Effet N.M. Hwag et al., 000. ue W W 0.4wt% N Vau Aealg yeg-j ee www.psteh.a.k/~alphad Abal a wth f N.M. Hwag yeg-j
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci
3 H 12.35 Y β Low 80 1 - - Betas: 19 (100%) 11 C 20.38 M β+, EC Low 400 1 5.97 13.7 13 N 9.97 M β+ Low 1 5.97 13.7 Positrons: 960 (99.7%) Gaas: 511 (199.5%) Positrons: 1,199 (99.8%) Gaas: 511 (199.6%)
A study on generalized absolute summability factors for a triangular matrix
Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş
n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)
8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r
Η ΑΝΘΥΦΑΙΡΕΤΙΚΗ ΕΡΜΗΝΕΙΑ ΤΗΣ ΕΞΩΣΗΣ ΤΗΣ ΠΟΙΗΣΗΣ ΣΤΟ ΔΕΚΑΤΟ ΒΙΒΛΙΟ ΤΗΣ ΠΟΛΙΤΕΙΑΣ ΤΟΥ ΠΛΑΤΩΝΟΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ MΑΘΗΜΑΤΙΚΩΝ ΤΜΗΜΑ ΜΕΘΟΔΟΛΟΓΙΑΣ, ΙΣΤΟΡΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΕΠΙΣΤΉΜΩΝ ΑΓΩΓΉΣ & ΘΕΩΡΙΑΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΜΗΜΑ ΦΙΛΟΣΟΦΙΑΣ, ΠΑΙΔΑΓΩΓΙΚΗΣ &
Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N.
Dscrete Fourer Trasform Refereces:. umercal Aalyss of Spectral Methods: Theory ad Applcatos, Davd Gottleb ad S.A. Orszag, Soc. for Idust. App. Math. 977.. umercal smulato of compressble flows wth smple
Probabilistic Image Processing by Extended Gauss-Markov Random Fields
Pobablsc mage Pocessng b Eended Gauss-Makov Random Felds Kauuk anaka Munek asuda Ncolas Mon Gaduae School of nfomaon Scences ohoku Unves Japan and D. M. engon Depamen of Sascs Unves of Glasgow UK 3 Sepembe
!"!# ""$ %%"" %$" &" %" "!'! " #$!
" "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(
Latent variable models Variational approximations.
CS 3750 Mache Learg Lectre 9 Latet varable moel Varatoal appromato. Mlo arecht mlo@c.ptt.e 539 Seott Sqare CS 750 Mache Learg Cooperatve vector qatzer Latet varable : meoalty bary var Oberve varable :
!"#$ "%&$ ##%&%'()) *..$ /. 0-1$ )$.'-
!!" !"# "%& ##%&%',-... /. -1.'- -13-',,'- '-...4 %. -5"'-1.... /..'-1.....-"..'-1.. 78::8
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα
Derivation of the Filter Coefficients for the Ramp Invariant Method as Applied to Base Excitation of a Single-degree-of-Freedom System Revision B
Dervao of he Fler Coeffce for he Ramp Ivara Meho a Apple o Bae Excao of a Sgle-egree-of-Freeom Sem Revo B B om Irve Emal: om@vbraoaa.com Aprl, 0 Irouco Coer he gle-egree-of-freeom em Fgure. m &&x k c &&
Analytical Expression for Hessian
Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that
Παραμετρικές εξισώσεις καμπύλων. ΗΥ111 Απειροστικός Λογισμός ΙΙ
ΗΥ-111 Απειροστικός Λογισμός ΙΙ Παραμετρικές εξισώσεις καμπύλων Παραδείγματα ct (): U t ( x ( t), x ( t)) 1 ct (): U t ( x ( t), x ( t), x ( t)) 3 1 3 Θέσης χρόνου ταχύτητας χρόνου Χαρακτηριστικού-χρόνου
())*+,-./0-1+*)*2, *67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3*
! " # $ $ %&&' % $ $! " # ())*+,-./0-1+*)*2,-3-4050+*67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* *),+-30 *5 35(2(),+-./0 30 *,0+ 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3* *3*+-830-+-2?< +(*2,-30+
Perturbation Series in Light-Cone Diagrams of Green Function of String Field
Petuto Sees ht-coe Dms of ee Fucto of St Fel Am-l Te-So Km Chol-M So- m Detmet of Eey Scece Km l Su Uvesty Pyoy DPR Koe E-y Km l Su Uvesty Pyoy DPR Koe Detmet of Physcs Km l Su Uvesty Pyoy DPR Koe Astct
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by
5 Radiation (Chapte 11) 5.1 Electic dipole adiation Oscillating dipole system Suppose we have two small sphees sepaated by a distance s. The chage on one sphee changes with time and is descibed by q(t)
Design Method of Driving Force and Electric Power Steering Control to Improve Vehicle Lateral Motion Characteristics
Deign Metod o Diving Foce and Electic Poe Steeing Contol to Ipove Veicle Lateal Motion Caacteitic Tutou TASHIRO Sigeyuki HOSOE In ti pape, e popoe ne contol and appopiate deign etod o diving oce and Electic
! " # " $ #% $ "! #&'() '" ( * / ) ",. #
Ψ ƒ! " # " $ #% $ "! #&'() '" ( * +",-.'!( / ) ",. # 0# $"!"#$%# Ψ 12/345 6),78 94. ƒ 9)")1$/):0;3;::9 >'= ( ? 9 @ '&( % A! &*?9 '( B+)C*%++ &*%++C 0 4 3'+C( D'+C(%E $B B - " % B
d 2 y dt 2 xdy dt + d2 x
y t t ysin y d y + d y y t z + y ty yz yz t z y + t + y + y + t y + t + y + + 4 y 4 + t t + 5 t Ae cos + Be sin 5t + 7 5 y + t / m_nadjafikhah@iustacir http://webpagesiustacir/m_nadjafikhah/courses/ode/fa5pdf
A NOTE ON ENNOLA RELATION. Jae Moon Kim and Jado Ryu* 1. INTRODUCTION
TAIWANESE JOURNAL OF MATHEMATICS Vol 8, No 5, pp 65-66, Ocober 04 DOI: 0650/m804665 Th paper avalable ole a hp://ouralawamahocorw A NOTE ON ENNOLA RELATION Jae Moo Km ad Jado Ryu* Abrac Eola ve a example
r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s
r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é
Solutions - Chapter 4
Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]
Some Theorems on Multiple. A-Function Transform
Int. J. Contemp. Math. Scences, Vol. 7, 202, no. 20, 995-004 Some Theoems on Multple A-Functon Tansfom Pathma J SCSVMV Deemed Unvesty,Kanchpuam, Tamlnadu, Inda & Dept.of Mathematcs, Manpal Insttute of
Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design
Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Note: Please use the actual date you accessed this material in your citation.
MIT OpeCueWae hp://cw.m.eu 6.13/ESD.13J Elecmagec a pplca, Fall 5 Pleae ue he llwg ca ma: Maku Zah, Ech Ippe, a Dav Sael, 6.13/ESD.13J Elecmagec a pplca, Fall 5. (Maachue Iue Techlgy: MIT OpeCueWae). hp://cw.m.eu
Εδώ θα θέσουμε τα θεμέλια της εκτίμησης κατά Bayes αρχίζοντας με τα μονοπαραμετρικά μοντέλα δηλαδή όταν ϑ : Ω Θ.
Μονοπαραμετρικά Μοντέλα Εδώ θα θέσουμε τα θεμέλια της εκτίμησης κατά Bayes αρχίζοντας με τα μονοπαραμετρικά μοντέλα δηλαδή όταν : Ω Θ Εκτίμηση πιθανότητας από boal data Έστω δεδομένα που δίδονται με την
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ
ΕΠΩΝΥΜΙΑ ΠΕΡΙΟΔΟΣ ΜΕΣΟ ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ ΔΗΜΗΤΡΙΟΣ 7 OO ΑΝΑΓΝΩΣΤΟΠΟΥΛΟΥ ΖΩΙΤΣΑ
List MF19. List of formulae and statistical tables. Cambridge International AS & A Level Mathematics (9709) and Further Mathematics (9231)
List MF9 List of fomulae ad statistical tables Cambidge Iteatioal AS & A Level Mathematics (9709) ad Futhe Mathematics (93) Fo use fom 00 i all papes fo the above syllabuses. CST39 *50870970* PURE MATHEMATICS
Ψηφιακή Επεξεργασία Εικόνας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό
Three-Dimensional Experimental Kinematics
Notes_5_3 o 8 Three-Dmesoal Epermetal Kematcs Dgte locatos o ladmarks { r } o bod or pots to at gve tme t All pots must be o same bod Use ladmark weghtg actor = pot k s avalable at tme t. Use = pot k ot
1. Ma trận A = Ký hiệu tắt A = [a ij ] m n hoặc A = (a ij ) m n
Cơ sở Toán 1 Chương 2: Ma trận - Định thức GV: Phạm Việt Nga Bộ môn Toán, Khoa CNTT, Học viện Nông nghiệp Việt Nam Bộ môn Toán () Cơ sở Toán 1 - Chương 2 VNUA 1 / 22 Mục lục 1 Ma trận 2 Định thức 3 Ma
Chapter 15 Identifying Failure & Repair Distributions
Chape 5 Idefyg Falue & Repa Dsbuos Paamee Esmao maxmum lkelhood esmao C. Ebelg, Io o Relably & Maaably Chape 5 Egeeg, d ed. Wavelad Pess, Ic. Copygh 00 Maxmum Lkelhood Esmao (MLE) Fd esmaes fo he dsbuo
ΑΠΟΚΡΙΣΗ ΚΥΚΛΩΜΑΤΩΝ ΣΕ ΔΥΝΑΜΙΚΕΣ ΔΙΕΓΕΡΣΕΙΣ
ΑΠΟΚΡΙΣΗ ΚΥΚΛΩΜΑΤΩΝ ΣΕ ΔΥΝΑΜΙΚΕΣ ΔΙΕΓΕΡΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ Τι περιλαμβάνει Απόκριση κυκλώματος Φυσική απόκριση κυκλώματος ης τάξεως C, Φυσική απόκριση κυκλωμάτων ας τάξεως Εξηναγκασμένη
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2017.. 48.. 5.. 740Ä744 ˆ Œˆ ƒ Š Œ ˆ Œˆ ˆŸ ˆ ˆ ˆŸ ˆˆ ƒ ˆ Šˆ ˆ.. Œμ Ìμ ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö ±μ³ ² ± ÒÌ ³μ ʲÖÌ Ð É Ò³ ² ³ в ËËμ Î É μ - ³ μ É Ò Ë ³ μ Ò ³ Ò Å ²μ ÉÉ. Ì
Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.
Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis
HONDA. Έτος κατασκευής
Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V
On Zero-Sum Stochastic Differential Games
O Zeo-Sum Sochac Dffeeal Game Eha Bayaka, Sog Yao Abac We geealze he eul of Flemg ad Sougad 13 o zeo-um ochac dffeeal game o he cae whe he cool ae ubouded. We do h by povg a dyamc pogammg pcple ug a coveg
Approximate System Reliability Evaluation
Appoximate Sytem Reliability Evaluation Up MTTF Down 0 MTBF MTTR () Time Fo many engineeing ytem component, MTTF MTBF i.e. failue ate, failue fequency, f Fequency, Duation and Pobability Indice: failue
(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0
TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some
Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator
Sel nd Mutul Inductnces or Fundmentl Hrmonc n Synchronous Mchne wth Round Rotor (Cont.) Double yer p Wndng on Sttor Round Rotor Feld Wndng (1) d xs s r n even r Dene S r s the number o rotor slots. Dene
Supplementary material for: Efficient moment calculations for variance components in large unbalanced crossed random effects models
Supplementay mateal fo: Effcent moment calculaton fo vaance component n lage unbalanced coed andom effect model Katelyn Gao Stanfod Unvety At B Owen Stanfod Unvety Augut 015 Abtact Th a upplementay document
COMPLICITY COLLECTION autumn / winter
COMP LI C I TY COLLE C TI ON a ut umn / winte r 2 0 1 7 1 8 «T o ρ ο ύ χ ο ε ί ν α ι τ ο σ π ί τ ι τ ο υ σ ώ μ ατ ο ς». Τ ο σ ώ μ α ν τ ύ ν ε τα ι μ ε φ υ σ ι κ ά ν ή μ ατα κ α ι υφά σ μ ατα α π ό τ η
ĐỀ SỐ 1. ĐỀ SỐ 2 Bài 1 : (3 điểm) Thu gọn các biểu thức sau : Trần Thanh Phong ĐỀ THI HỌC KÌ 1 MÔN TOÁN LỚP O a a 2a
Trần Thanh Phong 0908 456 ĐỀ THI HỌC KÌ MÔN TOÁN LỚP 9 ----0O0----- Bài :Thưc hiên phép tính (,5 đ) a) 75 08 b) 8 4 5 6 ĐỀ SỐ 5 c) 5 Bài : (,5 đ) a a a A = a a a : (a > 0 và a ) a a a a a) Rút gọn A b)
L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:
CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square
CS 675 Itroducto to Mache Learg Lecture 7 esty estmato Mlos Hausrecht mlos@cs.tt.edu 539 Seott Square ata: esty estmato {.. } a vector of attrbute values Objectve: estmate the model of the uderlyg robablty
Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης
2 η Διάλεξη Ακολουθίες 29 Νοεµβρίου 206 Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ, ΤΟΜΟΣ Ι - Fiey R.L. / Weir M.D. / Giordao F.R. Πανεπιστημιακές Εκδόσεις Κρήτης 2 Όρια Ακολουθιών
On Generating Relations of Some Triple. Hypergeometric Functions
It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade
SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS
Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTAL INFORMATION Fully Automated Total Metals and Chromium
(b) (c) (d) When, where
. Ug Dc delt fucto the ppopte coodte, expe the followg chge dtbuto thee-dmeol chge dete ρ(x). () I phecl coodte, chge ufomly dtbuted ove phecl hell of du R. (b) I cyldcl coodte, chgeλpe ut legth ufomly
FORMULAE SHEET for STATISTICS II
Síscs II Degrees Ecoomcs d Mgeme FOMULAE SHEET for STATISTICS II EPECTED VALUE MOMENTS AND PAAMETES - Vr ( E( E( - Cov( E{ ( ( } E( E( E( µ ρ Cov( - E ( b E( be( Vr( b Vr( b Vr( bcov( THEOETICAL DISTIBUTIONS
ρ ρ s ::= sd sd ::= K x sk xotse se sk ::= K (sk x) se ::= x K se se se x = se xotse se xotse se x sp se se l lo sp ::= x l K sp x(x ) l ::= char number lo ::= se (+ = = < > ) se se se ot ::= τ ɛ τ
ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα
Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Πανεπιστήμιο Δυτικής Αττικής - ΣΑΕΤ
Γενική και Ανόργανη Χημεία Περιοδικές ιδιότητες των στοιχείων. Σχηματισμός ιόντων. Στ. Μπογιατζής 1 Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Π Δ Χειμερινό εξάμηνο 2018-2019 Π
SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia
SWOT 1 Analysis and Planning for Cross-border Co-operation in Central European Countries ISIGInstitute of International Sociology Gorizia ! " # $ % ' ( )!$*! " "! "+ +, $,,-,,.-./,, -.0",#,, 12$,,- %
Εδώ θα θέσουμε τα θεμέλια της εκτίμησης κατά Bayes αρχίζοντας με τα μονοπαραμετρικά μοντέλα δηλαδή όταν ϑ : Ω Θ.
Μονοπαραμετρικά Μοντέλα Εδώ θα θέσουμε τα θεμέλια της εκτίμησης κατά Bayes αρχίζοντας με τα μονοπαραμετρικά μοντέλα δηλαδή όταν : Ω Θ Εκτίμηση πιθανότητας από boal data Έστω δεδομένα που δίδονται με την
Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes
1 Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes Gonzalo Blay, Isabel Fernández, Alícia Marco-Aleixandre, and José R. Pedro Departament de Química Orgànica, Facultat de Química,
1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com
Adda47 No. APP for Banking & SSC Preparation Website:store.adda47.com Email:ebooks@adda47.com S. Ans.(d) Given, x + x = 5 3x x + 5x = 3x x [(x + x ) 5] 3 (x + ) 5 = 3 0 5 = 3 5 x S. Ans.(c) (a + a ) =
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2
Wohin Franz Schubert (To Where?)
Daisyield Music Achive www.daisyield.com/music/ oice Guita Mässig {q = c 60} 4 2 4 2 Ó 6 6 Wohin anz Schubet (To Whee?) Œ ch Text: Wilhelm Mülle(1794-1827) English Tanslation: Tom Potte Aanged by Reinhold
Παρουσιαστές: ??ast?s??? Τσάκας. ?/?t?? t???/?s????p???af???? t??????? ?a??a Se???t?
Παρουσιαστές:??ast?s??? Τσάκας?/?t?? t???/?s????p???af???? t????????a??a Se???t???p????f?????a???????? Master of Applied Science (M.App.Sci)? a?ep?s t?µ?? G?a s?? ί???/?s????p???af???? t??????? Τα κυριότερα
Déformation et quantification par groupoïde des variétés toriques
Défomation et uantification pa goupoïde de vaiété toiue Fédéic Cadet To cite thi veion: Fédéic Cadet. Défomation et uantification pa goupoïde de vaiété toiue. Mathématiue [math]. Univeité d Oléan, 200.
Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =
. (a). (b). (c) f() L L e i e Vidyalakar S.E. Sem. III [BIOM] Applied Mahemaic - III Prelim Queio Paper Soluio L el e () i ( ) H( ) u e co y + 3 3y u e co y + 6 uy e i y 6y uyy e co y 6 u + u yy e co y
!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8
Exam Statistics 6 th September 2017 Solution
Exam Statstcs 6 th September 17 Soluto Maura Mezzett Exercse 1 Let (X 1,..., X be a raom sample of... raom varables. Let f θ (x be the esty fucto. Let ˆθ be the MLE of θ, θ be the true parameter, L(θ be
CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES
CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.