Tema 3. Espazos métricos. Topoloxía Xeral,
|
|
- Κόριννα Δουμπιώτης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Tema 3. Espazos métricos Topoloxía Xeral,
2 Índice Métricas en R n Métricas no espazo de funcións Bólas e relacións métricas
3 Definición Unha métrica nun conxunto M é unha aplicación d con valores reais d: M M R que a un punto (x, y) de M M asocia o número d(x, y), de xeito que se verifiquen as tres condicións seguintes: 1. d(x, y) 0 e d(x, y) = 0 sse x = y. 2. d(x, y) = d(y, x), x, y M. 3. d(x, z) d(x, y) + d(y, z), x, y, z M. O par (M, d) formado por un conxunto M e unha métrica nel, d, denomínase espazo métrico.
4 Definición Unha métrica nun conxunto M é unha aplicación d con valores reais d: M M R que a un punto (x, y) de M M asocia o número d(x, y), de xeito que se verifiquen as tres condicións seguintes: 1. d(x, y) 0 e d(x, y) = 0 sse x = y. 2. d(x, y) = d(y, x), x, y M. 3. d(x, z) d(x, y) + d(y, z), x, y, z M. O par (M, d) formado por un conxunto M e unha métrica nel, d, denomínase espazo métrico.
5 Nun conxunto non baleiro M calquera defínese a chamada métrica discreta, d S : M M R, dada por: d S (x, y) = { 0 se x = y, 1 se x y.
6 Métricas en R n Métricas destacads en R n : a métrica d 1, a métrica d 2, e a métrica d, d 1 (x, y) = n i=1 x i y i, d 2 (x, y) = n i=1 (x i y i ) 2, d (x, y) = máx 1 i n { x i y i }, onde x = (x 1,..., x n ), y = (y 1,..., y n ).
7 Métricas en R n Analogamente, para cada enteiro natural k N defínese: d k (x, y) = { n i=1 x i y i k} 1/k, Desigualdade de Minkowski: { n } 1/k (a i + b i ) k { n } 1/k a k i + { n } 1/k b k i, i=1 i=1 i=1 onde a i e b i son números non negativos.
8 Métricas en R n Analogamente, para cada enteiro natural k N defínese: d k (x, y) = { n i=1 x i y i k} 1/k, Desigualdade de Minkowski: { n } 1/k (a i + b i ) k { n } 1/k a k i + { n } 1/k b k i, i=1 i=1 i=1 onde a i e b i son números non negativos.
9 Métricas en R n Para cada k N, cúmprese d (x, y) d k (x, y) n 1/k d (x, y). Dedúcese que d (x, y) = lím k d k (x, y) En fin, cúmprense tamén as desigualdades d (x, y) d 2 (x, y) d 1 (x, y) n d (x, y).
10 Métricas en R n Para cada k N, cúmprese d (x, y) d k (x, y) n 1/k d (x, y). Dedúcese que d (x, y) = lím k d k (x, y) En fin, cúmprense tamén as desigualdades d (x, y) d 2 (x, y) d 1 (x, y) n d (x, y).
11 Métricas no espazo de funcións C(I): espazo vectorial das funcións reais continuas do intervalo unidade I = [0, 1]; nel imos definir dúas métricas. A primeira, ρ : C(I) C(I) R, vén dada por: ρ (f, g) = sup x I { f(x) g(x) } É a chamada métrica da converxéncia uniforme ou métrica do supremo. Defínese tamén sobre espazos más xerais. Por exemplo, no espazo vectorial B(X, R), de funcións reais limitadas con dominio un conxunto arbitraio X.
12 Métricas no espazo de funcións C(I): espazo vectorial das funcións reais continuas do intervalo unidade I = [0, 1]; nel imos definir dúas métricas. A primeira, ρ : C(I) C(I) R, vén dada por: ρ (f, g) = sup x I { f(x) g(x) } É a chamada métrica da converxéncia uniforme ou métrica do supremo. Defínese tamén sobre espazos más xerais. Por exemplo, no espazo vectorial B(X, R), de funcións reais limitadas con dominio un conxunto arbitraio X.
13 Métricas no espazo de funcións C(I): espazo vectorial das funcións reais continuas do intervalo unidade I = [0, 1]; nel imos definir dúas métricas. A primeira, ρ : C(I) C(I) R, vén dada por: ρ (f, g) = sup x I { f(x) g(x) } É a chamada métrica da converxéncia uniforme ou métrica do supremo. Defínese tamén sobre espazos más xerais. Por exemplo, no espazo vectorial B(X, R), de funcións reais limitadas con dominio un conxunto arbitraio X.
14 Métricas no espazo de funcións A segunda métrica é: Denomínase métrica L 1. ρ 1 (f, g) = 1 f(x) g(x) dx 0
15 Bólas e relacións métricas Bólas en (M, d) B M (x, r) = {y M d(x, y) < r} B M [x, r] = {y M d(x, y) r}
16 Bólas e relacións métricas Distancia entre conxuntos Dados dous conxuntos non baleiros A e B nun espazo métrico (M, d), chámase distancia entre os conxuntos A e B, e se denota d(a, B), ao número d(a, B) = ínf{d(x, y), x A, y B} Cando un dos conxuntos se reduce a un punto fálase de distancia do punto ao conxunto e se escribe d(x, A). Cúmprese d(x, A) d(y, A) d(x, y)
17 Bólas e relacións métricas Distancia entre conxuntos Dados dous conxuntos non baleiros A e B nun espazo métrico (M, d), chámase distancia entre os conxuntos A e B, e se denota d(a, B), ao número d(a, B) = ínf{d(x, y), x A, y B} Cando un dos conxuntos se reduce a un punto fálase de distancia do punto ao conxunto e se escribe d(x, A). Cúmprese d(x, A) d(y, A) d(x, y)
18 Bólas e relacións métricas Conxunto limitado. Diámetro Un conxunto A nun espazo métrico (M, d) dise limitado se está contido nalgunha bóla, B M (x, r) tal que A B M (x, r) Chámase diámetro dun conxunto non baleiro A, e se denota δ(a), ao número δ(a) = sup{d(x, y) x, y A}, cando existe. Se tal supremo non existe, dise que o diámetro é infinito, e escríbese δ(a) =.
19 Bólas e relacións métricas Conxunto limitado. Diámetro Un conxunto A nun espazo métrico (M, d) dise limitado se está contido nalgunha bóla, B M (x, r) tal que A B M (x, r) Chámase diámetro dun conxunto non baleiro A, e se denota δ(a), ao número δ(a) = sup{d(x, y) x, y A}, cando existe. Se tal supremo non existe, dise que o diámetro é infinito, e escríbese δ(a) =.
20 Bólas e relacións métricas Métricas limitadas Sexa (M, d) un espazo métrico. A fórmula d(x, y) = d(x, y) 1 + d(x, y) define unha nova métrica sobre M. É unha métrica limitada, o espazo total é un conxunto limitado. Outra métrica limitada é d 0 (x, y) = mín{d(x, y), 1}.
21 Bólas e relacións métricas Métricas limitadas Sexa (M, d) un espazo métrico. A fórmula d(x, y) = d(x, y) 1 + d(x, y) define unha nova métrica sobre M. É unha métrica limitada, o espazo total é un conxunto limitado. Outra métrica limitada é d 0 (x, y) = mín{d(x, y), 1}.
22 Bólas e relacións métricas Métricas limitadas Sexa (M, d) un espazo métrico. A fórmula d(x, y) = d(x, y) 1 + d(x, y) define unha nova métrica sobre M. É unha métrica limitada, o espazo total é un conxunto limitado. Outra métrica limitada é d 0 (x, y) = mín{d(x, y), 1}.
23 Bólas e relacións métricas Unha métrica en S 2 d S 2 : S 2 S 2 R, d S 2(x, y) = arccos( x, y ), Pódese definir en calquera esfera S n. Outra fórmula equivalente é: d S n(x, y) = 2 arcsen( 1 2 d 2(x, y)).
24 Bólas e relacións métricas Unha métrica en S 2 d S 2 : S 2 S 2 R, d S 2(x, y) = arccos( x, y ), Pódese definir en calquera esfera S n. Outra fórmula equivalente é: d S n(x, y) = 2 arcsen( 1 2 d 2(x, y)).
Tema 1. Espazos topolóxicos. Topoloxía Xeral, 2016
Tema 1. Espazos topolóxicos Topoloxía Xeral, 2016 Topoloxía e Espazo topolóxico Índice Topoloxía e Espazo topolóxico Exemplos de topoloxías Conxuntos pechados Topoloxías definidas por conxuntos pechados:
EXERCICIOS DE REFORZO: RECTAS E PLANOS
EXERCICIOS DE REFORZO RECTAS E PLANOS Dada a recta r z a) Determna a ecuacón mplícta do plano π que pasa polo punto P(,, ) e é perpendcular a r Calcula o punto de nterseccón de r a π b) Calcula o punto
EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS. 3. Cal é o vector de posición da orixe de coordenadas O? Cales son as coordenadas do punto O?
EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS Representa en R os puntos S(2, 2, 2) e T(,, ) 2 Debuxa os puntos M (, 0, 0), M 2 (0,, 0) e M (0, 0, ) e logo traza o vector OM sendo M(,, ) Cal é o vector de
PAU XUÑO 2011 MATEMÁTICAS II
PAU XUÑO 2011 MATEMÁTICAS II Código: 26 (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio 2= 3 puntos, exercicio
Procedementos operatorios de unións non soldadas
Procedementos operatorios de unións non soldadas Técnicas de montaxe de instalacións Ciclo medio de montaxe e mantemento de instalacións frigoríficas 1 de 28 Técnicas de roscado Unha rosca é unha hélice
PAU XUÑO 2010 MATEMÁTICAS II
PAU XUÑO 010 MATEMÁTICAS II Código: 6 (O alumno/a deber responder só aos eercicios dunha das opcións. Punuación máima dos eercicios de cada opción: eercicio 1= 3 punos, eercicio = 3 punos, eercicio 3 =
NÚMEROS REAIS. Páxina 27 REFLEXIONA E RESOLVE. O paso de Z a Q. O paso de Q a Á
NÚMEROS REAIS Páxina 7 REFLEXIONA E RESOLVE O paso de Z a Q Di cales das seguintes ecuacións se poden resolver en Z e para cales é necesario o conxunto dos números racionais, Q. a) x 0 b) 7x c) x + d)
XEOMETRÍA NO ESPAZO. - Se dun vector se coñecen a orixe, o módulo, a dirección e o sentido, este está perfectamente determinado no espazo.
XEOMETRÍA NO ESPAZO Vectores fixos Dos puntos do espazo, A e B, determinan o vector fixo AB, sendo o punto A a orixe e o punto B o extremo, é dicir, un vector no espazo é calquera segmento orientado que
Tema: Enerxía 01/02/06 DEPARTAMENTO DE FÍSICA E QUÍMICA
Tema: Enerxía 01/0/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Nome: 1. Unha caixa de 150 kg descende dende o repouso por un plano inclinado por acción do seu peso. Se a compoñente tanxencial do peso é de 735
EXERCICIOS DE ÁLXEBRA. PAU GALICIA
Maemáicas II EXERCICIOS DE ÁLXEBRA PAU GALICIA a) (Xuño ) Propiedades do produo de marices (só enuncialas) b) (Xuño ) Sexan M e N M + I, onde I denoa a mariz idenidade de orde n, calcule N e M 3 Son M
1 Experimento aleatorio. Espazo de mostra. Sucesos
V. PROBABILIDADE E ESTATÍSTICA 1 Experimento aleatorio. Espazo de mostra. Sucesos 1 Experimento aleatorio. Concepto e exemplos Experimentos aleatorios son aqueles que ao repetilos nas mesmas condicións
ln x, d) y = (3x 5 5x 2 + 7) 8 x
EXERCICIOS AUTOAVALIABLES: CÁLCULO DIFERENCIAL. Deriva: a) y 7 6 + 5, b) y e, c) y e) y 7 ( 5 ), f) y ln, d) y ( 5 5 + 7) 8 n e ln, g) y, h) y n. Usando a derivada da función inversa, demostra que: a)
IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes
IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes 1.- Distancia entre dous puntos Se A e B son dous puntos do espazo, defínese a distancia entre A e B como o módulo
PAU XUÑO 2011 MATEMÁTICAS II
PAU XUÑO 2011 MATEMÁTICAS II Código: 26 (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio 2= 3 puntos, exercicio
MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos)
21 MATEMÁTICAS (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 Dada a matriz a) Calcula os valores do parámetro m para os que A ten inversa.
VII. RECTAS E PLANOS NO ESPAZO
VII. RETS E PLNOS NO ESPZO.- Ecuacións da recta Unha recta r no espao queda determinada por un punto, punto base, e un vector v non nulo que se chama vector director ou direccional da recta; r, v é a determinación
Eletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::...
Eletromagnetismo Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística Lista -.1 - Mostrar que a seguinte medida é invariante d 3 p p 0 onde: p 0 p + m (1)
EXERCICIOS DE REFORZO: SISTEMAS DE ECUACIÓNS LINEAIS
EXERCICIOS DE REFORZO: SISTEMAS DE ECUACIÓNS LINEAIS. ) Clul os posiles vlores de,, pr que triz A verifique relión (A I), sendo I triz identidde de orde e triz nul de orde. ) Cl é soluión dun siste hooéneo
MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos)
1 MATEMÁTICAS (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos) Opción 1. Dada a matriz a) Calcula os valores do parámetro m para os
NÚMEROS COMPLEXOS. Páxina 147 REFLEXIONA E RESOLVE. Extraer fóra da raíz. Potencias de. Como se manexa k 1? Saca fóra da raíz:
NÚMEROS COMPLEXOS Páxina 7 REFLEXIONA E RESOLVE Extraer fóra da raíz Saca fóra da raíz: a) b) 00 a) b) 00 0 Potencias de Calcula as sucesivas potencias de : a) ( ) ( ) ( ) b) ( ) c) ( ) 5 a) ( ) ( ) (
Sistemas e Inecuacións
Sistemas e Inecuacións 1. Introdución 2. Sistemas lineais 2.1 Resolución gráfica 2.2 Resolución alxébrica 3. Método de Gauss 4. Sistemas de ecuacións non lineais 5. Inecuacións 5.1 Inecuacións de 1º e
Problemas resueltos del teorema de Bolzano
Problemas resueltos del teorema de Bolzano 1 S e a la fun ción: S e puede af irm a r que f (x) está acotada en el interva lo [1, 4 ]? P or no se r c ont i nua f (x ) e n x = 1, la f unció n no e s c ont
Exercicios de Física 02a. Campo Eléctrico
Exercicios de Física 02a. Campo Eléctrico Problemas 1. Dúas cargas eléctricas de 3 mc están situadas en A(4,0) e B( 4,0) (en metros). Caalcula: a) o campo eléctrico en C(0,5) e en D(0,0) b) o potencial
Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a
Física P.A.U. ELECTOMAGNETISMO 1 ELECTOMAGNETISMO INTODUCIÓN MÉTODO 1. En xeral: Debúxanse as forzas que actúan sobre o sistema. Calcúlase a resultante polo principio de superposición. Aplícase a 2ª lei
Inecuacións. Obxectivos
5 Inecuacións Obxectivos Nesta quincena aprenderás a: Resolver inecuacións de primeiro e segundo grao cunha incógnita. Resolver sistemas de ecuacións cunha incógnita. Resolver de forma gráfica inecuacións
Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS
Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS PROBLEMAS M.H.S.. 1. Dun resorte elástico de constante k = 500 N m -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase
a) Calcula m de modo que o produto escalar de a( 3, 2 ) e b( m, 5 ) sexa igual a 5. ( )
.. MATEMÁTICAS I PENDENTES (º PARTE) a) Calcula m de modo que o produto escalar de a(, ) e b( m, 5 ) sea igual a 5. b) Calcula a proección de a sobre c, sendo c,. ( ) 5 Se (, ) e y,. Calcula: a) Un vector
ESTRUTURA ATÓMICA E CLASIFICACIÓN PERIÓDICA DOS ELEMENTOS
Química P.A.U. ESTRUTURA ATÓMICA E CLASIFICACIÓN PERIÓDICA DOS ELEMENTOS ESTRUTURA ATÓMICA E CLASIFICACIÓN PERIÓDICA DOS ELEMENTOS CUESTIÓNS NÚMEROS CUÁNTICOS. a) Indique o significado dos números cuánticos
TRIGONOMETRIA. hipotenusa L 2. hipotenusa
TRIGONOMETRIA. Calcular las razones trigonométricas de 0º, º y 60º. Para calcular las razones trigonométricas de º, nos ayudamos de un triángulo rectángulo isósceles como el de la figura. cateto opuesto
Lógica Proposicional. Justificación de la validez del razonamiento?
Proposicional educción Natural Proposicional - 1 Justificación de la validez del razonamiento? os maneras diferentes de justificar Justificar que la veracidad de las hipótesis implica la veracidad de la
INTERACCIÓNS GRAVITATORIA E ELECTROSTÁTICA
INTEACCIÓNS GAVITATOIA E ELECTOSTÁTICA AS LEIS DE KEPLE O astrónomo e matemático Johannes Kepler (1571 1630) enunciou tres leis que describen o movemento planetario a partir do estudo dunha gran cantidade
1 La teoría de Jeans. t + (n v) = 0 (1) b) Navier-Stokes (conservación del impulso) c) Poisson
1 La teoría de Jeans El caso ás siple de evolución de fluctuaciones es el de un fluído no relativista. las ecuaciones básicas son: a conservación del núero de partículas n t + (n v = 0 (1 b Navier-Stokes
Caderno de traballo. Proxecto EDA 2009 Descartes na aula. Departamento de Matemáticas CPI A Xunqueira Fene
Departamento de Matemáticas CPI A Xunqueira Fene Nome: 4º ESO Nº Páx. 1 de 36 FIGURAS SEMELLANTES 1. CONCEPTO DE SEMELLANZA Intuitivamente: Dúas figuras son SEMELLANTES se teñen a mesma forma pero distinto
PAU XUÑO 2012 MATEMÁTICAS II
PAU Código: 6 XUÑO 01 MATEMÁTICAS II (Responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio = 3 puntos, exercicio 3= puntos, exercicio
Ventiladores helicoidales murales o tubulares, versión PL equipados con hélice de plástico y versión AL equipados con hélice de aluminio.
HCH HCT HCH HCT Ventiladores helicoidales murales o tubulares, de gran robustez Ventiladores helicoidales murales o tubulares, versión PL equipados con hélice de plástico y versión AL equipados con hélice
Introdución á análise numérica. Erros no cálculo numérico
1 Introdución á análise numérica. Erros no cálculo numérico Carmen Rodríguez Iglesias Departamento de Matemática Aplicada Facultade de Matemáticas Universidade de Santiago de Compostela, 2013 Esta obra
1. O ESPAZO VECTORIAL DOS VECTORES LIBRES 1.1. DEFINICIÓN DE VECTOR LIBRE
O ESPAZO VECTORIAL DOS VECTORES LIBRES DEFINICIÓN DE VECTOR LIBRE MATEMÁTICA II 06 Exames e Textos de Matemática de Pepe Sacau ten unha licenza Creative Commons Atribución Compartir igual 40 Internacional
Lógica Proposicional
Proposicional educción Natural Proposicional - 1 Justificación de la validez del razonamiento os maneras diferentes de justificar Justificar que la veracidad de las hipótesis implica la veracidad de la
CADERNO Nº 2 NOME: DATA: / / Os números reais
CADERNO Nº NOME: DATA: / / Os números reais Contidos. Os números reais Números irracionais Números reais Aproximacións Representación gráfica Valor absoluto Intervalos. Radicais Forma exponencial Radicais
Números reais. Obxectivos. Antes de empezar.
1 Números reais Obxectivos Nesta quincena aprenderás a: Clasificar os números reais en racionais e irracionais. Aproximar números con decimais ata unha orde dada. Calcular a cota de erro dunha aproximación.
INICIACIÓN AO CÁLCULO DE DERIVADAS. APLICACIÓNS
INICIACIÓN AO CÁLCULO DE DERIVADAS. APLICACIÓNS Páina 0 REFLEXIONA E RESOLVE Coller un autobús en marca Na gráfica seguinte, a liña vermella representa o movemento dun autobús que arranca da parada e vai,
Expresións alxébricas
5 Expresións alxébricas Obxectivos Crear expresións alxébricas a partir dun enunciado. Atopar o valor numérico dunha expresión alxébrica. Clasificar unha expresión alxébrica como monomio, binomio,... polinomio.
Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO
Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO PROBLEMAS CAMPO ELECTROSTÁTICO 1. Dúas cargas eléctricas de 3 mc están situadas en A(4, 0) e B(-4, 0) (en metros). Calcula: a) O campo eléctrico en C(0,
VIII. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Ángulos, perpendicularidade de rectas e planos
VIII. ESPZO EULÍDEO TRIDIMENSIONL: Áglos perpediclaridade de rectas e plaos.- Áglo qe forma dúas rectas O áglo de dúas rectas qe se corta se defie como o meor dos áglos qe forma o plao qe determia. O áglo
Exercicios de Física 03b. Ondas
Exercicios de Física 03b. Ondas Problemas 1. Unha onda unidimensional propágase segundo a ecuación: y = 2 cos 2π (t/4 x/1,6) onde as distancias se miden en metros e o tempo en segundos. Determina: a) A
Optimización baixo incerteza en redes de gas.
Traballo Fin de Mestrado Optimización baixo incerteza en redes de gas. Ana Belén Buide Carballosa Mestrado en Técnicas Estatísticas Curso 2016-2017 ii iii Proposta de Traballo Fin de Mestrado Título en
A circunferencia e o círculo
10 A circunferencia e o círculo Obxectivos Nesta quincena aprenderás a: Identificar os diferentes elementos presentes na circunferencia e o círculo. Coñecer as posicións relativas de puntos, rectas e circunferencias.
EXERCICIOS DE REFORZO: DETERMINANTES., calcula a matriz X que verifica A X = A 1 B, sendo B =
EXERCICIOS DE REORZO: DETERMINANTES Pr A, lul riz X que verifi AX A B, sendo B ) Define enor opleenrio e duno dun eleeno nunh riz drd ) Dd riz A : i Clul o rngo, segundo os vlores de λ, de A λi, sendo
Funcións e gráficas. Obxectivos. 1.Funcións reais páx. 4 Concepto de función Gráfico dunha función Dominio e percorrido Funcións definidas a anacos
9 Funcións e gráficas Obxectivos Nesta quincena aprenderás a: Coñecer e interpretar as funcións e as distintas formas de presentalas. Recoñecer o dominio e o percorrido dunha función. Determinar se unha
Ámbito científico tecnolóxico. Ecuacións de segundo grao e sistemas de ecuacións. Módulo 3 Unidade didáctica 8
Educación secundaria para persoas adultas Ámbito científico tecnolóxico Módulo 3 Unidade didáctica 8 Ecuacións de segundo grao e sistemas de ecuacións Páxina 1 de 45 Índice 1. Programación da unidade...3
Física P.A.U. ÓPTICA 1 ÓPTICA
Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un raio de luz de frecuencia 5 10 14 Hz incide, cun ángulo de incidencia de 30, sobre unha lámina de vidro de caras plano-paralelas de espesor
Resistencia de Materiais. Tema 5. Relacións entre tensións e deformacións
Resistencia de Materiais. Tema 5. Relacións entre tensións e deformacións ARTURO NORBERTO FONTÁN PÉREZ Fotografía. Ponte Coalbrookdale (Gran Bretaña, 779). Van principal: 30.5 m. Contido. Tema 5. Relacións
PAU XUÑO 2010 MATEMÁTICAS II
PAU XUÑO 010 MATEMÁTICAS II Código: 6 (O alumno/a deber responder só aos eercicios dunha das opcións. Puntuación máima dos eercicios de cada opción: eercicio 1= 3 puntos, eercicio = 3 puntos, eercicio
Problemas y cuestiones de electromagnetismo
Problemas y cuestiones de electromagnetismo 1.- Dúas cargas eléctricas puntuais de 2 e -2 µc cada unha están situadas respectivamente en (2,0) e en (-2,0) (en metros). Calcule: a) campo eléctrico en (0,0)
MATEMÁTICAS. PRIMEIRA PARTE (Parte Común) ), cadradas de orde tres, tales que a 21
PRIMEIRA PARTE (Parte Común) (Nesta primeira parte tódolos alumnos deben responder a tres preguntas. Unha soa pregunta de cada un dos tres bloques temáticos: Álxebra Lineal, Xeometría e Análise. A puntuación
A proba constará de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta.
Páxina 1 de 9 1. Formato da proba Formato proba constará de vinte cuestións tipo test. s cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Puntuación Puntuación: 0.5
1. A INTEGRAL INDEFINIDA 1.1. DEFINICIÓN DE INTEGRAL INDEFINIDA 1.2. PROPRIEDADES
TEMA / CÁLCULO INTEGRAL MATEMÁTICA II 07 Eames e Tetos de Matemática de Pepe Sacau ten unha licenza Creative Commons Atriución Compartir igual.0 Internacional. A INTEGRAL INDEFINIDA.. DEFINICIÓN DE INTEGRAL
EJERCICIOS DE VIBRACIONES Y ONDAS
EJERCICIOS DE VIBRACIONES Y ONDAS 1.- Cando un movemento ondulatorio se atopa na súa propagación cunha fenda de dimensións pequenas comparables as da súa lonxitude de onda prodúcese: a) polarización; b)
EXERCICIOS AUTOAVALIABLES: SISTEMAS DE ECUACIÓNS LINEAIS. 2. Dada a ecuación lineal 2x 3y + 4z = 2, comproba que as ternas (3, 2, 2
EXERCICIOS AUTOAVALIABLES: SISTEMAS DE ECUACIÓNS LINEAIS Dds s ecucións seguintes indic s que son lineis: ) + + b) + u c) + d) + Dd ecución linel + comprob que s terns ( ) e ( ) son lgunhs ds sús solucións
Funcións e gráficas. Obxectivos. Antes de empezar. 1.Funcións páx. 4 Concepto Táboas e gráficas Dominio e percorrido
9 Funcións e gráficas Obxectivos Nesta quinceer na aprenderás a: Coñecer e interpretar as funcións e as distintas formas de presentalas. Recoñecer ou dominio e ou percorrido dunha función. Determinar se
Física P.A.U. ÓPTICA 1 ÓPTICA
Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un raio de luz de frecuencia 5 10¹⁴ Hz incide cun ángulo de incidencia de 30 sobre unha lámina de vidro de caras plano-paralelas de espesor 10
Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS
Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS INTRODUCIÓN MÉTODO 1. En xeral: a) Debúxanse as forzas que actúan sobre o sistema. b) Calcúlase cada forza. c) Calcúlase a resultante polo principio
PROPIEDADES CONFORMES
MIGUEL BROZOS V ÁZQUEZ PROPIEDADES CONFORMES DE PRODUCTOS DEFORMADOS 105 2004 Publicaciones del Departamento degeomelria;;-~=~ Miguel Brozos Vázquez PROPIEDADES CONFORMES DE PRODUCTOS DEFORMADOS Memoria
Química P.A.U. EQUILIBRIO QUÍMICO 1 EQUILIBRIO QUÍMICO
Química P.A.U. EQUILIBRIO QUÍMICO 1 EQUILIBRIO QUÍMICO PROBLEMAS FASE GAS 1. A 670 K, un recipiente de 2 dm 3 contén unha mestura gasosa en equilibrio de 0,003 moles de hidróxeno, 0,003 moles de iodo e
PÁGINA 106 PÁGINA a) sen 30 = 1/2 b) cos 120 = 1/2. c) tg 135 = 1 d) cos 45 = PÁGINA 109
PÁGINA 0. La altura del árbol es de 8,5 cm.. BC m. CA 70 m. a) x b) y PÁGINA 0. tg a 0, Con calculadora: sß 0,9 t{ ««}. cos a 0, Con calculadora: st,8 { \ \ } PÁGINA 05. cos a 0,78 tg a 0,79. sen a 0,5
Probabilidade. Obxectivos. Antes de empezar
12 Probabilidade Obxectivos Nesta quincena aprenderás a: Distinguir os experimentos aleatorios dos que non o son. Achar o espazo da mostra e distintos sucesos dun experimento aleatorio. Realizar operacións
Académico Introducción
- Σε αυτήν την εργασία/διατριβή θα αναλύσω/εξετάσω/διερευνήσω/αξιολογήσω... general para un ensayo/tesis Για να απαντήσουμε αυτή την ερώτηση, θα επικεντρωθούμε πρώτα... Para introducir un área específica
Volume dos corpos xeométricos
11 Volume dos corpos xeométricos Obxectivos Nesta quincena aprenderás a: Comprender o concepto de medida do volume e coñecer e manexar as unidades de medida do S.M.D. Obter e aplicar expresións para o
Mister Cuadrado. Investiga quen é cada un destes personaxes. Lugar e data de nacemento: Lugar e data de falecemento: Lugar e data de nacemento:
Mister Cuadrado Actividade de carácter xeral: Investiga quen é cada un destes personaxes Actividades para cada capítulo: CAPÍTULO I - Define que é un cadrado. - Clasificación de cuadriláteros. - Debuxa
LUGARES XEOMÉTRICOS. CÓNICAS
LUGARES XEOMÉTRICOS. CÓNICAS Páxina REFLEXIONA E RESOLVE Cónicas abertas: parábolas e hipérboles Completa a seguinte táboa, na que a é o ángulo que forman as xeratrices co eixe, e, da cónica e b o ángulo
x 2 6º- Achar a ecuación da recta que pasa polo punto medio do segmento de extremos
º- Dados os puntos A(,, ), B(, 4), C( 5,, ) EXERCICIOS XEOMETRÍA Acha as coodenadas dun cuato punto D coa condición que o cuadiláteo ABCD sexa un paalelogamo º- Escibi as ecuacións paaméticas, na foma
TEORÍA DE XEOMETRÍA. 1º ESO
TEORÍA DE XEOMETRÍA. 1º ESO 1. CORPOS XEOMÉTRICOS No noso entorno observamos continuamente obxectos de diversas formas: pelotas, botes, caixas, pirámides, etc. Todos estes obxectos son corpos xeométricos.
PAU XUÑO 2016 MATEMÁTICAS II
PAU XUÑO 06 Código: 6 MATEMÁTICAS II (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio = 3 puntos, exercicio = 3 puntos, exercicio
Estatística. Obxectivos
11 Estatística Obxectivos Nesta quincena aprenderás a: Distinguir os conceptos de poboación e mostra. Diferenciar os tres tipos de variables estatísticas. Facer recontos e gráficos. Calcular e interpretar
ÓPTICA- A LUZ Problemas PAAU
ÓPTICA- A LUZ Problemas PAAU XUÑO-96 CUESTION 2. opa Disponse de luz monocromática capaz de extraer electróns dun metal. A medida que medra a lonxitude de onda da luz incidente, a) os electróns emitidos
Ecuacións diferenciais: resolución e aplicacións a problemas en Bioloxía
Matemáticas para Bioloxía 4 Ecuacións diferenciais: resolución e aplicacións a problemas en Bioloxía Rosana Rodríguez López Departamento de Análise Matemática Facultade de Matemáticas Grao en Bioloxía
FÍSICA OPCIÓN 1. ; calcula: a) o período de rotación do satélite, b) o peso do satélite na órbita. (Datos R T. = 9,80 m/s 2 ).
22 Elixir e desenrolar unha das dúas opcións propostas. FÍSICA Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple
La transformada de ondícula continua y algunas clases de operadores de localización
La transformada de ondícula continua y algunas clases de operadores de localización Gerardo Ramos Vázquez Dr. Egor Maximenko Instituto Politécnico Nacional, ESFM diciembre 2016 Contenido El grupo afín
Exame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema)
Exame tipo A. Proba obxectiva (Valoración: 3 puntos) 1. - Un disco de 10 cm de raio xira cunha velocidade angular de 45 revolucións por minuto. A velocidade lineal dos puntos da periferia do disco será:
Áreas de corpos xeométricos
9 Áreas de corpos xeométricos Obxectivos Nesta quincena aprenderás a: Antes de empezar 1.Área dos prismas....... páx.164 Área dos prismas Calcular a área de prismas rectos de calquera número de caras.
Ano 2018 FÍSICA. SOL:a...máx. 1,00 Un son grave ten baixa frecuencia, polo que a súa lonxitude de onda é maior.
ABAU CONVOCAT ORIA DE SET EMBRO Ano 2018 CRIT ERIOS DE AVALI ACIÓN FÍSICA (Cód. 23) Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades ou con unidades incorrectas...
ECOSISTEMAS. biotopo. Biotopo + biocenose biocenose. ecosistema
ECOSISTEMAS biotopo ecosistema Biotopo + biocenose biocenose ECOSISTEMA formado pola interacción BIOTOPO conxunto de MEDIO FÍSICO FACTORES FISICOS E QUIMICOS Temperatura Ph Humidade Salinidade... BIOCENOSE
TEMA IV: FUNCIONES HIPERGEOMETRICAS
TEMA IV: FUNCIONES HIPERGEOMETRICAS 1. La ecuación hipergeométrica x R y α, β, γ parámetros reales. x(1 x)y + [γ (α + β + 1)x]y αβy 0 (1.1) Dividiendo en (1.1) por x(1 x) obtenemos (x 0, x 1) y + γ (α
Resistencia de Materiais. Tema 3. Relacións de equilibrio tensional nos sólidos elásticos
Resistencia de Materiais. Tema 3. Relacións de equilibrio tensional nos sólidos elásticos ARTURO NORBERTO FONTÁN PÉREZ Fotografía. Ponte Chaotianmen (China, 2009). Van principal: 552 m. Introdución Mecánica
1_2.- Os números e as súas utilidades - Exercicios recomendados
1_.- Os números e as súas utilidades - Exercicios recomendados 1. Ordena de menor a maior as seguintes fraccións: 1 6 3 5 7 4,,,,, 3 5 4 8 6 9. Efectúa as seguintes operacións e simplifica o resultado:
Πραγµατική Ανάλυση Ασκήσεις ( )
Πραγµατική Ανάλυση Ασκήσεις (205 6) Πρόχειρες Σηµειώσεις Τµήµα Μαθηµατικών Πανεπιστήµιο Αθηνών 205-6 Περιεχόµενα Μετρικοί χώροι 2 Σύγκλιση ακολουθιών και συνέχεια συναρτήσεων 9 3 Τοπολογία µετρικών χώρων
Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN
Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS SATÉLITES 1. O período de rotación da Terra arredor del Sol é un año e o radio da órbita é 1,5 10 11 m. Se Xúpiter ten un período de aproximadamente 12
PAU XUÑO Código: 25 FÍSICA OPCIÓN A OPCIÓN B
PAU XUÑO 013 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
Ámbito científico tecnolóxico. Números e álxebra. Unidade didáctica 1. Módulo 3. Educación a distancia semipresencial
Educación secundaria para persoas adultas Ámbito científico tecnolóxico Educación a distancia semipresencial Módulo Unidade didáctica 1 Números e álxebra Índice 1. Introdución... 1.1 Descrición da unidade
Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα
x 2 + 1 = 0 N = {1, 2, 3....}, Z Q a, b a, b N c, d c, d N a + b = c, a b = d. a a N 1 a = a 1 = a. < > P n P (n) P (1) n = 1 P (n) P (n + 1) n n + 1 P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + 1)
ELECTROMAGNETISMO Problemas PAAU
ELECTROMAGNETISMO Problemas PAAU XUÑO-96 PROBLEMA 2. op B Dadas as cargas puntuais q 1 = 80 µc, q 2 = -80 µc y q 3 = 40 µc situadas nos puntos A (-2,0), B(2,0) y C(0,2) respectivamente (coordenadas en
Segundo control de programación en Python de 2017
Segundo control de programación en Python de 2017 Supón un arquivo de texto con medidas de temperaturas cada certo tempo, no que cada liña contén as temperaturas rexistradas nun mes e o número de medidas
Tagus, STC, S.A. Sede: Rua Castilho, 20, LISBOA. Capital Social: Euros
Tagus, STC, S.A. Sede: Rua Castilho, 20, 1250-069 LISBOA Capital Social: 250.000 Euros Matriculada na Conservatoria do Registo Comercial de Lisboa com o número de matrícula e de identificação fiscal 507130820
Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 4 Definición Elementos dun poliedro
9 Corpos xeométricos Obxectivos Nesta quincena aprenderás a: Identificar que é un poliedro. Determinar os elementos dun poliedro: Caras, arestas e vértices. Clasificar os poliedros. Especificar cando un
Probas de acceso a ciclos formativos de grao medio CMPM001. Proba de. Código. Matemáticas. Parte matemática. Matemáticas.
Probas de acceso a ciclos formativos de grao medio Proba de Matemáticas Código CMPM001 Páxina 1 de 9 Parte matemática. Matemáticas 1. Formato da proba Formato A proba consta de vinte cuestións tipo test.
ECUACIÓNS, INECUACIÓNS E SISTEMAS
ECUACIÓNS, INECUACIÓNS E SISTEMAS Índice 1. Ecuacións de primeiro e segundo grao... 1 1.1. Ecuacións de primeiro grao... 1 1.. Ecuacións de segundo grao.... Outras ecuacións alébricas... 5.1. Ecuacións
Introdución ao cálculo vectorial
Intoducón o cálculo ectol 1 Intoducón o cálculo ectol 1. MAGNITUDES ESCALARES E VECTORIAIS. Mgntude físc é todo qulo que se pode med. Mgntudes escles son quels que están detemnds po un lo numéco epesdo
As Mareas INDICE. 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación
As Mareas INDICE 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación Introducción A marea é a variación do nivel da superficie libre
Ámbito científico tecnolóxico. Estatística. Unidade didáctica 4. Módulo 3. Educación a distancia semipresencial
Educación secundaria para persoas adultas Ámbito científico tecnolóxico Educación a distancia semipresencial Módulo 3 Unidade didáctica 4 Estatística Índice 1.1 Descrición da unidade didáctica... 3 1.
Código: 25 PAU XUÑO 2014 FÍSICA OPCIÓN A OPCIÓN B
PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución