Cap.2. Sisteme de ecuaţii algebrice liniare - metode directe (II)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Cap.2. Sisteme de ecuaţii algebrice liniare - metode directe (II)"

Transcript

1 Cap.2. Sisteme de ecuaţii algebrice liniare - metode directe (II) Prof.dr.ing. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică, Departamentul de Electrotehnică Suport didactic pentru disciplina Metode numerice, /39

2 Cuprins Formularea problemei 1 Formularea problemei Rezolvarea unui sistem de ecuaţii algebrice liniare Cazul sistemelor multiple 2 Varianta Doolittle 3 Ce sunt? Adaptarea metodelor directe - exemplu 4 2/39

3 Formularea problemei Rezolvarea unui sistem de ecuaţii algebrice liniare Cazul sistemelor multiple Sistem de n ecuaţii algebrice liniare cu n necunoscute: a 11 x 1 + a 12 x 2 + +a 1n x n = b 1, a 21 x 1 + a 22 x 2 + +a 2n x n = b 2, a n1 x 1 + a n2 x 2 + +a nn x n = b n. (1) 3/39

4 Formularea problemei Rezolvarea unui sistem de ecuaţii algebrice liniare Cazul sistemelor multiple Se dă matricea coeficienţilor A = şi vectorul termenilor liberi a 11 a 12 a 1n a 21 a 22 a 2n a n1 a n2 a nn se cere să se rezolve sistemul unde x este soluţia IRn n (2) b = [ b 1 b 2 b n ] T IR n, (3) Ax = b, (4) x = [ x 1 x 2 x n ] T IR n. (5) 4/39

5 Buna formulare matematică Rezolvarea unui sistem de ecuaţii algebrice liniare Cazul sistemelor multiple Problema este bine formulată din punct de vedere matematic (soluţia există şi este unică) matricea A este nesingulară (are determinantul nenul). Se scrie formal: x = A 1 b trebuie citită ca: "x este soluţia sistemului algebric liniar Ax = b" şi NU "se calculează inversa matricei A care se înmulţeşte cu vectorul b". 5/39

6 Condiţionarea problemei Rezolvarea unui sistem de ecuaţii algebrice liniare Cazul sistemelor multiple κ(a) = A A 1 (6) număr de condiţionare la inversare al matricei A. ε x κ(a)ε b, (7) κ(a) 1: Cazul cel mai favorabil: n A = 1 şi ε x = ε b. (matrice ortogonală) Numărul de condiţionare este o proprietate a matricei şi nu are legătură nici cu metoda de rezolvare propriu-zisă, nici cu erorile de rotunjire care apar în mediul de calcul. În practică: Dacă κ(a) > 1/eps problema se consideră slab condiţionată. 6/39

7 Clasificarea metodelor Rezolvarea unui sistem de ecuaţii algebrice liniare Cazul sistemelor multiple 1 Metode directe - găsesc soluţia teoretică a problemei într-un număr finit de paşi. (Gauss, factorizare LU) 2 Metode iterative - generează un şir de aproximaţii ale soluţiei care se doreşte a fi convergent către soluţia exactă. staţionare: Jacobi, Gauss-Seidel, SOR, SSOR nestaţionare (semiiterative): gradienţi conjugaţi (GC), reziduu minim (MINRES), reziduu minim generalizat (GMRES), gradienţi biconjugaţi (BiGC), etc. 7/39

8 Formularea problemei Rezolvarea unui sistem de ecuaţii algebrice liniare Cazul sistemelor multiple Fie m sisteme de ecuaţii algebrice liniare Ax (1) = b (1), Ax (2) = b (2),, Ax (m) = b (m), (8) Se dau: A IR n n, b (k) IR n 1, k = 1, m Se cer: x (k) IR n 1, Notăm B = [b (1) b (2) b (m) ] IR n m (9) X = [x (1) x (2) x (m) ] IR n m (10) Se cere să se rezolve sistemul AX = B. (11) 8/39

9 Varianta I Formularea problemei Rezolvarea unui sistem de ecuaţii algebrice liniare Cazul sistemelor multiple Varianta I - aplicarea succesivă a algoritmului Gauss Efort de calcul: m(2n 3 /3+n 2 ) 2mn 3 /3. Etapa de eliminare este repetată inutil, de m ori. Cea mai proasta idee. 9/39

10 Varianta II Formularea problemei Rezolvarea unui sistem de ecuaţii algebrice liniare Cazul sistemelor multiple Varianta II - rezolvarea simultană prin adaptarea algoritmului Gauss procedură Gauss_multiplu(n, m, a, B, X) ; rezolvă simultan sistemele algebrice liniare ax = B prin metoda Gauss întreg n ; dimensiunea sistemului întreg m ; numărul de sisteme tabloureal a[n][n] ; matricea coeficienţilor - indici de la 1 tablou real B[n][m] ; matricea termenilor liberi tabloureal X[n][m] ; matricea soluţie întreg i, j, k real p, s ; etapa de eliminare pentru k = 1, n 1 ; parcurge sub-etape ale eliminării ; aici se poate introduce pivotarea pentru i = k + 1, n ; parcurge liniile p = a ik /a kk ; element de multiplicare pentru j = k + 1, n ; parcurge coloanele a ij = a ij + pa kj pentru j = 1, m ; parcurge coloanele termenilor liberi b ij = b ij + pb kj 10/39

11 Varianta II Formularea problemei Rezolvarea unui sistem de ecuaţii algebrice liniare Cazul sistemelor multiple ; etapa de retrosubstituţie pentru k = 1, m x nk = b nk /a nn pentru i = n 1, 1, 1 s = 0 pentru j = i + 1, n s = s + a ij x jk x ik = (b ik s)/a ii retur 11/39

12 Varianta II Formularea problemei Rezolvarea unui sistem de ecuaţii algebrice liniare Cazul sistemelor multiple Efort de calcul T e = n 1 n 1 [2(n k)+2m+1](n k) [2(n k) 2 + 2m(n k)] = k=1 (n 1)n(2n 1) = 2 + 2m n(n 1) 2n mn2. (12) k=1 n 1 T s = m [2(n i)+2] m i=1 n 1 i=1 [2(n i)] = 2m n(n 1) 2 T = O(2n 3 /3+2mn 2 ), mai mic decât în cazul variantei I. mn 2. (13) 12/39

13 Varianta III Formularea problemei Rezolvarea unui sistem de ecuaţii algebrice liniare Cazul sistemelor multiple Varianta III - rezolvarea succesivă a sistemelor folosind calculul inversei Se calculeză A 1 Se calculează x (k) = A 1 b (k) imediat ce este cunoscut termenul liber. 13/39

14 Varianta III Formularea problemei Rezolvarea unui sistem de ecuaţii algebrice liniare Cazul sistemelor multiple funcţie inva(n, a) ; calculează inversa matricei a întreg n ; dimensiunea matricei tabloureal a[n][n] ; matricea, indici de la 1 ; alte declaraţii... pentru i = 1, n pentru j = 1, n B ij = 0 B ii = 1 Gauss_multiplu(n, n, a, B, X) întoarce X ; X este inversa matricei Complexitatea calcului inversei: 2n 3 /3+2mn 2 = 8n 3 /3 COSTISITOR! 14/39

15 Varianta III Formularea problemei Rezolvarea unui sistem de ecuaţii algebrice liniare Cazul sistemelor multiple funcţie produs_mv (n, M, v) ; calculează produsul dintre o matrice pătrată M şi un vector coloană v întreg n ; dimensiunea problemei tabloureal M[n][n] ; matricea, indici de la 1 tablou real v[n] ; vectorul tablou real p[n] ; rezultatul p = Mv ; alte declaraţii... pentru i = 1, n p i = 0 pentru j = 1, n p i = p i + M ij v j întoarce p Complexitatea inmulţirii dintre o matrice şi un vector: 2n 2 Efortul total de calcul : O(8n 3 /3+2mn 2 ). Există o variantă mai eficientă bazată pe factorizarea matricei coeficienţilor. 15/39

16 Ideea metodei Formularea problemei Varianta Doolittle Ax = b, (14) A = LU, factorizare (15) A = L = U = LUx = b. (16) 16/39

17 Ideea metodei Formularea problemei Varianta Doolittle Ax = b, (17) A = LU, factorizare (18) LUx = b. (19) Notăm (50) y = Ux, (20) Ly = b, substituţie progresivă Ux = y. substituţie progresivă (21) 17/39

18 Varianta Doolittle Un exemplu simplu - pornind de la Gauss x 1 + 2x 2 x 3 = 1, 2x 1 + 3x 2 + x 3 = 0, 4x 1 x 2 3x 3 = 2. x 1 + 2x 2 x 3 = 1, 7x 2 x 3 = 2, 9x 2 + x 3 = 2. x 1 + 2x 2 x 3 = 1, 7x 2 x 3 = 2, 2/7x 3 = 4/7. x 3 = ( 4/7)/( 2/7) = 2, x 2 = ( 2+x 3 )/7 = 0, x 1 = 1 2x 2 + x 3 = 1. (22) (23) (24) (25) 18/39

19 Varianta Doolittle Un exemplu simplu - pornind de la Gauss Factorizare L = Verificare: LU = A U = / /1 9/7 1 A = /7 = (26) /7 1. (27). (28) 19/39

20 Varianta Doolittle Un exemplu simplu - pornind de la Gauss Substituţie progresivă Ly = b /7 1 y 1 y 2 y 3 = y 1 = 1 2y 1 + y 2 = 0 4y 1 9/7y 2 + y 3 = 2, (29) (30) y 1 = 1 y 2 = 2y 1 = 2 y 3 = 2 4y 1 + 9/7y 2 = 4/7. (31) 20/39

21 Varianta Doolittle Un exemplu simplu - pornind de la Gauss Substituţie regresivă Ux = y x x 2 = 2, (32) 0 0 2/7 x 3 4/7 x 1 + 2x 2 x 3 = 1 7x 2 x 3 = 2 (33) 2/7x 3 = 4/7. x 3 = ( 4/7)/( 2/7) = 2, x 2 = ( 2+x 3 )/7 = 0, x 1 = 1 2x 2 + x 3 = 1. (34) 21/39

22 Variante de factorizare Varianta Doolittle Factorizare nu este unică. Variante standard: Doolittle: l ii = 1 - se aplică la orice matrice nesingulară Crout: u ii = 1 - se aplică la orice matrice nesingulară Cholesky: L = U T - se aplică doar matricelor simetrice şi pozitiv definite [ ] [ ][ l11 0 u11 u = 12 l 21 l 22 0 u 22 l 11 u 11 = 3 l 12 u 12 = 2 l 21 u 11 = 6 l 21 u 12 + l 22 u 22 = 1 ]. (35) (36) Sistemul devine determinat doar dacă fixăm oricare două valori. 22/39

23 Variante de factorizare Varianta Doolittle Exemplu: [ ] = [ [ ] = ][ ] = [ 3 0 2/3 5/3 [ ][ 3 2/3 0 5/3 ][ 1 2/3 0 1 ]. ] (37). (38) 23/39

24 Algoritmul variantei Doolittle Varianta Doolittle A 0 = A, (39) A 1 = E 1 A 0, A 2 = E 2 A 1 = E 2 E 1 A 0, A n 1 = E n 1 A n 2 = E n 1 E n 2 E 2 E 1 A 0. (40) U = A n 1. (41) E = E n 1 E n 2 E 2 E 1, (42) U = EA. (43) Dar E este nesingulară şi: L = E 1. (44) 24/39

25 Algoritmul variantei Doolittle E 1 1 = Varianta Doolittle a 11 a 12 a 13 0 a 22 a 23 = E 1 a 11 a 12 a 13 a 21 a 22 a 23 0 a 32 a 33 a 31 a 32 a 33 E 1 = a 21 /a a 31 /a a 21 /a a 31 /a , E 1 2 =. (45). (46) a 32 /a (47) E 1 = E 1 1 E 1 2 E 1 n 2 E 1 n 1. (48) E 1 = a 21 /a = L. (49) a 31 /a 11 a 32 /a /39

26 Algoritmul variantei Doolittle Varianta Doolittle ; etapa de eliminare din metoda Gauss cu memorarea opuselor elementelor ; de multiplicare în triunghiul inferior al matricei pentru k = 1, n 1 ; parcurge sub-etape ale eliminării pentru i = k + 1, n ; parcurge liniile p = a ik /a kk ; element de multiplicare pentru j = k + 1, n ; parcurge coloanele a ij = a ij + pa kj a ik = p procedură factorizare_lu(n,a) ; factorizează "in loc" matricea a ; varianta Doolittle ; declaraţii pentru k = 1, n 1 ; parcurge sub-etape ale eliminării pentru i = k + 1, n ; parcurge liniile a ik = a ik /a kk ; element de multiplicare pentru j = k + 1, n ; parcurge coloanele a ij = a ij a ik a kj ; Factorizare "pe loc" : "A = L + U I" retur 26/39

27 Varianta Doolittle Calculul soluţiei după factorizare Notăm (50) LUx = b. (50) y = Ux, (51) Ly = b, (52) Ux = y. (53) "y = L 1 b" se rezolvă prin substituţie progresivă: l 11 y 1 = b 1, l 21 y 1 + l 22 y 2 = b 2, l n1 y 1 + l n2 y 2 + l nn y n = b n, y 1 = b 1 /l 11, y 2 = (b 2 l 21 y 1 )/l 22, y n = (b n n 1 k=1 l nky k )/l nn. (54) 27/39

28 Varianta Doolittle Calculul soluţiei după factorizare y 1 = b 1 /l 11, (55) i 1 y i = b i l ij y j /l ii, i = 2,..., n. (56) j=1 "x = U 1 y" se rezolvă prin substituţie regresivă: x n = y n /u nn, (57) n x i = y i u ij x j /u ii, i = n 1,...,1. (58) j=i+1 28/39

29 Varianta Doolittle Calculul soluţiei după factorizare procedură rezolvă_lu(n, a, b, x) ; rezolvă sistemul de ecuaţii ax = b prin factorizare LU ; matricea este presupusă a fi deja factorizată în loc ; varianta Doolittle ; declaraţii ; substituţie progresivă y 1 = b 1 ; formula (55), unde l 11 = 1 pentru i = 2, n s = 0 pentru j = 1, i 1 s = s + a ij y j ; formula (56), unde L este memorat în a y i = b i s ; deoarce l ii = 1 ; substituţie regresivă x n = y n/a nn ; formula (57), unde U este memorat în a pentru i = n 1, 1, 1 s = 0 pentru j = i + 1, n s = s + a ij x j x i = (y i s)/a ii retur 29/39

30 Evaluarea algoritmului Varianta Doolittle Complexitate: Erori: Factorizarea propriu-zisă a: T f = O(2n 3 /3) Rezolvările: T s = O(2n 2 ). Necesarul de memorie: M = O(n 2 ) Nu există erori de trunchiere; Erorile de rotunjire pot fi micşorate dacă se aplică strategii de pivotare. 30/39

31 Cazul sistemelor multiple Varianta Doolittle Rezolvate cu factorizare: T = O(2n 3 /3+2mn 2 ), mai mic decât cel necesar calculului inversei. Efort de calcul pentru rezolvarea sistemelor multiple. Nr. sisteme Metoda Complexitate T 1 Gauss 2n 3 /3+n 2 LU 2n 3 /3+2n 2 m - simultan Gauss 2n 3 /3+2mn 2 m - succesiv folosind inversa 8n 3 /3+2mn 2 LU 2n 3 /3+2mn 2 31/39

32 Cazul matricelor rare Ce sunt? Adaptarea metodelor directe - exemplu Matrice rară = matrice care conţine un număr foarte mare de elemente nenule. O matrice care nu este rară se numeşte matrice densă sau plină. Densitatea unei matrice = raportul dintre numărul de elemente nenule şi numărul total de elemente al matricei. Dacă, pentru o anumită matrice care are şi elemente nule, se poate elabora un algoritm care exploatează această structură şi care, este mai eficient decât algoritmul conceput pentru matricea plină, atunci aceasta este o matrice rară. 32/39

33 Ce sunt? Adaptarea metodelor directe - exemplu Formate de memorare a matricelor rare Matricelor bandă (de exemplu matrice tridiagonală): q 1 r p 2 q 2 r p 3 q 3 r M = p n 1 q n 1 r n p n q n Memorare cu ajutorul a trei vectori (CDS - Compressed Diagonal Storage): 0 p 2 p 3 p n 1 p n M rar = q 1 q 2 q 3 q n 1 q n r 1 r 2 r 3 r n /39

34 Metode directe pentru matrice rare Ce sunt? Adaptarea metodelor directe - exemplu Gauss pentru matrice tridiagonală, matricea la subetapa k de eliminare: q k r k p k+1 q k+1 r k p k+2 q k+2 r k p n q n Un singur element de multiplicare m = p k+1 /q k. Singura modificare suferind-o ecuaţia k + 1: q k+1 = q k+1 + m r k, şi temenul liber corespunzător. 34/39

35 Metode directe pentru matrice rare Ce sunt? Adaptarea metodelor directe - exemplu Gauss pentru matrice tridiagonală, matricea după eliminare. q 1 r q 2 r q k r k q k+1 r k q n 1 0 r n q n Retrosubstituţie x n = b n /q n, (59) q i x i + r i x i+1 = b i x i = (b i r i x i+1 )/q i, i = n 1,..., 1. (60) 35/39

36 Metode directe pentru matrice rare Ce sunt? Adaptarea metodelor directe - exemplu procedură Gauss_tridiag(n, p, q, r, b, x) ; rezolvă sistemul algebric liniar ax = b prin metoda Gauss ; matricea a este tridiagonală, memorată în p, q, r întreg n ; dimensiunea sistemului tablou real p[n], q[n], r[n] ; "matricea" coeficienţilor - indici de la 1 tablou real b[n] ; vectorul termenilor liberi tablou real x[n] ; vectorul soluţie întreg i, k ; etapa de eliminare din metoda Gauss pentru k = 1, n 1 ; parcurge sub-etape ale eliminării m = p k+1 /q k ; element de multiplicare q k+1 = q k+1 + mr k ; modifică element în linia k + 1 b k+1 = b k+1 + mb k ; modifică termenul liber al ecuaţiei k + 1 ; etapa de retrosubstituţie x n = b n/q n pentru i = n 1, 1, 1 x i = (b i r i x i+1 )/q i retur T = O(8n), M = O(5n). 36/39

37 Metode directe pentru matrice rare Ce sunt? Adaptarea metodelor directe - exemplu Pentru matrice rare fără o structură particulară, algoritmii trebuie adaptaţi memorării de tip CRS sau CCS. La eliminare matricea se poate umple, a.î. pivotarea urmăreşte nu numai stabilitatea numerică, ci şi minimizarea umplerilor, adică a elementelor nenule nou apărute. La matrice rare inversarea este practic imposibilă datorită fenomen de umplere. 37/39

38 Metode directe pentru matrice rare Ce sunt? Adaptarea metodelor directe - exemplu Factorizarea unei matrice rare poate salva raritatea dacă matricea are o anumită structură. A 1 = A 2 = Matricea A 1 are factorii LU rari, în timp ce matricea A 2 are factorii LU plini. Structura matricei joacă deci un rol important în conceperea algoritmului de rezolvare. 38/39

39 Formularea problemei Pag din [3] - Algoritmi numerici pentru calcule ştiintifice în ingineria electrică, Editura MatrixROM, 2013, disponibil la gabriela/books/algnr_matrixrom2013.pdf Notă. nu este parcursă în mod obligatoriu la laborator, dar intră în chestiunile care se vor examina în sesiune. Pentru înţelegerea profundă a lucrurilor, vă recomand să implementaţi, să testaţi şi să analizaţi toţi algoritmii care au descrişi în pseudcod în acest curs. Pentru bonus, puteţi redacta un raport dedicat acestei teme. Doritorii sunt rugaţi să îşi anunţe intenţia. 39/39

Sisteme de ecuaţii algebrice liniare - metode directe (II)

Sisteme de ecuaţii algebrice liniare - metode directe (II) Sisteme de ecuaţii algebrice liniare - metode directe (II) Prof.dr.ing. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică, Departamentul de Electrotehnică Suport didactic pentru

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

Sisteme liniare - metode directe

Sisteme liniare - metode directe Sisteme liniare - metode directe Radu T. Trîmbiţaş 27 martie 2016 1 Eliminare gaussiană Să considerăm sistemul liniar cu n ecuaţii şi n necunoscute Ax = b, (1) unde A K n n, b K n 1 sunt date, iar x K

Διαβάστε περισσότερα

Cap2. Sisteme de ecuaţii algebrice liniare - metode iterative

Cap2. Sisteme de ecuaţii algebrice liniare - metode iterative Cap2. Sisteme de ecuaţii algebrice liniare - metode iterative Prof.dr.ing. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică, Departamentul de Electrotehnică Suport didactic pentru

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

METODE NUMERICE: Laborator #5 Metode iterative pentru rezolvarea sistemelor: Jacobi, Gauss-Siedel, Suprarelaxare

METODE NUMERICE: Laborator #5 Metode iterative pentru rezolvarea sistemelor: Jacobi, Gauss-Siedel, Suprarelaxare METODE NUMERICE: Laborator #5 Metode iterative pentru rezolvarea sistemelor: Jacobi, Gauss-Siedel, Suprarelaxare Titulari curs: Florin Pop, George-Pantelimon Popescu Responsabil Laborator: Mădălina-Andreea

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

Matrice. Determinanti. Sisteme liniare

Matrice. Determinanti. Sisteme liniare Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Sisteme de ecuaţii algebrice liniare - metode iterative nestaţionare (semiiterative)

Sisteme de ecuaţii algebrice liniare - metode iterative nestaţionare (semiiterative) Sisteme de ecuaţii algebrice liniare - metode iterative nestaţionare (semiiterative) Conf.dr.ing. Gabriela Ciuprina Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică, Departamentul

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Esalonul Redus pe Linii (ERL). Subspatii.

Esalonul Redus pe Linii (ERL). Subspatii. Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Metode directe pentru sisteme de ecuaţii liniare

Metode directe pentru sisteme de ecuaţii liniare Metode directe pentru sisteme de ecuaţii liniare Eliminare gaussiană, descompunere LU, Cholesky Radu T. Trîmbiţaş Universitatea Babeş-Bolyai March 26, 2008 Radu T. Trîmbiţaş (Universitatea Babeş-Bolyai

Διαβάστε περισσότερα

Rezolvarea ecuaţiilor şi sistemelor de ecuaţii diferenţiale ordinare. Cuprins. Prof.dr.ing. Gabriela Ciuprina

Rezolvarea ecuaţiilor şi sistemelor de ecuaţii diferenţiale ordinare. Cuprins. Prof.dr.ing. Gabriela Ciuprina Rezolvarea ecuaţiilor şi sistemelor de ecuaţii diferenţiale ordinare Prof.dr.ing. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică Suport didactic pentru disciplina Metode numerice,

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

Activitatea A5. Introducerea unor module specifice de pregătire a studenţilor în vederea asigurării de şanse egale

Activitatea A5. Introducerea unor module specifice de pregătire a studenţilor în vederea asigurării de şanse egale Investeşte în oameni! FONDUL SOCIAL EUROPEAN Programul Operaţional Sectorial pentru Dezvoltarea Resurselor Umane 2007 2013 Axa prioritară nr. 1 Educaţiaşiformareaprofesionalăînsprijinulcreşteriieconomiceşidezvoltăriisocietăţiibazatepecunoaştere

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

Noţiuni introductive

Noţiuni introductive Metode Numerice Noţiuni introductive Erori. Condiţionare numerică. Stabilitatea algoritmilor. Complexitatea algoritmilor. Metodele numerice reprezintă tehnici prin care problemele matematice sunt reformulate

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,...

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,... 1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,..., X n şi coeficienţi în K se înţelege un ansamblu de egalităţi formale

Διαβάστε περισσότερα

Teme de implementare in Matlab pentru Laboratorul de Metode Numerice

Teme de implementare in Matlab pentru Laboratorul de Metode Numerice Teme de implementare in Matlab pentru Laboratorul de Metode Numerice As. Ruxandra Barbulescu Septembrie 2017 Orice nelamurire asupra enunturilor/implementarilor se rezolva in cadrul laboratorului de MN,

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

Criptosisteme cu cheie publică III

Criptosisteme cu cheie publică III Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

Integrarea numerică. Prof.dr.ing. Gabriela Ciuprina. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică

Integrarea numerică. Prof.dr.ing. Gabriela Ciuprina. Universitatea Politehnica Bucureşti, Facultatea de Inginerie Electrică Prof.dr.ing. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică Suport didactic pentru disciplina Metode numerice, 017-018 1/35 Cuprins Introducere 1 Introducere Importanţa evaluării

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

sistemelor de algebrice liniarel

sistemelor de algebrice liniarel Uivesitatea Tehică a Moldovei Facultatea de Eergetică Catedra Electroeergetica Soluţioarea sistemelor de ecuaţii algebrice liiarel lect.uiv. Victor Gropa «Programarea si Utilizarea Calculatoarelor I» Cupris

Διαβάστε περισσότερα

Lucian Maticiuc CURS I II. 1 Matrice şi determinanţi. Sisteme de ecuaţii liniare. 1.1 Matrice şi determinanţi

Lucian Maticiuc CURS I II. 1 Matrice şi determinanţi. Sisteme de ecuaţii liniare. 1.1 Matrice şi determinanţi Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr Lucian MATICIUC http://mathettituiasiro/maticiuc/ CURS I II Matrice şi determinanţi Sisteme de ecuaţii

Διαβάστε περισσότερα

I. Noţiuni introductive

I. Noţiuni introductive Metode Numerice Curs 1 I. Noţiuni introductive Metodele numerice reprezintă tehnici prin care problemele matematice sunt reformulate astfel încât să fie rezolvate numai prin operaţii aritmetice. Prin trecerea

Διαβάστε περισσότερα

Metode directe pentru sisteme de ecuaţii liniare

Metode directe pentru sisteme de ecuaţii liniare Metode directe pentru sisteme de ecuaţii liniare Eliminare gaussiană, descompunere LU, Cholesky Radu T. Trîmbiţaş Universitatea Babeş-Bolyai March 27, 206 Radu T. Trîmbiţaş (Universitatea Babeş-Bolyai

Διαβάστε περισσότερα

, m ecuańii, n necunoscute;

, m ecuańii, n necunoscute; Sisteme liniare NotaŃii: a ij coeficienńi, i necunoscute, b i termeni liberi, i0{1,,..., n}, j0{1,,..., m}; a11 1 + a1 +... + a1 nn = b1 a11 + a +... + an n = b (S), m ecuańii, n necunoscute;... am11 +

Διαβάστε περισσότερα

Rezolvarea sistemelor liniare determinate

Rezolvarea sistemelor liniare determinate Seminar 2 Rezolvarea sistemelor liniare determinate Acest seminar este dedicat metodelor numerice de rezolvare a sistemelor liniare determinate, i.e. al sistemelor liniare cu numărul de ecuaţii egal cu

Διαβάστε περισσότερα

Interpolarea funcţiilor.

Interpolarea funcţiilor. Interpolarea funcţiilor.. Prof.dr.ing. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică Suport didactic pentru disciplina Metode numerice, 2017-2018 1/52 Cuprins Introducere 1 Introducere

Διαβάστε περισσότερα

1.3. Erori în calculele numerice

1.3. Erori în calculele numerice Prof.dr.ing. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică, Departamentul de Electrotehnică Suport didactic pentru disciplina Metode numerice, 2017-2018 1/41 Cuprins Caracterizarea

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

METODE NUMERICE: Laborator #7 Calculul valorilor proprii si vectorilor proprii prin metodele puterii. Metoda Householder

METODE NUMERICE: Laborator #7 Calculul valorilor proprii si vectorilor proprii prin metodele puterii. Metoda Householder METODE NUMERICE: Laborator #7 Calculul valorilor proprii si vectorilor proprii prin metodele puterii. Metoda Householder Titulari curs: Florin Pop, George-Pantelimon Popescu Responsabil Laborator: Alexandru

Διαβάστε περισσότερα

Laborator 6. Integrarea ecuaţiilor diferenţiale

Laborator 6. Integrarea ecuaţiilor diferenţiale Laborator 6 Integrarea ecuaţiilor diferenţiale Responsabili: 1. Surdu Cristina(anacristinasurdu@gmail.com) 2. Ştirbăţ Bogdan(bogdanstirbat@yahoo.com) Obiective În urma parcurgerii acestui laborator elevul

Διαβάστε περισσότερα

Examen AG. Student:... Grupa:... ianuarie 2011

Examen AG. Student:... Grupa:... ianuarie 2011 Problema 1. Pentru ce valori ale lui n,m N (n,m 1) graful K n,m este eulerian? Problema 2. Să se construiască o funcţie care să recunoască un graf P 3 -free. La intrare aceasta va primi un graf G = ({1,...,n},E)

Διαβάστε περισσότερα

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8

Διαβάστε περισσότερα

Ecuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1)

Ecuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1) Ecuatii exponentiale Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. Cea mai simpla ecuatie exponentiala este de forma a x = b, () unde a >, a. Afirmatia.

Διαβάστε περισσότερα

PROBLEME DE VALORI ŞI VECTORI PROPRII

PROBLEME DE VALORI ŞI VECTORI PROPRII 9 PROBLEME DE VALORI ŞI VECTORI PROPRII 81 Introducere Problema de valori proprii a unui operator liniar A: Ax = λx x vector propriu, λ valoare proprie În reprezentarea unei baze din < n problemă matricială

Διαβάστε περισσότερα

Calculul valorilor proprii

Calculul valorilor proprii Laborator 5 Calculul valorilor proprii 5.1 Valori şi vectori proprii Definiţia 5.1 Fie A C n n. Un vector x C n n este un vector propriu al matricei A, asociat valorii proprii λ C, dacă sunt satisfăcute

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

Sisteme de ecuaţii diferenţiale

Sisteme de ecuaţii diferenţiale Curs 5 Sisteme de ecuaţii diferenţiale 5. Sisteme normale Definiţie 5.. Se numeşte sistem normal sistemul de ecuaţii diferenţiale de ordinul întâi dx dt = f (t, x, x 2,..., x n ) dx 2 dt = f 2(t, x, x

Διαβάστε περισσότερα

Ecuatii trigonometrice

Ecuatii trigonometrice Ecuatii trigonometrice Ecuatiile ce contin necunoscute sub semnul functiilor trigonometrice se numesc ecuatii trigonometrice. Cele mai simple ecuatii trigonometrice sunt ecuatiile de tipul sin x = a, cos

Διαβάστε περισσότερα

Aproximarea funcţiilor prin metoda celor mai mici pătrate

Aproximarea funcţiilor prin metoda celor mai mici pătrate Aproximarea funcţiilor prin metoda celor mai mici pătrate Prof.dr.ing. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică Suport didactic pentru disciplina i Numerici, 2016-2017 1/60

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Algoritmi numerici pentru analiza circuitelor electrice rezistive neliniare

Algoritmi numerici pentru analiza circuitelor electrice rezistive neliniare numerici pentru analiza circuitelor electrice rezistive neliniare Prof.dr.ing. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică, Departamentul de Electrotehnică Suport didactic

Διαβάστε περισσότερα

Algebra si Geometrie Seminar 9

Algebra si Geometrie Seminar 9 Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

Metode iterative pentru rezolvarea sistemelor de ecuatii liniare

Metode iterative pentru rezolvarea sistemelor de ecuatii liniare Metode iterative pentru rezolvarea sistemelor de ecuatii liniare 1 Metode iterative clasice Metodele iterative sunt intens folosite, in special pentru rezolvarea de probleme mari, cum sunt cele de discretizare

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Proiectarea Algoritmilor 2. Scheme de algoritmi Divide & Impera

Proiectarea Algoritmilor 2. Scheme de algoritmi Divide & Impera Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Proiectarea Algoritmilor 2. Scheme de algoritmi Divide & Impera Cuprins Scheme de algoritmi Divide et impera Exemplificare

Διαβάστε περισσότερα

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy Metode Runge-Kutta Radu T. Trîmbiţaş 8 ianuarie 7 Probleme scalare, pas constant Dorim să aproximăm soluţia problemei Cauchy y (t) = f(t, y), a t b, y(a) = α. pe o grilă uniformă de (N + )-puncte din [a,

Διαβάστε περισσότερα

Laborator 1: INTRODUCERE ÎN ALGORITMI. Întocmit de: Claudia Pârloagă. Îndrumător: Asist. Drd. Gabriel Danciu

Laborator 1: INTRODUCERE ÎN ALGORITMI. Întocmit de: Claudia Pârloagă. Îndrumător: Asist. Drd. Gabriel Danciu INTRODUCERE Laborator 1: ÎN ALGORITMI Întocmit de: Claudia Pârloagă Îndrumător: Asist. Drd. Gabriel Danciu I. NOŢIUNI TEORETICE A. Sortarea prin selecţie Date de intrare: un şir A, de date Date de ieşire:

Διαβάστε περισσότερα

Problema celor mai mici pătrate

Problema celor mai mici pătrate Seminar 3 Problema celor mai mici pătrate Acest seminar este dedicat metodelor numerice pentru rezolvarea unei probleme numerice foarte importante întâlnită în multe aplicaţii, aşa numita problemă a celor

Διαβάστε περισσότερα

1.4 Schimbarea bazei unui spaţiu vectorial

1.4 Schimbarea bazei unui spaţiu vectorial Algebră liniară, geometrie analitică şi diferenţială. Schimbarea bazei unui spaţiu vectorial După cum s-a văzut deja, într-un spaţiu vectorial V avem mai multe baze, iar un vector x V va avea câte un sistem

Διαβάστε περισσότερα

Integrarea numerică. Prof.dr.ing. Gabriela Ciuprina. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică

Integrarea numerică. Prof.dr.ing. Gabriela Ciuprina. Universitatea Politehnica Bucureşti, Facultatea de Inginerie Electrică Prof.dr.ing. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică Suport didactic pentru disciplina Algoritmi Numerici, 016-017 1/40 Cuprins Introducere 1 Introducere Importanţa evaluării

Διαβάστε περισσότερα

Conf.dr.ing. Gabriela Ciuprina

Conf.dr.ing. Gabriela Ciuprina Conf.dr.ing. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică, Departamentul de Electrotehnică Suport didactic pentru disciplina Algoritmi Numerici, 2012 Cuprins 1 2 3 4 5 6 În

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

Adriana-Ioana Lefter DIFERENŢIALE) Anul I, Facultatea de Chimie Note de curs

Adriana-Ioana Lefter DIFERENŢIALE) Anul I, Facultatea de Chimie Note de curs Adriana-Ioana Lefter MATEMATICĂ (ALGEBRĂ ŞI ECUAŢII DIFERENŢIALE) Anul I, Facultatea de Chimie Note de curs Cuprins Partea 1 ALGEBRĂ 1 Capitolul 1 Matrice şi determinanţi 3 11 Corpuri 3 12 Matrice 4 13

Διαβάστε περισσότερα

5.1. Noţiuni introductive

5.1. Noţiuni introductive ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul

Διαβάστε περισσότερα

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4 SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1 Calea 13 Septembrie, r 09, Sector 5, 0507, București Tel: +40 (0)1 317 36 50 Fax: +40 (0)1 317 36 54 Olimpiada Naţioală de Matematică Etapa locală -00016 Clasa a IX-a M 1 Fie 1 abc,,, 6 şi ab c 1 Să se

Διαβάστε περισσότερα

1.3 Baza a unui spaţiu vectorial. Dimensiune

1.3 Baza a unui spaţiu vectorial. Dimensiune .3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este

Διαβάστε περισσότερα

Nicolae Cotfas ELEMENTE DE EDITURA UNIVERSITĂŢII DIN BUCUREŞTI

Nicolae Cotfas ELEMENTE DE EDITURA UNIVERSITĂŢII DIN BUCUREŞTI Nicolae Cotfas ELEMENTE DE ALGEBRĂ LINIARĂ EDITURA UNIVERSITĂŢII DIN BUCUREŞTI Introducere Pe parcursul acestei cărţi ne propunem să prezentăm într-un mod cât mai accesibil noţiuni si rezultate de bază

Διαβάστε περισσότερα

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a

Διαβάστε περισσότερα

CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă.

CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă. Sala: 2103 Decembrie 2014 Conf. univ. dr.: Dragoş-Pătru Covei CURS 11: ALGEBRĂ Specializarea: C.E., I.E., S.P.E. Nota: Acest curs nu a fost supus unui proces riguros de recenzare pentru a fi oficial publicat.

Διαβάστε περισσότερα

Matrici şi sisteme de ecuaţii liniare

Matrici şi sisteme de ecuaţii liniare Matrici şi sisteme de ecuaţii liniare 1. Matrici şi determinanţi Reamintim aici câteva proprietăţi ale matricilor şi determinanţilor. Definiţia 1.1. Fie K un corp (comutativ) şi m, n N. O funcţie A : {1,...,

Διαβάστε περισσότερα

Gheorghe PROCOPIUC PROBLEME DE ALGEBRĂ LINIARĂ GEOMETRIE

Gheorghe PROCOPIUC PROBLEME DE ALGEBRĂ LINIARĂ GEOMETRIE Gheorghe PROCOPIUC PROBLEME DE ALGEBRĂ LINIARĂ ŞI GEOMETRIE IAŞI, 005 CUPRINS 1 MATRICE ŞI SISTEME ALGEBRICE LINIARE 5 1.1 Matrice şi determinanţi.......................... 5 1. Sisteme de ecuaţii algebrice

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3 SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.3.ALCHINE

Capitolul 2 - HIDROCARBURI 2.3.ALCHINE Capitolul 2 - HIDROCARBURI 2.3.ALCHINE TEST 2.3.3 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Acetilena poate participa la reacţii de

Διαβάστε περισσότερα

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt. liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia

Διαβάστε περισσότερα