1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,...

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,..."

Transcript

1 1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,..., X n şi coeficienţi în K se înţelege un ansamblu de egalităţi formale (S) a 11 X 1 + a 12 X a 1n X n = b 1 a 21 X 1 + a 22 X a 2n X n = b 2, a ij, b i K. a m1 X 1 + a m2 X a mn X n = b m Dacă b 1 = = b n = 0, atunci spunem că (S) este un sistem omogen. 2) Un vector x = (x 1,..., x n ) K n este soluţie pentru (S) dacă înlocuind necunoscutele sistemului cu componentele vectorului X i := x i toate egalităţile ce se obţin sunt adevărate. 3) Sistemul (S) este compatibil dacă are cel puţin o soluţie şi este incompatibil dacă nu are soluţii. (S) este compatibil determinat dacă are exact o soluţie, iar dacă are cel puţin două suluţii, atunci spunem că este compatibil nedeterminat. Definiţia 1.2. Fiind dat un sistem (S), matricea A = (a ij ) s.n. a a 1n b 1 matricea sitemului (S). Matricea A e =.... s.n. a m1... a mn b m matricea extinsă ataşată lui (S). Observaţia 1.3. (Forma matriceală) Dacă A = [a ij ] este matricea sistemului (S), atunci sistemul poate fi scris sub forma: (S) AX t = b t, unde X = (X 1,... X n ) şi b = (b 1,..., b m ). Observaţia 1.4. (Forma vectorială) Dacă privim coloanele matricii A ca vectori coloană din K-spaţiul vectorial K n, atunci sistemul poate fi pus sub forma: (S)X 1 c A X n c A n = b t. Teorema 1.5. (Kroneker-Capelli) Sistemul de ecutaţii liniare (S) este compatibil dacă şi numai dacă rang(a) = rang(a e ). Demonstraţie.. Presupunem că sistemul (S) este compatibil. Există, deci, (α 1,..., α n ) K n astfel încât α 1 c A α n c A n = b t 1

2 2 Dar, de aici, rezultă că b t c A 1,..., c A n, adică c A 1,..., c A n = c A 1,..., c A n, b t rang[c A 1,..., c A n ] = rang[c A 1,..., c A n, b t ] rang(a) = rang(a e ).. Presupunem acum că rang(a) = rang(a e ), adică rang[c A 1,..., c A n ] = rang[c A 1,..., c A n, b t ]. Conform definiţiei rangului unui sistem de vectori, avem dim K c A 1,..., c A n = dim K c A 1,..., c A n, b t, iar ţinând cont de faptul că c A 1,..., c A n este un subspaţiu a lui c A 1,..., c A n, b t, deducem că c A 1,..., c A n = c A 1,..., c A n, b t. Vectorul b t c A 1,..., c A n, există deci (α 1,..., α n ) K n astfel încât α 1 c A α n c A n = b t, adică, sistemul (S) este compatibil. Observaţia 1.6. Criteriul lui Rouché, studiat în liceu este o consecinţă a teoremei Kroneker-Capelli. Teorema 1.7. Soluţiile unui sistem omogen (S) cu n necunoscute formează un subspaţiu al K-spaţiului vectorial K n, de dimensiune n rang(a). Demonstraţie. Fie (S) un sistem cu m ecuaţii şi n necunoscute, cu forma matriceala A X t = 0 t. Trecând la transpuse, în identitatea matriceală anterioară, obţinem (X 1,..., X n )A t = (0,..., 0). Considerăm aplicaţia liniară f A : K n K m, cu [f A ] bb = A t, unde e este baza canonică lui K n, iar e este baza canonică lui K m. Dacă (X 1,..., X n ) K n, avem f A (X 1,..., X n ) = (X 1,..., X n )[f A ] ee e t = (X 1,..., X n )A t e t. Deducem că (α 1,..., α n ) K n este soluţie a sistemului (S), dacă, şi numai dacă, (α 1,..., α n ) Ker(f A ). Mulţimea soluţiilor sistemului (S) coincide deci cu Ker(f A ). Dar Ker(f A ) este subspaţiu a lui K n, de dimensiune def(f A ) = n rang(f A ) = n rang(a t ) = n rang(a).

3 2. REZOLVAREA SISTEMELOR DE ECUAŢII LINIARE 3 Corolarul 1.8. Un sistem omogen (S) are doar soluţia banală (0,..., 0) dacă şi numai dacă n = rang(a). Observaţia 1.9. Din demonstraţia teoremei se deduce că subspaţiul soluţiilor unui sistem omogen coincide cu nucleul aplicaţiei liniare f : K n K m cu [f] ee = A t, unde e şi e sunt bazele canonice. Prin urmare, pentru determinarea solţiilor unui sistem omogen se pot aplica metodele prezentate pentru determinarea nucleelor de aplicaţii liniare. Teorema Fie (S) AX t = b t un sistem de ecuaţii liniare şi (S 0 ) sistemul omogen AX t = 0 (obţinut prin înlocuirea coloanei b cu 0). Dacă x 0 este o soluţie particulară a lui (S) şi S 0 este mulţimea soluţiilor lui (S 0 ), atunci mulţimea soluţiilor sistemului (S) este S = x 0 + S 0 = x 0 + y y S 0 }. Demonstraţie. Fie (S) un sistem de m ecuaţii, cu n necunsocute. Considerăm aplicaţia liniară f A : K n K m cu [f A ] ee = A t, unde A M m,n (K) este matricea sistemului (S). Am notat cu e şi e baza canonică din K n, respectiv K m. Dacă x = (x 1,..., x n ) K n, avem f A (x 1,..., x n ) = (x 1,..., x n )A t K m. Vectorul x este o soluţie a lui (S) dacă şi numai dacă Ax t = b t xa t = b f(x) = b. Deci, x 0, fiind o soluţie pariculară a lui (S) avem f(x 0 ) = b şi x S f(x) = f(x 0 ) f(x) f(x 0 ) = 0 f(x x 0 ) = 0. Un vector y K n este soluţie a sistemului (S 0 ), dacă şi numai dacă f(y) = 0, deci f(x x 0 ) = 0 x x 0 S 0 y S 0 a.i. x x 0 = y y S 0 a.i. x = x 0 + y x x 0 + S Rezolvarea sistemelor de ecuaţii liniare Teorema 2.1. (Regula lui Cramer) Un sistem (S) AX t = b t cu n ecuaţii şi n necunoscute (adică A M n (K)) este compatibil determinat dacă şi numai dacă det(a) 0. În aceste condiţii soluţia este x = (x 1,..., x n ) cu x i = (det(a)) 1 det[c A 1,..., c A i 1, b t, c A i+1,..., c A n ], i 1,..., n}.

4 4 Demonstraţie.. Presupunem că sistemul (S) este compatibl determinat. Mulţimea soluţiilor lui (S), S, are deci un singur element. Conform Teoremei 1.10 avem S = x 0 + S 0 = x 0 + y y S 0 }. În consecinţă, mulţimea S 0 nu poate avea decât un singur element. Dar, S 0 fiind un K-subspaţiu a lui K n, nu poate fi egal decât cu 0}. Conform Corolarului 1.8, rang(a) = n, deci det(a) 0.. Presupunem că det(a) 0. Sistemul omogen ataşat, (S 0 ), are deci doar soluţia banală, adică S 0 = 0}. Conform Teoremei 1.10, mulţimea S are cel mult un elemet. Nu ne rămâne să demonstrăm, decât existenţa unei soluţii particulare a sistemului (S). Considerăm scalarii x i K, definiţi astfel x i = (det(a)) 1 det[c A 1,..., c A i 1, b t, c A i+1,..., c A n ], i 1,..., n}. Pentru a ajunge la concluzia că x 0 = (x 1,..., x n ) este o soluţie a lui (S) e suficient să arătăm că Ax t 0 = b t x t 0 = A 1 b t x t 0 = (det(a)) 1 A b t, unde A este adjuncta matricii A. Avem deci Ax t 0 = b t x i = (det(a) 1 (Γ 1i Γ 2i... Γ ni ) b 1. b n = (det(a)) 1 n b j Γ ji, unde Γ ji sunt complemenţii algebrici corespunzători. Dar, n j=1 b jγ ji nu reprezintă altceva decât dezvoltarea după coloana a i-a a determinantului det[c A 1,..., c A i 1, b t, c A i+1,..., c A n ] i 1,..., n}. Aşadar, x 0 reprezintă unica soluţie a sistemului (S). Metode de rezolvare I. Metoda lui Cramer Example 2.2. Să se rezolve sistemul x 1 + x 2 x 3 = 0 3x 1 2x 2 + 2x 3 = 5 2x 1 + 3x 2 2x 3 = 2. Calculând determinantul matricii sistemului det(a) = = 5, j=1

5 2. REZOLVAREA SISTEMELOR DE ECUAŢII LINIARE 5 deducem că sistemul este compatibil determinat. soluţia calculăm determinaţii d 1 = = 5, d 2 = = 10, d 3 = = 5. Pentru a obţine d i este determinantul matricii obţinute din A prin înlocuirea coloanei a i-a cu coloana termenilor liberi. Componenetele soluţiei sunt x 1 = d 1 det(a) = 5 5 = 1, x 2 = d 2 det(a) = 10 5 = 2, x 3 = d 3 det(a) = 15 5 = 3. II. Folosind lema substituţiei Observaţia 2.3. Este suficient să găsim o bază pentru spaţiul soluţiilor sistemului omogen (numit sistem fundamental de soluţii) şi o soluţie particulară. Considerăm sistemul (S) Ax t = b t, cu m ecuaţii şi n necunoscute. Aplicăm lema substituţiei pentru a calcula rang(a), adică rangul sistemului de vectori [c A 1,..., c n ], format din coloanele lui A. Tabelul ini ţial va arăta astfel c A 1 c A 2... c A n b t e 1 b 1 e 2 A b 2. e m Presupunem că după un număr de r paşi ajungem la următoarea situaţie. b m

6 6 c A 1 c A r c A r+1 c A n b t c A β 1,r+1 β 1,n b c A r 0 1 β r,r+1 β r,n b r c A r b r c A m b m Observăm că rang(a) = r. Ca sistemul (S) să fie compatibil rangul matricii extinse, A e, trebuie să fie tot r. Această condiţie este echivalentă cu În aceste condiţii avem b r+1 = = b m = 0. b t = b 1 c A b r c A r + 0 c A r c A n, adică x 0 = (b 1,..., b r, 0,..., 0) este o soluţie particulară a sistemului (S). Dimensiunea subspaţiului soluţiilor sistemului omogen ataşat, S 0 este n rang(a), adică n r. Pentru a determina o bază a lui S 0 este suficient să găsim n r vectori liniari independenţi. Din ultimul tabel avem c A r+1 = β 1,r+1 c A β r,r+1 c A r, c A n = β 1,n c A β r,n c A r adică β 1,r+1 c A β r,r+1 c A r + ( 1) c A r c A r c A n = 0 β 1,n c A β r,n c A r + 0 c A r c A r ( 1) c A n = 0. Obţinem astfel următoarele soluţii ale sistemului omogen y 1 = (β 1,r+1,..., β r,r+1, 1, 0,..., 0) S 0. y n r = (β 1,n,..., β r,n, 0, 0,..., 1) S 0 Vectorii y 1,..., y n r, fiind liniari independenţi, formează o bază în S 0. Cunoscând soluţia particulară x 0 şi o bază a lui S 0 putem determina soluţiile lui (S).

7 2. REZOLVAREA SISTEMELOR DE ECUAŢII LINIARE 7 Example 2.4. a) Să se rezolve sistemul x 1 x 2 + 2x 3 + x 4 + 3x 5 = 2 x 1 x 2 + x 3 + x 4 + x 5 = 1 3x 1 + 2x 2 + x 3 4x 4 + 4x 5 = 3 Folosind lema substituţiei avem tabelul c A 1 c A 2 c A 3 c A 4 c A 5 b t e e e c A e e c A c A e c A c A c A Observăm că rang(a) = rang(a e ) = 3, deci sistemul este compatibil. Coloana termeilor liberi se poate exprima astfel b t = 4c A 1 + 1c A 3 + 4c A 2 = 4c A 1 + 4c A 2 + 1c A 3 + 0c A 4 + 0c A 5, de unde deducem că x 0 = (4, 1, 1, 0, 0) este o soluţie a lui (S). Conform ultimului tabel avem c A 4 = 2c A 1 + c A 2 c 5 = 2c A 3 + c A 2, adică 2c A 1 + c A 2 + 0c A 3 + ( 1)c a 4 + 0c A 5 = 0 0c A 1 + c A 2 + 2c A 3 + 0c a 4 + ( 1)c A 5 = 0. Obţinem astfel următoarele soluţii ale sistemului omogen ataşat y 1 = (2, 1, 0, 1, 0) S 0 y 2 = (0, 1, 2, 0, 1) S 0. Ştim că dim R S 0 = 5 rang(a) = 5 3 = 2. Vectorii y 1, y 2, fiind liniar independenţi, formează o bază în S 0. Aşadar S 0 = y 1, y 2 = αy 1 + βy 2 α, β R} = (2α, α + β, 2β, α, β) α, β R},.

8 8 de unde deducem că multimea soluţiilor sistemului (S) este S = x 0 + S 0 = (4 + 2α, 4 + α + β, 1 + 2β, α, β) α, β R}. b) Să se rezolve sistemul x 1 x 2 + 2x 3 + x 4 + 3x 5 = 2 x 1 x 2 + x 3 + x 4 + x 5 = 1 2x 1 2x 2 + 3x 3 + 2x 4 + 4x 5 = 3 Folosind lema substituţiei avem tabelul c A 1 c A 2 c A 3 c A 4 c A 5 b t e e e c A e e c A c A e Sistemul este incompatibil pentru că rang(a) = 2 3 = rang(a e ). III. Metoda lui Gauss Definiţia 2.5. Spunem că două sisteme de ecuaţii liniare sunt echivalente dacă ambele sunt compatbile şi au aceleaşi soluţii sau dacă ambele sunt incompatibile. Teorema 2.6. Dacă sistemele (S) şi (S ) au matricile extinse echivalente pe linii, atunci ele sunt echivalente. Metoda lui Gauss constă în aducerea matricii extinse la o fomă eşalon şi rezolvarea sistemului care are ca matrice extinsă matricea eşalon obţinută. Example 2.7. a) Să se rezolve folosind metoda lui Gauss sistemul x 1 x 2 + 2x 3 + x 4 + 3x 5 = 2 x 1 x 2 + x 3 + x 4 + x 5 = 1 3x 1 + 2x 2 + x 3 4x 4 + 4x 5 = 3 Aducem matricea extinsă a asistemului la o matrice eşalon l 2 =l 2 l 1 l =l 3 +3l

9 Obţinem sistemul 2. REZOLVAREA SISTEMELOR DE ECUAŢII LINIARE 9 l 2 =l 3 l 3 = l x 1 x 2 + 2x 3 + x 4 + 3x 5 = 2 x 2 + 7x 3 x x 5 = 3 x 3 + 2x 5 = 1, echivalent cu cel iniţial, iar rezolvându-l obţinem S = (4 2α, 4 α β, 1 2β, α, β) α, β R}. b) Să se rezolve folosind metoda lui Gauss sistemul x 1 x 2 + 2x 3 + x 4 + 3x 5 = 2 x 1 x 2 + x 3 + x 4 + x 5 = 1 2x 1 2x 2 + 3x 3 + 2x 4 + 4x 5 = 3 Aducem matricea extinsă a sistemului la o matrice eşalon l 2 =l 2 l 1 l =l 3 2l l 3 l Observăm că rang(a) = 2 3 = rang(a e ), deci sistemul este incompatibil. c) Să se rezolve folosind metoda lui Gauss sistemul x + y + z = 0 x + 4y + 10z = 3 2x + 3y + 5z = 1. Aducând matricea extinsă a sistemului la o matrice eşalon l 2 =l 2 l 1 l =l 3 2l l 3=l 3 l observăm că rang(a) = 2 = rang(a e ). Sistemul este deci compatibil nedeterminat. Sistemul echivalent este x + y + z = 0 iar rezolvându-l obţinem y + 3z = 1,. S = (2α 1, 1 3α, α) α R}.,

10 10 Metoda lui Gauss-Jordan se bazează pa acelaşi principiu ca şi metda lui Gauss, cu diferenţa că se aduce matricea la o formă care este diagonală pe primele n coloane (corespunzătoare matricii sistemlui). Example 2.8. a) Considerând sistemul din Exemplul 2.7 a), am văzut că A e Aplicând succesiv transformări elementare pe linii avem l 2 =l 2 7l l 1 =l 1 l 2 A e l 1 =l 1 2l 3 l = l Obţinem sistemul echivalent cu cel iniţial. x 1 + 2x 4 = 4 x 2 + x 4 + x 5 = 4 x 3 + 2x 5 = 1, Example 2.9. Să se rezolve cu toate metodele studiate sistemele: 3x 1 + 4x 2 + x 3 + 2x 4 = 3 a) 6x 1 + 8x 2 + 2x 3 + 5x 4 = 7 9x x 2 + 3x x 4 = 13 3x 1 + 4x 2 + x 3 + 2x 4 = 3 b) 6x 1 + 8x 2 + 2x 3 + 5x 4 = 7 9x x 2 + 3x x 4 = 14 a) I. Folosind lema substituţiei avem tabelul. c A 1 c A 2 c A 3 c A 4 b t e e e c e e c c e

11 2. REZOLVAREA SISTEMELOR DE ECUAŢII LINIARE 11 Observăm că rang(a) = rang(a e ) = 2, deci sistemul este compatibil. Coloana termeilor liberi se poate exprima astfel b t = c A 3 + c A 4 = 0c A 1 + 0c A 2 + 1c A 3 + 1c A 4, de unde deducem că x 0 = (0, 0, 1, 1) este o soluţie a sistemului. Conform ultimului tabel avem c A 1 = 3c A 3 c 2 = 4c A 3, adică c A 1 3c A 3 = 0 c 2 4c A 3 = 0, Obţinem astfel următoarele soluţii ale sistemului omogen ataşat y 1 = (1, 0, 3, 0) S 0 y 2 = (0, 1, 4, 0) S 0. Ştim că dim R S 0 = 4 rang(a) = 4 2 = 2. Vectorii y 1, y 2, fiind liniar independenţi, formează o bază în S 0. Aşadar S 0 = y 1, y 2 = αy 1 + βy 2 α, β R} = (α, β, 3α 4β, 0) α, β R}, de unde deducem că multimea soluţiilor sistemului (S) este S = x 0 + S 0 = (α, β, 1 3α 4β, 1) α, β R}. II. Aplicăm metoda Gauss şi aducem matricea extinsă a sistemului la o matrice eşalon astfel A e l 2 =l 2 2l 1 l =l 3 3l l 3 =l 3 4l Observăm că rang(a) = 2 = rang(a e ). Sistemul este deci compatibil nedeterminat. Sistemul echivalent este 3x1 + 4x 2 + x 3 + 2x 2 = 3 x 4 = 1,.

12 12 iar rezolvându-l obţinem x 1 = α, x 2 = β, x 3 = 1 3α 4β x 4 = 1, α, β R. III. Putem aplica şi metoda Gauss-Jordan. Avem A e l 1=l 1 2l Sistemul obţinut astfel este 3x1 + 4x 2 + x 3 = 1 x 4 = 1, iar rezolvându-l ajungem la aceeaşi soluţie. b) Folosind lema substituţiei avem tabelul. c A 1 c A 2 c A 3 c A 4 b t e e e c e e c c e Sistemul este incompatibil pentru că rang(a) = 2 3 = rang(a e ). II. Aplicăm metoda Gauss şi aducem matricea extinsă a sistemului la o matrice eşalon astfel A e l 3 =l 3 4l 2 l 2 =l 2 2l 1 l 3 =l 3 3l

13 2. REZOLVAREA SISTEMELOR DE ECUAŢII LINIARE 13 Observăm că rang(a) = 2 3 = rang(a e ). Ajungem la aceeaşi concluzie.

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

Matrici şi sisteme de ecuaţii liniare

Matrici şi sisteme de ecuaţii liniare Matrici şi sisteme de ecuaţii liniare 1. Matrici şi determinanţi Reamintim aici câteva proprietăţi ale matricilor şi determinanţilor. Definiţia 1.1. Fie K un corp (comutativ) şi m, n N. O funcţie A : {1,...,

Διαβάστε περισσότερα

Matrice. Determinanti. Sisteme liniare

Matrice. Determinanti. Sisteme liniare Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice

Διαβάστε περισσότερα

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

1.3 Baza a unui spaţiu vectorial. Dimensiune

1.3 Baza a unui spaţiu vectorial. Dimensiune .3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Lucian Maticiuc CURS I II. 1 Matrice şi determinanţi. Sisteme de ecuaţii liniare. 1.1 Matrice şi determinanţi

Lucian Maticiuc CURS I II. 1 Matrice şi determinanţi. Sisteme de ecuaţii liniare. 1.1 Matrice şi determinanţi Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr Lucian MATICIUC http://mathettituiasiro/maticiuc/ CURS I II Matrice şi determinanţi Sisteme de ecuaţii

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

1.4 Schimbarea bazei unui spaţiu vectorial

1.4 Schimbarea bazei unui spaţiu vectorial Algebră liniară, geometrie analitică şi diferenţială. Schimbarea bazei unui spaţiu vectorial După cum s-a văzut deja, într-un spaţiu vectorial V avem mai multe baze, iar un vector x V va avea câte un sistem

Διαβάστε περισσότερα

, m ecuańii, n necunoscute;

, m ecuańii, n necunoscute; Sisteme liniare NotaŃii: a ij coeficienńi, i necunoscute, b i termeni liberi, i0{1,,..., n}, j0{1,,..., m}; a11 1 + a1 +... + a1 nn = b1 a11 + a +... + an n = b (S), m ecuańii, n necunoscute;... am11 +

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

Activitatea A5. Introducerea unor module specifice de pregătire a studenţilor în vederea asigurării de şanse egale

Activitatea A5. Introducerea unor module specifice de pregătire a studenţilor în vederea asigurării de şanse egale Investeşte în oameni! FONDUL SOCIAL EUROPEAN Programul Operaţional Sectorial pentru Dezvoltarea Resurselor Umane 2007 2013 Axa prioritară nr. 1 Educaţiaşiformareaprofesionalăînsprijinulcreşteriieconomiceşidezvoltăriisocietăţiibazatepecunoaştere

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Seminar Algebra. det(a λi 3 ) = 0

Seminar Algebra. det(a λi 3 ) = 0 Rezolvari ale unor probleme propuse "Matematica const în a dovedi ceea ce este evident în cel mai puµin evident mod." George Polya P/Seminar Valori si vectori proprii : Solutie: ( ) a) A = Valorile proprii:

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian.

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian. Spaţii vectoriale 1. Spaţii vectoriale. Definiţii şi proprietăţi de bază În continuare prin corp vom înţelege corp comutativ. Dacă nu se precizează altceva, se vor folosi notaţiile standard pentru elementele

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

Esalonul Redus pe Linii (ERL). Subspatii.

Esalonul Redus pe Linii (ERL). Subspatii. Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

Algebră liniară CAPITOLUL 1

Algebră liniară CAPITOLUL 1 Algebră liniară CAPITOLUL SPAŢII VECTORIALE FINIT DIMENSIONALE. Definiţia spaţiilor vectoriale Pentru a introduce noţiunea de spaţiu vectorial avem nevoie de noţiunea de corp comutativ de caracteristică

Διαβάστε περισσότερα

Sala: Octombrie 2014 SEMINAR 1: ALGEBRĂ. este un Q-spaţiu vectorial, faţă de operaţiile uzuale de adunare şi înmulţire cu un număr raţional.

Sala: Octombrie 2014 SEMINAR 1: ALGEBRĂ. este un Q-spaţiu vectorial, faţă de operaţiile uzuale de adunare şi înmulţire cu un număr raţional. Sala: Octombrie 24 SEMINAR : ALGEBRĂ Conf univ dr: Dragoş-Pătru Covei Programul de studii: CE, IE, SPE Nota: Acest curs nu a fost supus unui proces riguros de recenzare pentru a fi oficial publicat distribuit

Διαβάστε περισσότερα

Algebră liniară CAPITOLUL 3

Algebră liniară CAPITOLUL 3 Algebră liniară CAPITOLUL 3 TRANSFORĂRI LINIARE 3.. Definiţia transformării liniare Definiţia 3... Fie V şi W două spaţii vectoriale peste un corp comutativ K. O funcţie u: V W se numeşte transformare

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Gheorghe PROCOPIUC PROBLEME DE ALGEBRĂ LINIARĂ GEOMETRIE

Gheorghe PROCOPIUC PROBLEME DE ALGEBRĂ LINIARĂ GEOMETRIE Gheorghe PROCOPIUC PROBLEME DE ALGEBRĂ LINIARĂ ŞI GEOMETRIE IAŞI, 005 CUPRINS 1 MATRICE ŞI SISTEME ALGEBRICE LINIARE 5 1.1 Matrice şi determinanţi.......................... 5 1. Sisteme de ecuaţii algebrice

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15 MĂSURI RELE Cursul 13 15 Măsuri reale Fie (,, µ) un spaţiu cu măsură completă şi f : R o funcţie -măsurabilă. Cum am văzut în Teorema 11.29, dacă f are integrală pe, atunci funcţia de mulţime ν : R, ν()

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

Nicolae Cotfas ELEMENTE DE EDITURA UNIVERSITĂŢII DIN BUCUREŞTI

Nicolae Cotfas ELEMENTE DE EDITURA UNIVERSITĂŢII DIN BUCUREŞTI Nicolae Cotfas ELEMENTE DE ALGEBRĂ LINIARĂ EDITURA UNIVERSITĂŢII DIN BUCUREŞTI Introducere Pe parcursul acestei cărţi ne propunem să prezentăm într-un mod cât mai accesibil noţiuni si rezultate de bază

Διαβάστε περισσότερα

Adriana-Ioana Lefter DIFERENŢIALE) Anul I, Facultatea de Chimie Note de curs

Adriana-Ioana Lefter DIFERENŢIALE) Anul I, Facultatea de Chimie Note de curs Adriana-Ioana Lefter MATEMATICĂ (ALGEBRĂ ŞI ECUAŢII DIFERENŢIALE) Anul I, Facultatea de Chimie Note de curs Cuprins Partea 1 ALGEBRĂ 1 Capitolul 1 Matrice şi determinanţi 3 11 Corpuri 3 12 Matrice 4 13

Διαβάστε περισσότερα

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)).

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)). Teoremă. (Y = f(x)). Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism Demonstraţie. f este continuă pe X: x 0 X, S Y (f(x 0 ), ε), S X (x 0, ε) aşa ca f(s X (x 0, ε)) = S Y (f(x 0 ), ε) : y

Διαβάστε περισσότερα

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Ecuatii trigonometrice

Ecuatii trigonometrice Ecuatii trigonometrice Ecuatiile ce contin necunoscute sub semnul functiilor trigonometrice se numesc ecuatii trigonometrice. Cele mai simple ecuatii trigonometrice sunt ecuatiile de tipul sin x = a, cos

Διαβάστε περισσότερα

CURS 5 Spaţii liniare. Spaţiul liniar R n

CURS 5 Spaţii liniare. Spaţiul liniar R n CURS 5 Spaţii liniare. Spaţiul liniar R n A. Arusoaie arusoaie.andreea@gmail.com andreea.arusoaie@info.uaic.ro Facultatea de Informatică, Universitatea Alexandru Ioan Cuza din Iaşi 30 Octombrie 2017 Structura

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt. liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia

Διαβάστε περισσότερα

METODE NUMERICE: Laborator #5 Metode iterative pentru rezolvarea sistemelor: Jacobi, Gauss-Siedel, Suprarelaxare

METODE NUMERICE: Laborator #5 Metode iterative pentru rezolvarea sistemelor: Jacobi, Gauss-Siedel, Suprarelaxare METODE NUMERICE: Laborator #5 Metode iterative pentru rezolvarea sistemelor: Jacobi, Gauss-Siedel, Suprarelaxare Titulari curs: Florin Pop, George-Pantelimon Popescu Responsabil Laborator: Mădălina-Andreea

Διαβάστε περισσότερα

Sala: 2103 Octombrie 2014 CURS 1: ALGEBRĂ. Fie K corp comutativ cu elementul neutru la înmulţire notat prin 1 iar 0 la adunare.

Sala: 2103 Octombrie 2014 CURS 1: ALGEBRĂ. Fie K corp comutativ cu elementul neutru la înmulţire notat prin 1 iar 0 la adunare. Sala: 2103 Octombrie 2014 Conf. univ. dr.: Dragoş-Pătru Covei CURS 1: ALGEBRĂ Specializarea: C.E., I.E., S.P.E. Nota: Acest curs nu a fost supus unui proces riguros de recenzare pentru a fi oficial publicat.

Διαβάστε περισσότερα

Ion CRĂCIUN CAPITOLE DE MATEMATICI SPECIALE EDITURA PIM

Ion CRĂCIUN CAPITOLE DE MATEMATICI SPECIALE EDITURA PIM Ion CRĂCIUN CAPITOLE DE MATEMATICI SPECIALE EDITURA PIM IAŞI 2007 2 Cuprins 1 Ecuaţii diferenţiale liniare de ordin superior 7 1.1 Ecuaţii diferenţiale liniare de ordinul n cu coeficienţi variabili 7 1.2

Διαβάστε περισσότερα

CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă.

CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă. Sala: 2103 Decembrie 2014 Conf. univ. dr.: Dragoş-Pătru Covei CURS 11: ALGEBRĂ Specializarea: C.E., I.E., S.P.E. Nota: Acest curs nu a fost supus unui proces riguros de recenzare pentru a fi oficial publicat.

Διαβάστε περισσότερα

CAPITOLUL 4 FUNCŢIONALE LINIARE, BILINIARE ŞI PĂTRATICE

CAPITOLUL 4 FUNCŢIONALE LINIARE, BILINIARE ŞI PĂTRATICE CAPITOLUL FUNCŢIONALE LINIAE BILINIAE ŞI PĂTATICE FUNCŢIONALE LINIAE BEIA TEOETIC Deiniţia Fie K X un spaţiu vecorial de dimensiune iniă O aplicaţie : X K se numeşe uncţională liniară dacă: ese adiivă

Διαβάστε περισσότερα

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval

Διαβάστε περισσότερα

Sisteme de ecuaţii diferenţiale

Sisteme de ecuaţii diferenţiale Curs 5 Sisteme de ecuaţii diferenţiale 5. Sisteme normale Definiţie 5.. Se numeşte sistem normal sistemul de ecuaţii diferenţiale de ordinul întâi dx dt = f (t, x, x 2,..., x n ) dx 2 dt = f 2(t, x, x

Διαβάστε περισσότερα

Ariadna Lucia Pletea Adrian Corduneanu Mircea Lupan LECŢII DE ALGEBRĂ LINIARĂ

Ariadna Lucia Pletea Adrian Corduneanu Mircea Lupan LECŢII DE ALGEBRĂ LINIARĂ Ariadna Lucia Pletea Adrian Corduneanu Mircea Lupan LECŢII DE ALGEBRĂ LINIARĂ IASI, 005 1 Cuprins Capitolul 1 1.1. Matrice şi determinanţi...5 1.1.1. Determinantul unei matrice pătratice...8 1.1.. Matricea

Διαβάστε περισσότερα

2.9 Forme biafine Forme pătratice afine. Aducerea la forma canonică Centre de simetrie Varietăţi pătratice...

2.9 Forme biafine Forme pătratice afine. Aducerea la forma canonică Centre de simetrie Varietăţi pătratice... Geometrie Afină Contents 1 Spaţii vectoriale 3 1.1 Spaţii vectoriale peste un corp K........................ 3 1.2 Exemple de spaţii vectoriale........................... 4 1.3 Dependenţă liniară de vectori..........................

Διαβάστε περισσότερα

ELEMENTE DE GEOMETRIE. Dorel Fetcu

ELEMENTE DE GEOMETRIE. Dorel Fetcu ELEMENTE DE GEOMETRIE ANALITICĂ ŞI DIFERENŢIALĂ Dorel Fetcu Acest curs este un fragment din manualul D. Fetcu, Elemente de algebră liniară, geometrie analitică şi geometrie diferenţială, Casa Editorială

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

ALGEBRĂ LINIARĂ, GEOMETRIE ANALITICĂ ŞI GEOMETRIE. Teorie şi probleme

ALGEBRĂ LINIARĂ, GEOMETRIE ANALITICĂ ŞI GEOMETRIE. Teorie şi probleme ALGEBRĂ LINIARĂ, GEOMETRIE ANALITICĂ ŞI GEOMETRIE DIFERENŢIALĂ. Teorie şi probleme Florian MUNTEANU Departamentul de Matematici Aplicate, Universitatea din Craiova Al. Cuza 3, 585 Craiova, Dolj, România

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

Progresii aritmetice si geometrice. Progresia aritmetica.

Progresii aritmetice si geometrice. Progresia aritmetica. Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a

Διαβάστε περισσότερα

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l + Semnul local al unei funcţii care are limită. Propoziţie. Fie f : D (, d) R, x 0 D. Presupunem că lim x x 0 f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl,

Διαβάστε περισσότερα

Criterii de comutativitate a grupurilor

Criterii de comutativitate a grupurilor Criterii de comutativitate a grupurilor Marius Tărnăuceanu 10.03.2017 Abstract În această lucrare vom prezenta mai multe condiţii suficiente de comutativitate a grupurilor. MSC (2010): 20A05, 20K99. Key

Διαβάστε περισσότερα

O generalizare a unei probleme de algebră dată la Olimpiada de Matematică, faza judeţeană, 2013

O generalizare a unei probleme de algebră dată la Olimpiada de Matematică, faza judeţeană, 2013 O generalizare a unei probleme de algebră dată la Olimpiada de Matematică, faza judeţeană, 2013 Marius Tărnăuceanu 1 Aprilie 2013 Abstract În această lucrare vom prezenta un rezultat ce extinde Problema

Διαβάστε περισσότερα

GEOMETRIE ANALITICĂ. Mihai-Sorin Stupariu

GEOMETRIE ANALITICĂ. Mihai-Sorin Stupariu GEOMETRIE ANALITICĂ Mihai-Sorin Stupariu Sem. al II-lea, 007-008 Cuprins 1 Elemente de algebră liniară 3 1.1 Spaţii vectoriale. Definiţie. Exemple................ 3 1. Combinaţii liniare. Baze şi repere..................

Διαβάστε περισσότερα

Sisteme liniare - metode directe

Sisteme liniare - metode directe Sisteme liniare - metode directe Radu T. Trîmbiţaş 27 martie 2016 1 Eliminare gaussiană Să considerăm sistemul liniar cu n ecuaţii şi n necunoscute Ax = b, (1) unde A K n n, b K n 1 sunt date, iar x K

Διαβάστε περισσότερα

Principiul Inductiei Matematice.

Principiul Inductiei Matematice. Principiul Inductiei Matematice. Principiul inductiei matematice constituie un mijloc important de demonstratie in matematica a propozitiilor (afirmatiilor) ce depind de argument natural. Metoda inductiei

Διαβάστε περισσότερα

2.3 Geometria analitică liniarăînspaţiu

2.3 Geometria analitică liniarăînspaţiu 2.3 Geometria analitică liniarăînspaţiu Pentru început sădefinim câteva noţiuni de bază în geometria analitică. Definitia 2.3.1 Se numeşte reper în spaţiu o mulţime formată dintr-un punct O (numit originea

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

Lectia VII Dreapta si planul

Lectia VII Dreapta si planul Planul. Ecuatii, pozitii relative Dreapta. Ecuatii, pozitii relative Aplicatii Lectia VII Dreapta si planul Oana Constantinescu Oana Constantinescu Lectia VII Planul. Ecuatii, pozitii relative Dreapta.

Διαβάστε περισσότερα

Rădăcini primitive modulo n

Rădăcini primitive modulo n Universitatea Bucureşti Facultatea de Matematică şi Informatică Rădăcini primitive modulo n Îndrumător ştiinţific: Prof. Dr. Victor Alexandru 2010 Rezumat Tema lucrarii este studiul radacinilor primitive.

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

Ecuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1)

Ecuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1) Ecuatii exponentiale Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. Cea mai simpla ecuatie exponentiala este de forma a x = b, () unde a >, a. Afirmatia.

Διαβάστε περισσότερα

Laborator 6. Integrarea ecuaţiilor diferenţiale

Laborator 6. Integrarea ecuaţiilor diferenţiale Laborator 6 Integrarea ecuaţiilor diferenţiale Responsabili: 1. Surdu Cristina(anacristinasurdu@gmail.com) 2. Ştirbăţ Bogdan(bogdanstirbat@yahoo.com) Obiective În urma parcurgerii acestui laborator elevul

Διαβάστε περισσότερα

Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b.

Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b. Lucrare Soluţii 28 aprilie 2015 Varianta 1 I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2 Definiţie. Numărul întreg p se numeşte număr prim dacă p 0,

Διαβάστε περισσότερα

VII.2. PROBLEME REZOLVATE

VII.2. PROBLEME REZOLVATE Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea

Διαβάστε περισσότερα

z a + c 0 + c 1 (z a)

z a + c 0 + c 1 (z a) 1 Serii Laurent (continuare) Teorema 1.1 Fie D C un domeniu, a D şi f : D \ {a} C o funcţie olomorfă. Punctul a este pol multiplu de ordin p al lui f dacă şi numai dacă dezvoltarea în serie Laurent a funcţiei

Διαβάστε περισσότερα

Geometrie afină. Conf. Univ. Dr. Cornel Pintea

Geometrie afină. Conf. Univ. Dr. Cornel Pintea Geometrie afină Conf Univ Dr Cornel Pintea E-mail: cpintea mathubbclujro Cuprins 1 Săptămâna 13 1 2 Endomorfismele unui spaţiu afin 1 21 Translaţia 1 22 Subspaţii invariante 2 23 Omotetii 2 24 Proiecţii

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Criptosisteme cu cheie publică III

Criptosisteme cu cheie publică III Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.

Διαβάστε περισσότερα

1 Preliminarii. M 3, (a b) c = a (b c) (notăm a b c, obţinând astfel şi x 1 x 2... x n

1 Preliminarii. M 3, (a b) c = a (b c) (notăm a b c, obţinând astfel şi x 1 x 2... x n 1 Preliminarii Fie M, A mulţimi nevide şi n N. Se muneşte operaţie n ară (sau lege de compoziţie n-ară) definită pe M orice aplicaţie τ : M n M (M n = } M {{... M } ). In cazul n = 2, obţinem operaţiile

Διαβάστε περισσότερα

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I. Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Lectia III Produsul scalar a doi vectori liberi

Lectia III Produsul scalar a doi vectori liberi Produsul scalar: denitie, proprietati Schimbari de repere ortonormate in plan Aplicatii Lectia III Produsul scalar a doi vectori liberi Oana Constantinescu Oana Constantinescu Lectia III Produsul scalar:

Διαβάστε περισσότερα

Conice - Câteva proprietǎţi elementare

Conice - Câteva proprietǎţi elementare Conice - Câteva proprietǎţi elementare lect.dr. Mihai Chiş Facultatea de Matematicǎ şi Informaticǎ Universitatea de Vest din Timişoara Viitori Olimpici ediţia a 5-a, etapa I, clasa a XII-a 1 Definiţii

Διαβάστε περισσότερα

Pseudoinversă şi inversă generalizată ale unei aplicaţii liniare

Pseudoinversă şi inversă generalizată ale unei aplicaţii liniare Pseudoinversă şi inversă generalizată ale unei aplicaţii liniare Adrian REISNER 1 1. Pseudoinversă a unui endomorfism într-un spaţiu vectorial de dimensiune finită. Fie S un R-spaţiu vectorial de dimensiune

Διαβάστε περισσότερα

OANA CONSTANTINESCU. ( a carei ecuatie matriceala este data in raport cu un reper cartezian R = {O; ē 1,, ē n }.

OANA CONSTANTINESCU. ( a carei ecuatie matriceala este data in raport cu un reper cartezian R = {O; ē 1,, ē n }. ELEMENTE DE SIMETRIE ALE UNEI HIPERCUADRICE IN SPATII AFINE EUCLIDIENE OANA CONSTANTINESCU 1. Centru de simetrie pentru o hipercuadrica afina Pentru inceput cadrul de lucru este un spatiu an real de dimensiune

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ

CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ CONCURS DE ADMITERE, 7 iulie 207 Proba scrisă la MATEMATICĂ SUBIECTUL I (30 puncte) ) (0 puncte) Să se arate că oricare ar

Διαβάστε περισσότερα

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3 SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest

Διαβάστε περισσότερα

Cursul de recuperare Algebra. v n. daca in schimb exista coecienti λ 1, λ 2,..., λ n nu toti nuli care satisfac relatia (1), de exemplu λ i 0 = A =

Cursul de recuperare Algebra. v n. daca in schimb exista coecienti λ 1, λ 2,..., λ n nu toti nuli care satisfac relatia (1), de exemplu λ i 0 = A = Matrice, determinanti Un punct de vedere liniar independent "A judeca matematic nu înseamn a gândi losoc, a judeca losoc nu înseamn a liber, a gândi liber nu înseamn a losof " Blaise Pascal Liniar independenta:

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1 FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile

Διαβάστε περισσότερα

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Contract POSDRU/86/1.2/S/ POSDRU ID * Bucureşti 2012

Contract POSDRU/86/1.2/S/ POSDRU ID * Bucureşti 2012 Contract POSDRU/86/1.2/S/62485 Algebră Liniară POSDRU ID 62485 * Bucureşti 212 Prefaţă Algebra liniară şi geometria analitică stau la baza pregătirii matematice universitare, oferind modelări bazate pe

Διαβάστε περισσότερα