Structuri de conducere ierarhizată a sistemelor electroenergetice Sl.dr.ing. Iulia STAMATESCU

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Structuri de conducere ierarhizată a sistemelor electroenergetice Sl.dr.ing. Iulia STAMATESCU"

Transcript

1 CURS 5 Structuri de conducere ierarhizată a sistemelor electroenergetice Sl.dr.ing. Iulia STAMATESCU

2 Cuprins Cuprins MODULUL 5: MODULUL 4: CONDUCEREA AVANSATA A PROCESELOR INDUSTRIALE. PRINCIPII. METODE. TEHNOLOGII. STRUCTURI. ELEMENTE DE PROIECTARE ALE UNUI SISTEM DE CONDUCERE CU CP/SCPEN 2

3 Modulul 5: Algoritmii de conducere se pot clasifica după obiectivul final al funcţiei de reglare în două mari categorii: 1. Algoritmii de conducere conventionali sisteme de rejecţie a perturbaţiilor (cu referinţă fixă): în acest caz, SRA asigură funcţionarea procesului într-un regim staţionar fixat prin yr(t)=ct, indiferent de acţiunea perturbaţiilor aditive; sisteme de urmarire (cu referinţă variabilă): funcţia de reglare are ca efect final urmărirea cât mai fidelă de către mărimea măsurată a mărimii de referinţă; 2. Algoritmi de conducere specializati: adaptivi, optimali, fuzzy etc. 3

4 Modulul 5: Algoritmii de conducere se pot clasifica şi în funcţie de: a) viteza de variaţie a mărimii de la ieşire (viteza de răspuns a obiectului condus): algoritmi pentru procese lente: sunt cele mai răspândite datorită faptului că instalaţiile tehnologice industriale se caracterizează printr-o anumită inerţie; algoritmi pentru procese rapide: sunt cele destinate, de exemplu, maşinilor şi acţionărilor electrice (reglarea turaţiei motoarelor, reglarea tensiunii generatoarelor). b) numărul de intrări şi de ieşiri: algoritmi cu o singură mărime de intrare şi o singură mărime de ieşire (mărimea comandată sau mărimea reglată); algoritmi cu mai multe intrări şi ieşiri (cazul sistemelor de reglare multivariabile), 4

5 Modulul 5: c) natura comenzii: algoritmi cu comandă continuă, la care mărimea de ieşire a fiecarui element component este o funcţie continuă de mărimea sa de intrare; algoritmi cu acţiune discontinuă (discretă), la care mărimea de ieşire a regulatorului este reprezentată de o succesiune de impulsuri de comandă, fie modulate în amplitudine sau durată (sistemele cu impulsuri), fie codificate (cazul sistemelor numerice) d) gradul de complexitate al schemei bloc: algoritmi cu o singură buclă de reglare; algoritmi cu mai multe bucle de reglare (de exemplu sistemele de reglare în cascadă). algoritmi aferenti controlului model predictive algoritmi fuzzy 5

6 Modulul 5: 1) - acţiune discontinuă O structura principala simplificata a unui sistem de conducere numeric este data in figura de mai jos in care CAN are rolul de a discretiza temporal (esantionare) si valoric (cuantiza) semnalul analogic de la traductor, iar CAN permite reconstituirea din discret in analogic a marimii de comanda. yr () k CALCULATOR DE PROCES u () k 1 u () n k CNA... CNA u 1 u n EE... EE INSTALATIE TEHNOLOGICA T T y n y 1 y () n k y () k 1... CAN CAN

7 Modulul 5: 1) - acţiune discontinuă Pentru a se realiza aceasta compatibilitate intre CAN si EE se introduce un element de extrapolare (retinere). Analiza si sinteza unor structuri hibride se realizeaza tinandu-se cont de existenta acestor functii de esantionare si de extrapolare. Retinandu-se acest lucru, schema de mai sus se poate pune sub urmatoarea forma simplificata yr () t + - T T HR ( z ) H ( s ) H ( s) Regulator numeric (calculator) extr Element de extrapolare u (t) EE F Proces T y(t) 7

8 Modulul 5: 1) - acţiune discontinuă Modelul matematic structural functionand pentru un sistem liniar multivariabil caracterizat prin ecuatii cu diferente are forma : xk+ 1 = Axk ( ) + Buk ( ) ( ) ( ) = Cx( k) y k unde x, y, u, precum si matricele A, B, C sunt similare ca in continuu, dar depend si de perioada de esantionare T. Daca comanda u este constanta pe durata unei perioade de esantionare (extrapolatorul este de ordinal zero) se obtine ecuatia de stare discretizata sub forma: cu si iesirea ( + 1) = φ ( ) + Γ ( ) xk xk uk AT Aq φ = e, Γ = e B dq; T 0 q= kt + T τ ( ) = Cxk ( ) yk 8

9 Modulul 5: 1) - acţiune discontinuă 9

10 Modulul 5: 2) Reglarea in cascada Structura sistemului de reglare în cascadă este o structura de SRA cu largă aplicabilitate 10

11 Modulul 5: 2) Reglarea in cascada Admiţând că procesul condus poate fi descompus în subprocese interconectate cauzal, cu variabile intermediare accesibile măsurării, se poate alcătui o structură de reglare în cascadă folosind un număr de regulatoare egal cu numărul variabilelor măsurate din proces. Cele două subprocese sunt conectate cauzal, mărimea de execuţie (unică) determinând cauzal evoluţia variabilei intermediare z1, care, la rândul ei, determină cauzal evoluţia variabilei de ieşire din proces. Regulatorul RA1 este destinat reglării variabilei z1 şi compensării acţiunii perturbaţiei v1, iar regulatorul principal RA2 are rolul de a asigura realizarea funcţiei de reglare în raport cu referinţa yr, furnizând în acest scop referinţa pentru regulatorul secundar RA1. Cele două regulatoare din cadrul acestei structuri funcţionează în regim de urmărire. 11

12 Modulul 5: 3) - Control Model-Predictiv Un model al procesului este utilizat pentru predicția evoluției viitoare a procesului în vederea optimizării comenzii / semnalului de control. Istoric: 1979 Dynamic Matrix Control (DMC) Shell, procese multivariabilă cu constrângeri în industria petrolieră. Utilizare MPC în industrie! Practica actuală:! modele liniare obținute pe baza răspunsului indicial/impuls;! funcție obiectiv tip sumă de erori pătratice;! executat în mod supervizor.! Adecvat pentru probleme de reglare cu:! multe intrări și ieșiri;! constrângeri pe intrări, ieșiri, stări;! obiective variabile și limitări (e.g. datorate defecțiunilor).! Complexitatea de calcul și proprietățile teoretice depind de alegerea modelului, obiectivului și a constrângerilor 12

13 Modulul 5: 3) - Control Model-Predictiv Principiu de baza La momentul t se rezolvă o problemă de control optimal peste un orizont finit de timp N pași: Se aplică doar prima decizie optimă u*(t)! La momentul t+1, se iau și se repetă optimizarea, ș.a.! Avantajul optimizării on-line repetate: FEEDBACK!! 13

14 Modulul 5: 3) - Control Model-Predictiv 14

15 Modulul 5: 3) - Control Model-Predictiv 15

16 3) - Fuzzy Modulul 5: Logica fuzzy constituie o extindere a logicii booleene, care permite ca valoarea de adevăr a unei propoziții să fie reprezentată printr-un număr cuprins între 0 și 1. De asemenea, valoarea unei mărimi poate fi considerată în același timp mică și mare, dar cu grade diferite de adevăr. Logica fuzzy reprezintă legătura dintre valori exacte, precum 0.8, cu care operează un calculator, și termeni lingvistici vagi, precum mic sau mare, utilizați de om. Ea permite unui calculator să înțeleagă un limbaj natural pentru om. Prin fuzzyficare se înțelege transformarea unei valori exacte în valorile de adevăr ale propozițiilor de tipul [valoarea exactă] este [valoare lingvistică].. 16

17 3) - Fuzzy Modulul 5: Au fost create 3 mulțimi fuzzy: viteze mici, viteze medii și viteze mari. Oricărei valori exacte a vitezei îi corespund 3 valori logice fuzzy, date de funcțiile de apartenență la cele 3 mulțimi fuzzy. Exemplu: 17 Fig. Mulțimile fuzzy ale valorilor vitezei 45 este viteză mică este viteză medie este viteză mare. 0

18 3) - Fuzzy Modulul 5: Utilizarea logicii fuzzy în domeniul conducerii proceselor are avantajul că permite specificarea comportării regulatorului prin reguli de tip dacă atunci, numite reguli de control. Exemplu: Dacă nivelul în rezervor este scăzut, atunci se crește debitul de intrare. Nu este necesară cunoașterea cu precizie a funcționării sistemului condus, ci este suficientă cunoașterea unor dependențe calitative, precum: Dacă debitul de intrare crește, atunci nivelul în rezervor va crește.. De aceea, regulatoarele automate fuzzy sunt recomandate pentru procese ale căror modele matematice sunt greu de obținut sau prea complexe, acestea fiind dificil de controlat prin mijloace convenționale. 18

19 3) - Fuzzy Modulul 5: Fig. Structura unui regulator fuzzy 19 Etapele parcurse pentru determinarea comenzii: fuzzyficare transformarea valorilor exacte ale mărimilor de intrare în seturi de valori logice fuzzy aplicarea regulilor de control pentru determinarea unui set de valori logice fuzzy pentru mărimea de ieșire defuzzyficare transformarea valorilor logice fuzzy într-o valoare exactă a mărimii de ieșire (u)

20 Modulul 5: 3) Proiectarea unui regulator automat fuzzy Reglarea temperaturii unui lichid folosind un reșou electric Fig. Reprezentare a sistemului controlat 20

21 Modulul 5: 3) - Fuzzy mărimea de referință (r) temperatura dorită mărimea măsurată și reglată (y) temperatura lichidului comanda (u) creșterea (sau scăderea) puterii reșoului Cum ar controla procesul un expert uman? Fig. 4. Expertul uman plasat în locul regulatorului eroarea e(t) = r - y(t) viteza de variație în timp a erorii de(t)/dt = -dy(t)/dt 21

22 3) - Fuzzy Modulul 5: Formularea regulilor de control a) Dacă e este mare, negativă și de/dt este mică, negativă, atunci u trebuie sa fie mare, negativă b) Dacă e este zero și de/dt este mică, pozitivă, atunci u trebuie să fie mică, pozitivă c) Dacă e este mică, pozitivă și de/dt este mică, pozitivă, atunci u trebuie să fie medie, pozitivă 22 Fig. Câteva stări posibile ale sistemului controlat

23 3) - Fuzzy Modulul 5: Regulatorul fuzzy dispune de aceleași informații ca și un regulator convențional de tip PD. Fig. Mărimile de intrare și de ieșire ale regulatorului fuzzy Acronim Valoare lingvis0că LN Large Nega0ve mare, nega0v MN Medium Nega0ve mediu, nega0v SN Small Nega0ve mic, nega0v ZE Zero zero SP Small Posi0ve mic, pozi0v MP Medium Posi0ve mediu, pozi0v LP Large Posi0ve mare, pozi0v Tabelul Valorile lingvistice posibile pentru e, de/dt și u 23

24 3) - Fuzzy Am considerat că e și de/dt pot avea fiecare 7 valori lingvistice (VL). Rezultă 49 de combinații posibile. Se pot scrie maxim 49 reguli de forma: Modulul 5: Dacă e este VL1 și de/dt este VL2, atunci u este VL3. e \ de/dt LN MN SN ZE SP MP LP LP ZE SP MP LP LP LP LP MP ZE ZE SP MP LP LP LP SP MN SN ZE SP MP LP LP ZE LN MN SN ZE SP MP LP SN LN LN MN SN ZE SP MP MN LN LN LN MN SN ZE ZE LN LN LN LN LN MN SN ZE Tabelul Regulile de control sub formă compactă 24

25 3) - Fuzzy Modulul 5: Stabilirea mulțimilor fuzzy și funcțiilor de apartenență Fig. Mulțimile fuzzy pentru e și de/dt 25 Fig. Mulțimile fuzzy pentru u

26 Modulul 5: 26 3) - Fuzzy Performanțele regulatorului fuzzy depind de: regulile de control implementate numărul de mulțimi fuzzy și gradul lor de suprapunere caracteristicile funcțiilor de apartenență metoda de defuzzyficare folosită Un regulator fuzzy dispune de un număr mare de parametri, ale căror valori influențează puternic performanțele de reglare. Acordarea regulatorului pentru un proces este relativ dificilă deoarece implică adesea numeroase experimente urmate de ajustări ale parametrilor. Regulatoarele fuzzy se remarcă prin faptul că permit implementarea regulilor de control într-un mod intuitiv. Spre deosebire de regulatoarele convenționale, sunt caracterizate de flexibilitate ridicată. Nu au o structură fixă, ci pot fi oricât de complexe este necesar. Acordarea pentru un anumit proces este dificilă datorită numărului mare de parametri ce trebuie stabiliți, care influențează puternic performanțele de reglare. Sunt potrivite pentru controlul sistemelor complexe (neliniare, nestaționare), pentru care este dificilă aplicarea tehnicilor clasice.

27 Modulul 6 1. Elemente preliminarii privind conceperea si realizarea sistemelor informatice destinate conducerii proceselor industriale prin CP/SCPEN Activitatea (proces) de concepere (proiectare) Activitate (proces) de realizare Finalizarea produs informatic Tema de proiectare (studiu preliminar, studiu de fezabilitate, studiu tehnicoeconomic,etc.) Proiectarea logica de ansamblu si de detaliu. Proiectrea tehnica de ansamblu si de detaliu. Elaborare programe. Integrare si testare. Punerea in functiune/ experimentare. Exploatare si intretinere. 27

28 Modulul 6 1. Elemente preliminarii privind conceperea si realizarea sistemelor informatice destinate conducerii proceselor industriale prin CP/SCPEN 28

29 Modulul 6 2. Sisteme de comunicatii pe liniile electrice. Sistemul BPL (Broandband over Power Line) Sistemul de comunicaţii pe liniile de energie electrică, cunoscut sub acronimele: Power Line Communication (PLC), Broadband over Power Line (BPL) pentru a sublinia serviciile broadband şi Power Line Telecommnunication (PLT) pentru a sublinia serviciile de telecomunicaţii, foloseşte conductoarele reţelei electrice de distribuţie pentru transferul de date şi voce. Tehnologia PLC include comunicaţii pe liniile electrice de bandă largă (BPL) cu rate de transfer uneori peste 1 Mb/s şi comunicaţii pe liniile electrice de bandă îngustă (NPL Narrowband over Power Lines) cu rate de transfer mult mai mici. Benzile de frecvenţă utilizate de tehnologia PLC sunt între 3 148,5 khz, pentru aplicaţii de bandă îngustă şi 1 30 MHz, pentru aplicaţiile de bandă largă. Viteza de transmisie a datelor este mai mare de 10 Mb/s, mergând până la 200 Mb/s cu echipamente de ultimă generaţie. 29 PLC reprezinta o alternativa de competitivitate fata de costurile actuale ale ADSL. Competitivitatea costurilor oferite de PLC va creste pe masura ce preturile echipamentelor PLC vor scadea in viitor.

30 Modulul 6 2. Sisteme de comunicatii pe liniile electrice. Sistemul BPL (Broandband over Power Line) 30

31 Modulul 6 2. Sisteme de comunicatii pe liniile electrice. Sistemul BPL (Broandband over Power Line) 31

32 Modulul 6 2. Sisteme de comunicatii pe liniile electrice. Sistemul BPL (Broandband over Power Line) 32

33 Modulul 6 2. Sisteme de comunicatii pe liniile electrice. Sistemul BPL (Broandband over Power Line) 33

34 Modulul 6 2. Sisteme de comunicatii pe liniile electrice. Sistemul BPL (Broandband over Power Line) 34

35 Modulul 6 2. Sisteme de comunicatii pe liniile electrice. Sistemul BPL (Broandband over Power Line) Tehnologia BPL este capabila sa ofere mai multe avantaje si anume: este o tehnologie de acces de banda larga a carei functionalitate si eficienta au fost demonstrate prin proiecte realizate la nivel mondial; utilizeaza o infrastructura deja existenta; suportul folosit (reteaua de alimentare cu energie electrica) este omniprezenta atat in interiorul cat si in exteriorul cladirilor; instalarea si punerea in functiune a conexiunilor folosind aceasta tehnologie este rapida; permite asigurarea mai multor servicii folosind acelasi suport: alimentarea cu ebnergie electrica, servicii de Internet, servicii de voce; faciliteaza un trafic amplu si o viteza foarte ridicata a transmisiilor, iar costurile sunt reduse, comparativ cu servicii similare calitativ, dar bazate pe alte tipuri de tehnologie; largirea bazei instalate determina, cu certitudine, o reducere a costurilor implicate; internet-ul prin BPL este mai atractiv decat Internet-ul prin cablu TV, atat din punctul de vedere al investitiei suportate de abonat, cat si ca profit. 35

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională

Διαβάστε περισσότερα

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB 1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument: Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

Curs 2 DIODE. CIRCUITE DR

Curs 2 DIODE. CIRCUITE DR Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu

Διαβάστε περισσότερα

V O. = v I v stabilizator

V O. = v I v stabilizator Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

2. Circuite logice 2.4. Decodoare. Multiplexoare. Copyright Paul GASNER

2. Circuite logice 2.4. Decodoare. Multiplexoare. Copyright Paul GASNER 2. Circuite logice 2.4. Decodoare. Multiplexoare Copyright Paul GASNER Definiţii Un decodor pe n bits are n intrări şi 2 n ieşiri; cele n intrări reprezintă un număr binar care determină în mod unic care

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1 Aparate de măsurat Măsurări electronice Rezumatul cursului 2 MEE - prof. dr. ing. Ioan D. Oltean 1 1. Aparate cu instrument magnetoelectric 2. Ampermetre şi voltmetre 3. Ohmetre cu instrument magnetoelectric

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

I.7 Regulatoare în sisteme de reglare automată.

I.7 Regulatoare în sisteme de reglare automată. I.7 Regulatoare în sisteme de reglare automată. Acestea sunt aparatele care prelucrează informaţia a, despre abaterea valorii mărimii interesate (măsurată direct din proces), faţă de valoarea aceleaşi

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

Proiectarea sistemelor de control automat

Proiectarea sistemelor de control automat Paula Raica Departmentul de Automatică Str. Dorobantilor 7-73, sala C2, tel: 264-4267 Str. Baritiu 26-28, sala C4, tel: 264-22368 email: Paula.Raica@aut.utcluj.ro http://rocon.utcluj.ro/ts Universitatea

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

CIRCUITE LOGICE CU TB

CIRCUITE LOGICE CU TB CIRCUITE LOGICE CU T I. OIECTIVE a) Determinarea experimentală a unor funcţii logice pentru circuite din familiile RTL, DTL. b) Determinarea dependenţei caracteristicilor statice de transfer în tensiune

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

LUCRAREA nr.6: Sinteza SRA. Criteriul Ziegler Nichols

LUCRAREA nr.6: Sinteza SRA. Criteriul Ziegler Nichols LUCRAREA nr.6: Sinteza SRA. Criteriul Ziegler Nichols. Scopul lucrării În practica industrială apar frecvent probleme privind sinteza compensatoarelor în cazul unor instalaţii relativ simple, caracterizabile

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

11.2 CIRCUITE PENTRU FORMAREA IMPULSURILOR Metoda formării impulsurilor se bazează pe obţinerea unei succesiuni periodice de impulsuri, plecând de la semnale periodice de altă formă, de obicei sinusoidale.

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

CIRCUITE INTEGRATE MONOLITICE DE MICROUNDE. MMIC Monolithic Microwave Integrated Circuit

CIRCUITE INTEGRATE MONOLITICE DE MICROUNDE. MMIC Monolithic Microwave Integrated Circuit CIRCUITE INTEGRATE MONOLITICE DE MICROUNDE MMIC Monolithic Microwave Integrated Circuit CUPRINS 1. Avantajele si limitarile MMIC 2. Modelarea dispozitivelor active 3. Calculul timpului de viata al MMIC

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice

4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice 4. Măsurarea tensiunilor şi a curenţilor electrici oltmetre electronice analogice oltmetre de curent continuu Ampl.c.c. x FTJ Protectie Atenuator calibrat Atenuatorul calibrat divizor rezistiv R in const.

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

10/17/2014 (1.81) (1.82) q -i σ. Fig q -i δ

10/17/2014 (1.81) (1.82) q -i σ. Fig q -i δ În fig. 1.37 sunt evidentiate efectul operatiilor de deplasare a semnalului f(k), fig. 1.37.a, cu un pas în avans, fig. 1.37.b, respectiv cu un pas înapoi, fig. 1.37.c. Prin aplicarea repetata a acestor

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

prin egalizarea histogramei

prin egalizarea histogramei Lucrarea 4 Îmbunătăţirea imaginilor prin egalizarea histogramei BREVIAR TEORETIC Tehnicile de îmbunătăţire a imaginilor bazate pe calculul histogramei modifică histograma astfel încât aceasta să aibă o

Διαβάστε περισσότερα

Circuite cu tranzistoare. 1. Inversorul CMOS

Circuite cu tranzistoare. 1. Inversorul CMOS Circuite cu tranzistoare 1. Inversorul CMOS MOSFET-urile cu canal indus N si P sunt folosite la familia CMOS de circuite integrate numerice datorită următoarelor avantaje: asigură o creştere a densităţii

Διαβάστε περισσότερα

Exemple de probleme rezolvate pentru cursurile DEEA Tranzistoare bipolare cu joncţiuni

Exemple de probleme rezolvate pentru cursurile DEEA Tranzistoare bipolare cu joncţiuni Problema 1. Se dă circuitul de mai jos pentru care se cunosc: VCC10[V], 470[kΩ], RC2,7[kΩ]. Tranzistorul bipolar cu joncţiuni (TBJ) este de tipul BC170 şi are parametrii β100 şi VBE0,6[V]. 1. să se determine

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

IV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI

IV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI V. POL S FLTE ELETE P. 3. POL ELET reviar a) Forma fundamentala a ecuatiilor cuadripolilor si parametrii fundamentali: Prima forma fundamentala: doua forma fundamentala: b) Parametrii fundamentali au urmatoarele

Διαβάστε περισσότερα

Lucrarea Nr. 5 Circuite simple cu diode (Aplicaţii)

Lucrarea Nr. 5 Circuite simple cu diode (Aplicaţii) ucrarea Nr. 5 Circuite simple cu diode (Aplicaţii) A.Scopul lucrării - Verificarea experimentală a rezultatelor obţinute prin analiza circuitelor cu diode modelate liniar pe porţiuni ;.Scurt breviar teoretic

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

Electronică anul II PROBLEME

Electronică anul II PROBLEME Electronică anul II PROBLEME 1. Găsiți expresiile analitice ale funcției de transfer şi defazajului dintre tensiunea de ieşire şi tensiunea de intrare pentru cuadrupolii din figurile de mai jos și reprezentați-le

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

Stabilizator cu diodă Zener

Stabilizator cu diodă Zener LABAT 3 Stabilizator cu diodă Zener Se studiază stabilizatorul parametric cu diodă Zener si apoi cel cu diodă Zener şi tranzistor. Se determină întâi tensiunea Zener a diodei şi se calculează apoi un stabilizator

Διαβάστε περισσότερα

Esalonul Redus pe Linii (ERL). Subspatii.

Esalonul Redus pe Linii (ERL). Subspatii. Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste

Διαβάστε περισσότερα

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3 SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest

Διαβάστε περισσότερα

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4 SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei

Διαβάστε περισσότερα

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective: TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi

Διαβάστε περισσότερα

Proiectarea filtrelor prin metoda pierderilor de inserţie

Proiectarea filtrelor prin metoda pierderilor de inserţie FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri

Διαβάστε περισσότερα

METODE NUMERICE: Laborator #5 Metode iterative pentru rezolvarea sistemelor: Jacobi, Gauss-Siedel, Suprarelaxare

METODE NUMERICE: Laborator #5 Metode iterative pentru rezolvarea sistemelor: Jacobi, Gauss-Siedel, Suprarelaxare METODE NUMERICE: Laborator #5 Metode iterative pentru rezolvarea sistemelor: Jacobi, Gauss-Siedel, Suprarelaxare Titulari curs: Florin Pop, George-Pantelimon Popescu Responsabil Laborator: Mădălina-Andreea

Διαβάστε περισσότερα

Examen AG. Student:... Grupa: ianuarie 2016

Examen AG. Student:... Grupa: ianuarie 2016 16-17 ianuarie 2016 Problema 1. Se consideră graful G = pk n (p, n N, p 2, n 3). Unul din vârfurile lui G se uneşte cu câte un vârf din fiecare graf complet care nu-l conţine, obţinându-se un graf conex

Διαβάστε περισσότερα

I. SISTEME DE REGLARE AUTOMATĂ

I. SISTEME DE REGLARE AUTOMATĂ I. SISTEME DE REGLARE AUTOMATĂ I.1 Noţiunea de sistem În ansamblul ei, existenţa umană se datorează unei activităţi continue a omului, pentru asigurarea condiţiilor de viaţă necesare perpetuării speciei.

Διαβάστε περισσότερα

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener 1 Caracteristica statică a unei diode Zener În cadranul, dioda Zener (DZ) se comportă ca o diodă redresoare

Διαβάστε περισσότερα

Proiectarea sistemelor de control automat

Proiectarea sistemelor de control automat Teoria sistemelor p. 1/28 Proiectarea sistemelor de control automat Paula Raica Paula.Raica@aut.utcluj.ro Departamentul de Automatică Universitatea Tehnică din Cluj-Napoca Dorobantilor, sala C21 Baritiu,

Διαβάστε περισσότερα

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie) Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului

Διαβάστε περισσότερα

Examen AG. Student:... Grupa:... ianuarie 2011

Examen AG. Student:... Grupa:... ianuarie 2011 Problema 1. Pentru ce valori ale lui n,m N (n,m 1) graful K n,m este eulerian? Problema 2. Să se construiască o funcţie care să recunoască un graf P 3 -free. La intrare aceasta va primi un graf G = ({1,...,n},E)

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

8 Intervale de încredere

8 Intervale de încredere 8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată

Διαβάστε περισσότερα

1. PROPRIETĂȚILE FLUIDELOR

1. PROPRIETĂȚILE FLUIDELOR 1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea

Διαβάστε περισσότερα

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a

Διαβάστε περισσότερα

Codificatorul SN74148 este un codificator zecimal-bcd de trei biţi (fig ). Figura Codificatorul integrat SN74148

Codificatorul SN74148 este un codificator zecimal-bcd de trei biţi (fig ). Figura Codificatorul integrat SN74148 5.2. CODIFICATOAE Codificatoarele (CD) sunt circuite logice combinaţionale cu n intrări şi m ieşiri care furnizează la ieşire un cod de m biţi atunci când numai una din cele n intrări este activă. De regulă

Διαβάστε περισσότερα

Capitolul 14. Asamblari prin pene

Capitolul 14. Asamblari prin pene Capitolul 14 Asamblari prin pene T.14.1. Momentul de torsiune este transmis de la arbore la butuc prin intermediul unei pene paralele (figura 14.1). De care din cotele indicate depinde tensiunea superficiala

Διαβάστε περισσότερα

Tratarea numerică a semnalelor

Tratarea numerică a semnalelor LUCRAREA 5 Tratarea numerică a semnalelor Filtre numerice cu răspuns finit la impuls (filtre RFI) Filtrele numerice sunt sisteme discrete liniare invariante în timp care au rolul de a modifica spectrul

Διαβάστε περισσότερα

Identificarea si modelarea sistemelor

Identificarea si modelarea sistemelor Identificarea si modelarea sistemelor Curs An III, Inginerie electrica, EPAE Sem. I I Gh. Livint 1. Introducere în modelarea sistemelor Un sistem este o grupare de elemente pasive şi active organizate

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Ecuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1)

Ecuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1) Ecuatii exponentiale Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. Cea mai simpla ecuatie exponentiala este de forma a x = b, () unde a >, a. Afirmatia.

Διαβάστε περισσότερα

SISTEME DE REGLARE AUTOMATĂ

SISTEME DE REGLARE AUTOMATĂ MINISTERUL AGRICULTURII ŞI INDUSTRIEI ALIMENTARE AL REPUBLICII MOLDOVA UNIVERSITATEA AGRARĂ DE STAT DIN MOLDOVA CATEDRA DE ELECTRIFICARE ŞI AUTOMATIZARE A MEDIULUI RURAL SISTEME DE REGLARE AUTOMATĂ CURS

Διαβάστε περισσότερα

VII.2. PROBLEME REZOLVATE

VII.2. PROBLEME REZOLVATE Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea

Διαβάστε περισσότερα

1. ELEMENTELE DE EXECUŢIE ÎN SISTEMELE AUTOMATE

1. ELEMENTELE DE EXECUŢIE ÎN SISTEMELE AUTOMATE . ELEMENTELE DE EXECUŢIE ÎN SISTEMELE AUTOMATE.. Locul şi rolul elementului de execuţie într-un sistem automat Într-un sistem de reglare automată, figura., mărimea de ieşire y a procesului (parametrul

Διαβάστε περισσότερα

Capitolul 4 Amplificatoare elementare

Capitolul 4 Amplificatoare elementare Capitolul 4 mplificatoare elementare 4.. Etaje de amplificare cu un tranzistor 4... Etajul emitor comun V CC C B B C C L L o ( // ) V gm C i rπ // B // o L // C // L B ro i B E C E 4... Etajul colector

Διαβάστε περισσότερα

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval

Διαβάστε περισσότερα

Studiu privind soluţii de climatizare eficiente energetic

Studiu privind soluţii de climatizare eficiente energetic Studiu privind soluţii de climatizare eficiente energetic Varianta iniţială O schemă constructivă posibilă, a unei centrale de tratare a aerului, este prezentată în figura alăturată. Baterie încălzire/răcire

Διαβάστε περισσότερα

Transformări de frecvenţă

Transformări de frecvenţă Lucrarea 22 Tranformări de frecvenţă Scopul lucrării: prezentarea metodei de inteză bazate pe utilizarea tranformărilor de frecvenţă şi exemplificarea aceteia cu ajutorul unui filtru trece-jo de tip Sallen-Key.

Διαβάστε περισσότερα

CIRCUITE CU DZ ȘI LED-URI

CIRCUITE CU DZ ȘI LED-URI CICUITE CU DZ ȘI LED-UI I. OBIECTIVE a) Determinarea caracteristicii curent-tensiune pentru diode Zener. b) Determinarea funcționării diodelor Zener în circuite de limitare. c) Determinarea modului de

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii în tehnică

Aplicaţii ale principiului I al termodinamicii în tehnică Aplicaţii ale principiului I al termodinamicii în tehnică Sisteme de încălzire a locuinţelor Scopul tuturor acestor sisteme, este de a compensa pierderile de căldură prin pereţii locuinţelor şi prin sistemul

Διαβάστε περισσότερα

Analiza sistemelor liniare şi continue

Analiza sistemelor liniare şi continue Paula Raica Departamentul de Automatică Str. Dorobanţilor 7, sala C2, tel: 0264-40267 Str. Bariţiu 26, sala C4, tel: 0264-202368 email: Paula.Raica@aut.utcluj.ro http://rocon.utcluj.ro/ts Universitatea

Διαβάστε περισσότερα

I X A B e ic rm te e m te is S

I X A B e ic rm te e m te is S Sisteme termice BAXI Modele: De ce? Deoarece reprezinta o solutie completa care usureaza realizarea instalatiei si ofera garantia utilizarii unor echipamente de top. Adaptabilitate la nevoile clientilor

Διαβάστε περισσότερα

2.2.1 Măsurători asupra semnalelor digitale

2.2.1 Măsurători asupra semnalelor digitale Lucrarea 2 Măsurători asupra semnalelor digitale 2.1 Obiective Lucrarea are ca obiectiv fixarea cunoştinţelor dobândite în lucrarea anterioară: Familiarizarea cu aparatele de laborator (generatorul de

Διαβάστε περισσότερα

11.3 CIRCUITE PENTRU GENERAREA IMPULSURILOR CIRCUITE BASCULANTE Circuitele basculante sunt circuite electronice prevăzute cu o buclă de reacţie pozitivă, folosite la generarea impulsurilor. Aceste circuite

Διαβάστε περισσότερα

Realizat de: Ing. mast. Pintilie Lucian Nicolae Pentru disciplina: Sisteme de calcul în timp real Adresă de

Realizat de: Ing. mast. Pintilie Lucian Nicolae Pentru disciplina: Sisteme de calcul în timp real Adresă de Teorema lui Nyquist Shannon - Demonstrație Evidențierea conceptului de timp de eșantionare sau frecvență de eșantionare (eng. sample time or sample frequency) IPOTEZĂ: DE CE TIMPUL DE EȘANTIONARE (SAU

Διαβάστε περισσότερα

COMPARATOARE DE TENSIUNE CU AO FĂRĂ REACŢIE

COMPARATOARE DE TENSIUNE CU AO FĂRĂ REACŢIE COMPARATOARE DE TENSIUNE CU AO FĂRĂ REACŢIE I. OBIECTIVE a) Determinarea caracteristicilor statice de transfer în tensiune pentru comparatoare cu AO fără reacţie. b) Determinarea tensiunilor de ieşire

Διαβάστε περισσότερα