(Γραμμικές) Αναδρομικές Σχέσεις



Σχετικά έγγραφα
(Γραμμικές) Αναδρομικές Σχέσεις

(Γραμμικές) Αναδρομικές Σχέσεις

Γεννήτριες Συναρτήσεις

Γεννήτριες Συναρτήσεις

Γεννήτριες Συναρτήσεις

a n + 6a n a n 2 + 8a n 3 = 0, a 0 = 1, a 1 = 2, a 2 = 8

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n

Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε»

Υπολογιστικά & Διακριτά Μαθηματικά

n ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4

a n = 3 n a n+1 = 3 a n, a 0 = 1

Συνδυαστική Απαρίθμηση

Ασυμπτωτικός Συμβολισμός

- εξίσωση που εκφράζει τον n-οστό όρο a n της ακολουθίας, - µέσω ενός ή περισσότερων όρων από τους a 0, a 1,..., a n 1, - για κάθε n n 0, όπου n 0 N.

ΠΛΗ 20, 1 η ΟΣΣ (Συνδυαστική)

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση

P(n, r) = n! P(n, r) = n r. (n r)! n r. n+r 1 r n!

Συνδυαστική Απαρίθµηση Υπολογισµός (µε συνδυαστικά επιχειρήµατα) του πλήθους των διαφορετικών αποτελεσµάτων ενός «πειράµατος». «Πείραµα»: διαδικασία µ

Διαίρει-και-Βασίλευε. Διαίρει-και-Βασίλευε. MergeSort. MergeSort. Πρόβλημα Ταξινόμησης: Είσοδος : ακολουθία n αριθμών (α 1

Συνδυαστική Απαρίθμηση

α n z n = 1 + 2z 2 + 5z 3 n=0

Συνδυαστική Απαρίθμηση

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής

κ.λπ. Ισχύει πως x = 100. Οι διαφορετικές λύσεις αυτής της εξίσωσης χωρίς κανένα περιορισμό είναι

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Αναδρομικές ακολουθίες και Θεωρία Αριθμών

Πεπερασμένα Αυτόματα. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Ψηφιακή Επεξεργασία Σημάτων

Κανονικές Γλώσσες. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Συνδυαστική Απαρίθμηση

ΠΛΗ 20, 1 η ΟΣΣ (Συνδυαστική)

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS

2.3 Πολυωνυμικές Εξισώσεις

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

(a 1, b 1 ) (a 2, b 2 ) = (a 1 a 2, b 1 b 2 ).

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Συνδυαστική Απαρίθμηση

ΜΕΜ251 Αριθμητική Ανάλυση

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

Εισαγωγικές Έννοιες. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο

Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

ιακριτές Μέθοδοι για την Επιστήμη των Υπολογιστών

Ανισώσεις Γινόμενο και Ανισώσεις Πηλίκο

Αρχή του Περιστερώνα. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα.

ιδάσκοντες: Φ. Αφράτη, Σ. Ζάχος,. Σούλιου

υναμικός Προγραμματισμός

Συνδυαστική Απαρίθμηση

Αρχή του Περιστερώνα. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ.

Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Αριθμητική Ανάλυση και Εφαρμογές

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

Κανονικές Γλώσσες. Κανονικές Γλώσσες. Κανονικές Γλώσσες και Αυτόματα. Κανονικές Γλώσσες και Αυτόματα

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Συνδυασμοί C(n, k): #επιλογών k από n διακεκριμένα αντικείμενα (διαθέσιμα σε ένα «αντίγραφο»).

Συνδυαστική Απαρίθµηση

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Ασυμπτωτικός Συμβολισμός

ΚΕΦΑΛΑΙΟ 5 ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΗΤΙΚΗ ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

υναμικός Προγραμματισμός

ΚΕΦΑΛΑΙΟ 5 ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

Συνδυαστική Απαρίθμηση

ιµελής Σχέση ιατεταγµένο ζεύγος (α, β): ύο αντικείµενα (όχι κατ ανάγκη διαφορετικά) σε καθορισµένη σειρά. Γενίκευση: διατεταγµένη τριάδα (α, β, γ), δι

Μη γράφετε στο πίσω μέρος της σελίδας

Γλώσσες Χωρίς Συμφραζόμενα

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

F 5 = (F n, F n+1 ) = 1.

Γιώργος Καριπίδης-Ανθούλα Σοφιανοπούλου ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΡΙΑ ΣΥΝΑΡΤΗΣΗΣ

1 Ανάλυση αλγορίθµων. 2 Συµβολισµοί O, Ω και Θ. 3 Αναδροµικές εξισώσεις

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές

Ασυμπτωτικός Συμβολισμός

II. Συναρτήσεις. math-gr

Να επιλύουμε και να διερευνούμε την εξίσωση αx + β = 0, βάση τη γραφική παράσταση της ευθείας y = ax + β.

Σχέσεις. ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Δίνεται το σύστημα μιας εισόδου και μιας εξόδου, το οποίο περιγράφεται από τις κάτωθι εξισώσεις:,, πίνακας,

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις Επαναληψης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

Δυναμικός Προγραμματισμός

Διαφορικές εξισώσεις

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy

Διαφορικές εξισώσεις

Μαθηµατικά για Πληροφορική

ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ. f : A R και στη συνέχεια δίνουμε τον τύπο της συνάρτησης, π.χ.

Transcript:

(Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Αναδρομικές Σχέσεις Αναπαράσταση ακολουθίας α εκφράζοντας α n ως συνάρτηση α n-1, α n-2,, με δεδομένες αρχικές συνθήκες. Ακολουθία Fibonacci F n = F n-1 + F n-2, F 0 = 1 και F 1 = 1. Συχνά F 0 = 0 και F 1 = 1 ως αρχικές συνθήκες. Γεωμετρική πρόοδος με λόγο λ: α n = λα n-1, α 0 = 1. Αριθμητική πρόοδος με βήμα ω: α n = α n-1 + ω, α 0 = 0. Άθροισμα n πρώτων φυσικών: α n = α n-1 + n, α 0 = 0. Αναδρομικές σχέσεις προκύπτουν «φυσιολογικά» από την περιγραφή του προβλήματος. Ανάλυση αναδρομικών αλγορίθμων, συνδυαστική,... «Επίλυση» για υπολογισμό n-οστού όρου: όχι πάντα εύκολη. Γραμμικές σχέσεις με σταθερούς συντελεστές. Σχέσεις που προκύπτουν από διαίρει-και-βασίλευε αλγόριθμους. ιακριτά Μαθηματικά (Άνοιξη 2010) Αναδρομικές Σχέσεις 2

Παράδειγμα Οι Πύργοι του Ανόι: #κινήσεων ώστε n δίσκοι, όλοι διαφορετικού μεγέθους, να μεταφερθούν από αριστερά στα δεξιά χωρίς κάποιος δίσκος να βρεθεί πάνω από κάποιον άλλο μικρότερο. T(n): #κινήσεων για n 1 δίσκους. Αρχική συνθήκη: Τ(0) = 0, Τ(1) = 1, Τ(2) = 3, Τ(3) = 7, Τ(n) = 2T(n-1) + 1 ιακριτά Μαθηματικά (Άνοιξη 2010) Αναδρομικές Σχέσεις 3

Παράδειγμα Αναδρομική σχέση για #δυαδικών συμβ/ρών μήκους n που δεν περιέχουν το 00 (δύο συνεχόμενα 0). α 0 = 1, α 1 = 2, α 2 = 3, α 3 = 5,... Κάθε συμβ/ρά μήκους n-1 χωρίς 00 δίνει μία συμβ/ρά μήκους n χωρίς 00 με την προσθήκη του ψηφίου 1. Έτσι παίρνουμε α n-1 συμβ/ρές μήκους n χωρίς 00. Κάθε συμβ/ρά μήκους n-1 χωρίς 00 που τελειώνει σε 1 δίνει άλλη μία συμβ/ρά μήκους n χωρίς 00 με την προσθήκη του ψηφίου 0. Έτσι παίρνουμε α n-2 (διαφορετικές) συμβ/ρές μήκους n χωρίς 00. Συνεπώς α n = α n-1 + α n-2, με α 0 = 1, α 1 = 2. ιακριτά Μαθηματικά (Άνοιξη 2010) Αναδρομικές Σχέσεις 4

Παράδειγμα Αναδρομική σχέση για #πενταδικών συμβ/ρών μήκους n με άρτιο αριθμό 0. α 0 = 1, α 1 = 4, α 2 = 17,... Κάθε συμβ/ρά μήκους n-1 με άρτιο αριθμό 0 δίνει 4 συμβ/ρές μήκους n με άρτιο αριθμό 0, με προσθήκη ενός από τα 1, 2, 3, 4. Έτσι παίρνουμε 4α n-1 συμβ/ρές μήκους n με άρτιο αριθμό 0. Κάθε συμβ/ρά μήκους n-1 με περιττό αριθμό 0 δίνει 1 συμβ/ρά μήκους n με άρτιο αριθμό 0, με προσθήκη ενός 0. Έτσι παίρνουμε 5 n-1 α n-1 (διαφορετικές) συμβ/ρές μήκους n με άρτιο αριθμό 0. Συνεπώς α n = 5 n-1 + 3α n-1, με α 0 = 1. ιακριτά Μαθηματικά (Άνοιξη 2010) Αναδρομικές Σχέσεις 5

Επίλυση με Γεννήτριες Συναρτήσεις Για γραμμικές αναδρομικές σχέσεις με σταθερούς συντελεστές είναι (συνήθως) εύκολο να υπολογίσουμε τη ΓΣ της ακολουθίας. Η ακολουθία που αντιστοιχεί στη ΓΣ αποτελεί τη «λύση» της σχέσης. Παράδειγμα (πύργοι του Ανόι): α n 2α n-1 = 1 με α 0 = 0. Για κάθε n 1 πολλαπλασιάζουμε με x n και αθροίζουμε: Αν συμβολίσ. με Α(x) τη ΓΣ της α n έχουμε τώρα μιασχέσηγιαα(x): Χρησιμοποιώντας α 0 = 0 και λύνοντας ως προς A(x): Κλασματική ανάλυση: «Λύση»: ιακριτά Μαθηματικά (Άνοιξη 2010) Αναδρομικές Σχέσεις 6

Επίλυση με Γεννήτριες Συναρτήσεις Παράδειγμα: α n 3α n-1 = 5 n-1 με α 0 = 1. Για κάθε n 1 πολλαπλασιάζουμε με x n και αθροίζουμε: Αν συμβολίσ. με Α(x) τη ΓΣ της α n έχουμε τώρα μιασχέσηγιαα(x): Χρησιμοποιώντας α 0 = 1 και λύνοντας ως προς A(x): Κλασματική ανάλυση: «Λύση»: ιακριτά Μαθηματικά (Άνοιξη 2010) Αναδρομικές Σχέσεις 7

Γραμμικές Αναδρομικές Σχέσεις με Σταθερούς Συντελεστές Αναδρομική σχέση όπου C 0,, C k σταθερές, καλείται γραμμική αναδρομική σχέση με σταθερούς συντελεστές και οδηγό συνάρτηση f(n). Αν C 0 0 και C k 0, είναι τάξης k. Αν f(n) = 0, είναι ομογενής. Π.χ. α n + α n-1 = 2 n, α n -2α n-3 = 0, α n -2α n-5 + α n-10 = n 3 Ακολουθία (ή «λύση») της σχέσης προσδιορίζεται μοναδικά από τιμές k αρχικών (ή διαδοχικών) όρων (αρχικές συνθήκες). Αν δίνονται τιμές < k όρων (ή μηδιαδοχικών), μπορεί > 1 «λύσεις». Αν δίνονται τιμές > k διαδοχικών όρων, μπορεί καμία «λύση». «Λύση»: άθροισμα ομογενούς λύσης και ειδικής λύσης. Ομογενής λύση: προκύπτει από ομογενή και αρχικές συνθήκες. Ειδική λύση: προκύπτει από οδηγό συνάρτηση f(n). ιακριτά Μαθηματικά (Άνοιξη 2010) Αναδρομικές Σχέσεις 8

Ομογενής Λύση Αναζητούμε λύσεις της μορφής α n = x n, x 0. Έτσι θεωρούμε την:... που είναι ισοδύναμη με την χαρακτηριστική εξίσωση: Εξετάζουμε μόνο την περίπτωση που η χ.ε. έχει πραγματικές ρίζες. Αν η χ.ε. έχει k ρίζες x 1,, x k πολλαπλότητας 1, ομογενής λύση: Α 1,..., Α k σταθερές που προσδιορίζονται από αρχικές συνθήκες. Αφού τα x i ρίζες της χ.ε., κάθε A i x in επαληθεύει την ομογενή σχέση. Αυτή η διαδικασία οδηγεί στη συνολικήλύσηγια ομογενείς αναδρομικές σχέσεις (π.χ Fibonacci). ιακριτά Μαθηματικά (Άνοιξη 2010) Αναδρομικές Σχέσεις 9

Ομογενής Λύση: Παραδείγματα α n = 4α n-2 με α 0 = 2 και α 1 = 0: Χαρακτηριστική εξίσωση x 2 4 = 0με ρίζες 2 και -2. Μορφή (ομογενούς) λύσης α n = Α 1 2 n + Α 2 (-2) n n = 0: 2 = A 1 + A 2 Τελικά έχουμε Α 1 = Α 2 = 1. n = 1: 0 = 2A 1 2A 2 (Ομογενής) λύση α n = 2 n + (-2) n Αν α 0 = 1 και α 1 = 2, τότε α n = 2 n α n 6α n-1 + 8α n-2 = 0 με α 0 = 2 και α 1 = -1. Χαρακτηριστική εξίσωση x 2 6x + 8 = 0 με ρίζες 2 και 4. Μορφή (ομογενούς) λύσης α n = Α 1 2 n + Α 2 4 n n = 0: 2 = A 1 + A 2 Τελικά έχουμε Α 1 = 9/2 και Α 2 = -5/2. n = 1: -1 = 2A 1 +4A 2 (Ομογενής) λύση α n = 9 2 n-1 10 4 n-1 ιακριτά Μαθηματικά (Άνοιξη 2010) Αναδρομικές Σχέσεις 10

Ομογενής Λύση: Πολλαπλές Ρίζες Αν χ.ε. έχει κάποια ρίζα x 1 πολλαπλότητας m, τμήμα ομογενούς λύσης που αντιστοιχεί στην x 1 είναι: Ομογενής σχέση επαληθεύεται από κάθε A i n m-i x 1n γιατί x 1 αποτελεί ρίζα της χ.ε. και της 1 ης, 2 ης,..., (m-1)-οστής παραγώγου της. Π.χ. α n 6α n-1 + 9α n-2 = 0 με α 0 = 1 και α 1 = 6. Χαρακτηριστική εξίσωση x 2 6x + 9= 0 με διπλή ρίζα 3. Μορφή (ομογενούς) λύσης α n = Α 1 n 3 n + Α 2 3 n n = 0: 1 = A 2 Τελικά έχουμε Α 1 = Α 2 = 1. n = 1: 6 = 3A 1 +3A 2 (Ομογενής) λύση α n = (n+1)3 n ιακριτά Μαθηματικά (Άνοιξη 2010) Αναδρομικές Σχέσεις 11

Ειδική Λύση... όταν η οδηγός συνάρτηση είναι γινόμενο πολυωνύμου του n με εκθετική συνάρτηση του n. Θεωρούμε οδηγό συνάρτηση: Αν f(n) είναι πολυώνυμο, θεωρούμε ότι β = 1. Όταν β δεν είναι ρίζα της χ.ε., τότε ειδική λύση: Όταν βρίζατης χ.ε. πολλαπλότητας m, τότε ειδική λύση: P 1,, P t+1 σταθερές που προσδιορίζονται ώστε η ειδική λύση να ικανοποιεί την αναδρομική σχέση με οδηγό συνάρτηση f(n). ιακριτά Μαθηματικά (Άνοιξη 2010) Αναδρομικές Σχέσεις 12

Ειδική Λύση: Παραδείγματα α n 6α n-1 + 8α n-2 = 3n 2 14n + 12. To β = 1 δεν είναι ρίζα της χ.ε. Μορφή ειδικής λύσης: α (p) n = P 1 n 2 + P 2 n + P 3 Προσδιορίζουμε τα P 1, P 2, P 3 αντικαθιστώντας στην αναδρομική σχέση και εξισώνοντας συντελεστές αντίστοιχων όρων: Άρα P 1 = 1, P 2 = 2, και P 3 = 2. Ειδική λύση: α (p) n = n 2 + 2n + 2 ιακριτά Μαθηματικά (Άνοιξη 2010) Αναδρομικές Σχέσεις 13

Ειδική Λύση: Παραδείγματα α n 4α n-1 + 3α n-2 = (n+1) 2 n To β = 2 δεν είναι ρίζα της χ.ε. (ηχ.ε. έχει ρίζες 1 και 3). Μορφή ειδικής λύσης: α (p) n = (P 1 n + P 2 ) 2 n Προσδιορίζουμε τα P 1, P 2 αντικαθιστώντας στην αναδρομική σχέση και εξισώνοντας συντελεστές αντίστοιχων όρων: Άρα P 1 = 4 και P 2 = 12. Ειδική λύση: α (p) n = (4n + 12) 2 n ιακριτά Μαθηματικά (Άνοιξη 2010) Αναδρομικές Σχέσεις 14

Ειδική Λύση: Παραδείγματα α n 4α n-1 + 4α n-2 = (n+1) 2 n To β = 2 είναι ρίζα της χ.ε. πολλαπλότητας 2. Μορφή ειδικής λύσης: α (p) n = n 2 (P 1 n + P 2 ) 2 n Προσδιορίζουμε τα P 1, P 2 αντικαθιστώντας στην αναδρομική σχέση και εξισώνοντας συντελεστές αντίστοιχων όρων: Άρα P 1 = 1/6 και P 2 = 1. Ειδική λύση: α (p) n = (n 3 / 6 + n 2 ) 2 n ιακριτά Μαθηματικά (Άνοιξη 2010) Αναδρομικές Σχέσεις 15

Ειδική Λύση: Παραδείγματα α n 6α n-1 + 9α n-2 = (n 2 +1) 3 n To β = 3 είναι ρίζα της χ.ε. πολλαπλότητας 2. Μορφή ειδικής λύσης: α (p) n = n 2 (P 1 n 2 + P 2 n + P 3 ) 3 n Προσδιορίζουμε τα P 1, P 2, P 3 αντικαθιστώντας στην αναδρομική σχέση και εξισώνοντας συντελεστές αντίστοιχων όρων: Άρα P 1 = 1/12, P 2 = 1/3, και P 3 = 11/12. Ειδική λύση: α (p) n = n 2 (n 2 /12 + n/3 + 11/12) 3 n ιακριτά Μαθηματικά (Άνοιξη 2010) Αναδρομικές Σχέσεις 16

Συνολική Λύση Υπολογίζουμε την ειδική λύση (γενική μορφή και τιμές των P i ). Υπολογίζουμε την ομογενή λύση χωρίς τιμές για τα Α i. Προσδιορίζουμε τα Α i από το άθροισμα ειδικής και ομογενούς λύσεις για αρχικές συνθήκες. Λύση που ικανοποιεί αναδρομική σχέση (ειδική λύση) και τις αρχικές συνθήκες (ομογενής λύση). Μορφή συνολικής λύσης δεν εξαρτάται από αρχικές συνθήκες. Μόνο συντελεστές Α i ομογενούς λύσης εξαρτώνται από αρχικές συνθήκες. ιακριτά Μαθηματικά (Άνοιξη 2010) Αναδρομικές Σχέσεις 17

Συνολική Λύση: Παραδείγματα α n 6α n-1 + 8α n-2 = 3n 2 14n + 12με α 0 = 1 και α 1 = 4. Α 1 = -3/2 και Α 2 = 1/2 Συνολική λύση α n = n 2 + 2n + 2 3 2 n-1 + 2 4 n-1 α n 4α n-1 + 4α n-2 = (n+1) 2 n με α 0 = 0 και α 1 = 2. Α 1 = -1/6 και Α 2 = 0 Συνολική λύση α n = -(1/6) n 2 n (n 2 + 6n 1) ιακριτά Μαθηματικά (Άνοιξη 2010) Αναδρομικές Σχέσεις 18