HERMITE-HADAMARD TYPE FRACTIONAL INTEGRAL INEQUALITIES FOR GENERALIZED FUNCTIONS

Σχετικά έγγραφα
Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES

On Generating Relations of Some Triple. Hypergeometric Functions

INTEGRAL INEQUALITY REGARDING r-convex AND

A study on generalized absolute summability factors for a triangular matrix

Quadruple Simultaneous Fourier series Equations Involving Heat Polynomials

Oscillatory integrals

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

PARTIAL SUMS OF CERTAIN CLASSES OF MEROMORPHIC FUNCTIONS

Antonis Tsolomitis Laboratory of Digital Typography and Mathematical Software Department of Mathematics University of the Aegean

Orthogonal polynomials

Ψηφιακή Επεξεργασία Εικόνας

On Inclusion Relation of Absolute Summability

1. For each of the following power series, find the interval of convergence and the radius of convergence:

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

τ τ VOLTERRA SERIES EXPANSION OF LASER DIODE RATE EQUATION The basic laser diode equations are: 1 τ (2) The expansion of equation (1) is: (3) )( 1

Example Sheet 3 Solutions

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Homework 4.1 Solutions Math 5110/6830

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

Homomorphism of Intuitionistic Fuzzy Groups

Solutions_3. 1 Exercise Exercise January 26, 2017

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Some Geometric Properties of a Class of Univalent. Functions with Negative Coefficients Defined by. Hadamard Product with Fractional Calculus I

Homework for 1/27 Due 2/5

Polynomial. Nature of roots. Types of quadratic equation. Relations between roots and coefficients. Solution of quadratic equation


Inverse trigonometric functions & General Solution of Trigonometric Equations

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

17 Monotonicity Formula And Basic Consequences

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Section 8.3 Trigonometric Equations

C.S. 430 Assignment 6, Sample Solutions

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar

Congruence Classes of Invertible Matrices of Order 3 over F 2

IIT JEE (2013) (Trigonomtery 1) Solutions

HARDY AND RELLICH INEQUALITIES WITH REMAINDERS

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

LAD Estimation for Time Series Models With Finite and Infinite Variance

Problem Set 3: Solutions

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction

The Simply Typed Lambda Calculus

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Bessel function for complex variable

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3

CERTAIN PROPERTIES FOR ANALYTIC FUNCTIONS DEFINED BY A GENERALISED DERIVATIVE OPERATOR

Statistical Inference I Locally most powerful tests

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

The Neutrix Product of the Distributions r. x λ

Finite Field Problems: Solutions

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Partial Differential Equations in Biology The boundary element method. March 26, 2013

A Laplace Type Problem for a Lattice with Cell Composed by Three Triangles with Obstacles

Differential equations

Lagrangian Formalism for the New Dirac Equation

Outline. Detection Theory. Background. Background (Cont.)

SHORT REVISION. FREE Download Study Package from website: 2 5π (c)sin 15 or sin = = cos 75 or cos ; 12

Poularikas A. D. Distributions, Delta Function The Handbook of Formulas and Tables for Signal Processing. Ed. Alexander D. Poularikas Boca Raton: CRC

I Feel Pretty VOIX. MARIA et Trois Filles - N 12. BERNSTEIN Leonard Adaptation F. Pissaloux. ι œ. % α α α œ % α α α œ. œ œ œ. œ œ œ œ. œ œ. œ œ ƒ.

Certain Sequences Involving Product of k-bessel Function

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ

«Βιοδοκιμές αποτελεσματικότητας ουσιών φυτικής προέλευσης επί του δορυφόρου της πατάτας Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae)»

On the generalized fractional derivatives and their Caputo modification

ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΕΝΙΣΧΥΣΗ ΤΩΝ ΚΟΜΒΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΜΕ ΒΑΣΗ ΤΟΥΣ ΕΥΡΩΚΩΔΙΚΕΣ

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

The k-α-exponential Function

Math221: HW# 1 solutions

Areas and Lengths in Polar Coordinates

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS

EE512: Error Control Coding

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

Approximation of distance between locations on earth given by latitude and longitude

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Generalized fractional calculus of the multiindex Bessel function

Solve the difference equation

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

EE101: Resonance in RLC circuits

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Areas and Lengths in Polar Coordinates

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],*

derivation of the Laplacian from rectangular to spherical coordinates

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.

Transcript:

Jourl o Pure d Alied Mthetics: Advces d Alictios Volue 7 Nuer 7 Pges -7 Aville t htt://scietiicdvces.co.i DOI: htt://dx.doi.org/.864/j_7745 HERMITE-HADAMARD TYPE FRACTIONAL INTEGRAL INEQUALITIES FOR GENERALIZED ( -PREINVEX FUNCTIONS ARTION KASHURI d ROZANA LIKO Dertet o Mthetics Fculty o Techicl Sciece Uiversity Isil Qeli Vlor Ali e-il: rtiokshuri@gil.co rozliko86@gil.co Astrct I the reset er y usig ew idetity or rctiol itegrls soe ew estites o geerliztios o Herite-Hdrd tye ieulities or the clss o geerlized ( -reivex uctios vi Rie-Liouville rctiol itegrl re estlished. At the ed soe lictios to secil es re give.. Itroductio The ollowig ottio is used throughout this er. We use I to deote itervl o the rel lie R ( d I to deote the Mthetics Suject Clssiictio: Priry 6A5; Secodry 6A33 6D7 6D 6D5. Keywords d hrses: Herite-Hdrd ieulity Holder s ieulity ower e ieulity Rie-Liouville rctiol itegrl s-covex i the secod sese -ivex P-uctio. Received Noveer 7 6 6 Scietiic Advces Pulishers

ARTION KASHURI d ROZANA LIKO iterior o I. For y suset K R K is used to deote the iterior o K R is used to deote geeric -diesiol vector sce. The oegtive rel uers re deoted y R [. The set o itegrle uctios o the itervl [ ] is deoted y L [ ]. The ollowig ieulity ed Herite-Hdrd ieulity is oe o the ost ous ieulities i the literture or covex uctios. Theore.. Let I o rel uers d holds: : I R R e covex uctio o itervl I with <. The the ollowig ieulity ( ( ( x dx. (. The ollowig deiitio will e used i the seuel. Deiitio.. The hyergeoetric uctio F ( ; c; z is deied y F ( ; c; z c t ( t ( zt dt β( c or c > > d z < where β ( x y is the Euler et uctio or ll x y >. I recet yers vrious geerliztios extesios d vrits o such ieulities hve ee otied (see [] [] [3]. For other recet results cocerig Herite-Hdrd tye ieulities through vrious clsses o covex uctios (see [9] d the reereces cited therei lso (see [8] d the reereces cited therei. Frctiol clculus (see [9] d the reereces cited therei ws itroduced t the ed o the ieteeth cetury y Liouville d Rie the suject o which hs ecoe ridly growig re d hs oud lictios i diverse ields rgig ro hysicl scieces d egieerig to iologicl scieces d ecooics.

HERMITE-HADAMARD TYPE FRACTIONAL 3 Deiitio.3. Let L [ ]. The Rie-Liouville itegrls J d J o order > with re deied y x > J ( x Γ( ( x t ( t dt x d J ( x Γ( > x e u ( t x ( t dt x where Γ ( u du. Here J ( x J ( x ( x. I the cse o the rctiol itegrl reduces to the clssicl itegrl. Due to the wide lictio o rctiol itegrls soe uthors exteded to study rctiol Herite-Hdrd tye ieulities or uctios o dieret clsses (see [9]-[6] d the reereces cited therei. Now let us recll soe deiitios o vrious covex uctios. Deiitio.4 (see [3]. A oegtive uctio sid to e P-uctio or P-covex i : I R R is ( tx ( t y ( x ( y x y I t [ ]. Deiitio.5 (see [6]. A uctio i the secod sese i : R R is sid to e s-covex or ll y R λ [ ] s ( λ x ( λ y λ ( x ( λ ( y (. x d s ( ]. It is cler tht -covex uctio ust e covex o R s usul. The s-covex uctios i the secod sese hve ee ivestigted i (see [6]. s

4 ARTION KASHURI d ROZANA LIKO R Deiitio.6 (see [4]. A set K is sid to e ivex with resect to the ig η : K K R i x tη( y x K or every x y K d t [ ]. Notice tht every covex set is ivex with resect to the ig η ( y x y x ut the coverse is ot ecessrily true. For ore detils lese see ([4] [5] d the reereces therei. Deiitio.7 (see [7]. The uctio deied o the ivex set K R is sid to e reivex with resect η i or every x y K d t [ ] we hve tht ( x tη( y x ( t ( x t ( y. The cocet o reivexity is ore geerl th covexity sice every covex uctio is reivex with resect to the ig η ( y x y x ut the coverse is ot true. Motivted y these results the i o this er is to estlish soe geerliztios o Herite-Hdrd tye ieulities usig ew idetity give i Sectio or geerlized ( -reivex uctios vi Rie-Liouville rctiol itegrl. I Sectio 3 soe lictios to secil es re give. These geerl ieulities give us soe ew estites or Herite-Hdrd tye rctiol itegrl ieulities.. Mi Results Deiitio. (see []. A set K is sid to e -ivex with resect to the ig η : K K ( ] R or soe ixed ( ] i x tη( y x K holds or ech x y K d y t [ ]. Rerk.. I Deiitio. uder certi coditios the ig η ( y x could reduce to η ( y x. R

HERMITE-HADAMARD TYPE FRACTIONAL 5 Deiitio.3 (see []. Let K e oe -ivex set with resect to η : K K ( ] R d : I R cotiuous icresig uctio. For R : K R d y ixed s ( ] i s ( ( x tη( ( y ( x ( t ( ( x t ( ( y (. is vlid or ll x y K t [ ] the we sy tht ( x is geerlized ( s -reivex uctio with resect to η. Rerk.4. For s i Deiitio.3 we sy tht ( x is geerlized ( -reivex uctio with resect to η. Rerk.5. I Deiitio.3 it is worthwhile to ote tht the clss o geerlized ( s -reivex uctio is geerliztio o the clss o s-covex i the secod sese uctio give i Deiitio.5. Throughout this er we deote A ( x; η λ µ s η( ( ( x η( ( ( { λ ( ( x η( ( ( x ( λ ( ( x } η( ( ( x η( ( ( Γ( η( ( ( { µ ( ( x ( µ ( ( x η( ( ( x } [ J ( ( ( ( ( ( ( x J ( ( ( ( ( ( ( x ] x η x x η x where x r ( r or r [ ]. I this sectio i order to rove our i results regrdig soe Herite-Hdrd tye ieulities or geerlized ( -reivex uctio vi rctiol itegrls we eed the ollowig les:

6 ARTION KASHURI d ROZANA LIKO Le.6. Let : I R e cotiuous icresig uctio. Suose K R e oe -ivex suset with resect to η : K K ( ] R or y ixed ( ] d let ( ( K < with η( ( (. Assue tht : K R is dieretile uctio o [ ]. The or y λ µ [ ] d > the K d L ( ( ollowig idetity holds: A ( x; η λ µ η( ( ( x η( ( ( ( t µ ( ( x tη( ( ( x dt η( ( ( x η( ( ( ( λ t ( ( x tη( ( ( x dt (. where x r ( r or r [ ]. Proo. A sile roo o the eulity (. c e doe y erorig itegrtio y rts i the itegrls ro the right side d chgig the vrile. The detils re let to the iterested reder. For the silicities o ottios let ( t dt ( t t dt ( t dt. (.3

HERMITE-HADAMARD TYPE FRACTIONAL 7 Le.7. For we hve ( ( < <. ; ; ( ( ( < <. ; ; (c ( ( ( β < < β. ; ; ; ; F Proo. These eulities ollows ro strightowrd couttio o deiite itegrls. Now we tur our ttetio to estlish ew itegrl ieulities o Herite-Hdrd tye or geerlized ( -reivex uctios vi rctiol itegrls. Usig Les.6 d.7 the ollowig results c e otied or the corresodig versio or ower o the solute vlue o the irst derivtive:

8 ARTION KASHURI d ROZANA LIKO Theore.8. Let : I R e cotiuous icresig uctio. Suose A R e oe -ivex suset with resect to η : A A ( ] R or y ixed ( ] d let ( ( A < with η( ( (. Assue tht : A R is dieretile uctio o A. I is geerlized ( -reivex uctio o [ ( ( ] > the or y λ µ [ ] d > the ollowig ieulity or rctiol itegrls holds: A ( x; η λ µ η( ( ( x η( ( ( ( λ ( ( ( ( x η( ( ( x ( ( ( ( x (. ( ( ( µ η (.4 Proo. Suose tht >. Usig Les.6 d.7 the ct tht is geerlized ( -reivex uctio roerty o the odulus d Hölder s ieulity we hve A ( x; η λ µ η( ( ( x λ t η( ( ( ( ( x tη( ( ( x dt η( ( ( x t η( ( ( µ ( ( x tη( ( ( x dt

HERMITE-HADAMARD TYPE FRACTIONAL 9 η( ( ( x η( ( ( λ t dt ( ( x tη( ( ( x dt η( ( ( x η( ( ( t µ dt ( ( x tη( ( ( x dt η( ( ( x η( ( ( ( λ ( ( t ( ( x t ( ( dt η( ( ( x η( ( ( ( µ ( ( t ( ( x t ( ( dt η( ( ( x η( ( ( ( λ ( ( ( ( x η( ( ( x ( ( ( ( x (. ( ( ( µ η The roo o Theore.8 is coleted.

ARTION KASHURI d ROZANA LIKO Corollry.9. Uder the coditios o Theore.8 i we choose µ λ x d ( ( ( ( ( x y x y η we get the ollowig geerlized Herite-Hdrd tye ieulity or rctiol itegrls: ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( Γ J J ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (. (.5 Theore.. Let R I : e cotiuous icresig uctio. Suose R A e oe -ivex suset with resect to η A A : ( ] R or y ixed ( ] d let ( ( A < with ( ( (. η Assue tht R A : is dieretile uctio o. A I is geerlized ( -reivex uctio o ( ( [ ] the or y [ ] µ λ d > the ollowig ieulity or rctiol itegrls holds:

HERMITE-HADAMARD TYPE FRACTIONAL A ( x; η λ µ η( ( ( x η( ( ( ( λ [ ( λ ( ( ( ( λ ( λ ( ( x ] η( ( ( x η( ( ( ( µ [ ( µ ( ( ( ( µ ( µ ( ( x ]. (.6 Proo. Suose tht. Usig Les.6 d.7 the ct tht is geerlized ( -reivex uctio roerty o the odulus d the well-kow ower e ieulity we hve A ( x; η λ µ η( ( ( x λ t η( ( ( ( ( x tη( ( ( x dt η( ( ( x t η( ( ( µ ( ( x tη( ( ( x dt η( ( ( x η( ( ( λ t dt λ t ( ( x tη( ( ( x dt η( ( ( x η( ( ( t µ dt t µ ( ( x tη( ( ( x dt

ARTION KASHURI d ROZANA LIKO ( ( ( ( ( ( ( λ η η x ( ( ( ( ( ( ( ( [ ] x λ λ λ ( ( ( ( ( ( ( µ η η x ( ( ( ( ( ( ( ( [ ]. x µ µ µ The roo o Theore. is coleted. Corollry.. Uder the coditios o Theore. i we choose µ λ x d ( ( ( ( ( x y x y η we get the ollowig geerlized Herite-Hdrd tye ieulity or rctiol itegrls: ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( Γ J J ( ( ( ( ( ( ( ( ( ( ( ( ( (. (.7

HERMITE-HADAMARD TYPE FRACTIONAL 3 3. Alictios to Secil Mes I the ollowig we give certi geerliztios o soe otios or ositive vlued uctio o ositive vrile. Deiitio 3. (see [7]. A uctio M : R R is clled e uctio i it hs the ollowig roerties: ( Hoogeeity: M ( x y M ( x y or ll >. ( Syetry: M ( x y M ( y x. (3 Relexivity: M ( x x x. (4 Mootoicity: I x x d y y the M ( x y M ( x y. (5 Iterlity: i{ x y} M ( x y x{ x y}. We cosider soe es or ritrry ositive rel uers β ( β. ( The rithetic e: A β : A( β. ( The geoetric e: G : G( β β. (3 The hroic e: H : H( β. β (4 The ower e: Pr : ( β r Pr β. r r r

4 ARTION KASHURI d ROZANA LIKO (5 The idetric e: I β : I( β e β β; β. (6 The logrithic e: β L : L( β ; β β. l β l (7 The geerlized log-e: L : L ( β β ( ( β ; R \ { } β. (8 The weighted -ower e: M iu i u i u u where > ( i with. i u i i It is well-kow tht L is ootoic odecresig over R with L : L d L : I. I rticulr we hve the ollowig ieulity H G L I A. Now let d e ositive rel uers such tht <. Cosider the uctio M : M ( ( ( : [ ( ( η( ( ( ] [ ( ( η( ( ( ] R which is oe o the ove etioed es d : I R e cotiuous icresig uctio thereore oe c oti vrious ieulities usig the results o Sectio or these es s ollows: Relce η ( ( y ( x with η ( ( y ( x d settig η ( ( ( M ( ( ( η( ( ( x M ( ( ( x η( ( ( x M ( ( ( x x A or vlue i (.4 d (.6 oe c oti the ollowig iterestig ieulities ivolvig es: i

HERMITE-HADAMARD TYPE FRACTIONAL 5 M ( ( ( x { λ ( ( x M ( ( ( x ( λ ( ( x } M ( ( ( M ( ( ( x M ( ( ( Γ( M ( ( ( { µ ( ( x ( µ ( ( x M ( ( ( x } [ ] J ( ( ( ( ( ( ( x J ( ( ( ( x M x x M x ( ( ( x M ( ( ( x M ( ( ( ( λ ( ( ( ( x M ( ( ( x M ( ( ( ( ( ( ( x ( µ (3. M ( ( ( x { λ ( ( x M ( ( ( x ( λ ( ( x } M ( ( ( M ( ( ( x M ( ( ( Γ( M ( ( ( { µ ( ( x ( µ ( ( x M ( ( ( x } [ ] J ( ( ( ( ( ( ( x J ( ( ( ( x M x x M x ( ( ( x M ( ( ( x M ( ( ( ( λ [ ( λ ( ( ( ( λ ( λ ( ( x ] M ( ( ( x M ( ( ( ( µ [ ( µ ( ( ( ( µ ( µ ( ( x ]. (3.

6 ARTION KASHURI d ROZANA LIKO Lettig M ( ( x ( y A G H P I L L M x y A i (3. d (3. we get the ieulities ivolvig es or rticulr choices o dieretile geerlized ( -reivex uctio. The detils re let to the iterested reder. Reereces r [] A. Kshuri d R. Liko Ostrowski tye rctiol itegrl ieulities or geerlized ( s -reivex uctios Aust. J. Mth. Al. Al. 3( (6 - Article 6. [] T. S. Du J. G. Lio d Y. J. Li Proerties d itegrl ieulities o Hdrd- Siso tye or the geerlized (s -reivex uctios J. Nolier Sci. Al. (6 3-36. [3] S. S. Drgoir J. Pečrić d L. E. Persso Soe ieulities o Hdrd tye Soochow J. Mth. (995 335-34. [4] T. Atczk Me vlue i ivexity lysis Nolier Al. 6 (5 473-484. [5] X. M. Yg X. Q. Yg d K. L. Teo Geerlized ivexity d geerlized ivrit ootoicity J. Oti. Theory Al. 7 (3 67-65. [6] H. Hudzik d L. Mligrd Soe rerks o s-covex uctios Aeutioes Mth. 48 (994 -. [7] R. Pii Ivexity d geerlized covexity Otiiztio (99 53-55. [8] H. Kvurci M. Avci d M. E. Özdeir New ieulities o Herite-Hdrd tye or covex uctios with lictios rxiv: 6.593v [th. CA] ( -. [9] W. Liu W. We d J. Prk Herite-Hdrd tye ieulities or MT-covex uctios vi clssicl itegrls d rctiol itegrls J. Nolier Sci. Al. 9 (6 766-777. [] W. Liu W. We d J. Prk Ostrowski tye rctiol itegrl ieulities or MT-covex uctios Miskolc Mtheticl Notes 6( (5 49-56. [] Y. M. Chu G. D. Wg d X. H. Zhg Schur covexity d Hdrd s ieulity Mth. Ieul. Al. 3(4 ( 75-73. [] X. M. Zhg Y. M. Chu d X. H. Zhg The Herite-Hdrd tye ieulity o GA-covex uctios d its lictios J. Ieul. Al. ( Article ID 5756 ges. [3] Y. M. Chu M. A. Kh T. U. Kh d T. Ali Geerliztios o Herite- Hdrd tye ieulities or MT-covex uctios J. Nolier Sci. Al. 9(5 (6 435-436.

HERMITE-HADAMARD TYPE FRACTIONAL 7 [4] M. Tuç Ostrowski tye ieulities or uctios whose derivtives re MT-covex J. Cout. Al. Al. 7(4 (4 69-696. [5] W. J. Liu Soe Siso tye ieulities or h-covex d ( -covex uctios J. Cout. Al. Al. 6(5 (4 5-. [6] F. Qi d B. Y. Xi Soe itegrl ieulities o Siso tye or GA -covex uctios Georgi Mth. J. (5 (3 775-788. [7] P. S. Bulle Hdook o Mes d their Ieulities Kluwer Acdeic Pulishers Dordrecht 3. g