J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

Σχετικά έγγραφα
Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul. 2016

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations

Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4,

Positive solutions for a multi-point eigenvalue. problem involving the one dimensional

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales

Multiple positive periodic solutions of nonlinear functional differential system with feedback control

Existence of travelling wave solutions in delayed reaction diffusion systems with applications to diffusion competition systems

Prey-Taxis Holling-Tanner

Oscillation criteria for two-dimensional system of non-linear ordinary differential equations

Linear singular perturbations of hyperbolic-parabolic type

Analysis of optimal harvesting of a prey-predator fishery model with the limited sources of prey and presence of toxicity

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

A New Approach to Bounded Real Lemma Representation for Linear Neutral Systems

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R

The third moment for the parabolic Anderson model

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

Pricing Asian option under mixed jump-fraction process

TRM +4!5"2# 6!#!-!2&'!5$27!842//22&'9&2:1*;832<

Levin Lin(1992) Oh(1996),Wu(1996) Papell(1997) Im, Pesaran Shin(1996) Canzoneri, Cumby Diba(1999) Lee, Pesaran Smith(1997) FGLS SUR

A Control Method of Errors in Long-Term Integration

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

A Simple Version of the Lucas Model

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Center Manifold Theory and Computation Using a Forward Backward Approach

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

Non-Markovian dynamics of an open quantum system in fermionic environments

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

6.003: Signals and Systems. Modulation

arxiv: v1 [math.ap] 10 Apr 2017

ON LOCAL MOTION OF A COMPRESSIBLE BAROTROPIC VISCOUS FLUID WITH THE BOUNDARY SLIP CONDITION. Marek Burnat Wojciech M. ZajĄczkowski. 1.

On shift Harnack inequalities for subordinate semigroups and moment estimates for Lévy processes

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

INDIRECT ADAPTIVE CONTROL

Strong global attractors for non-damping weak dissipative abstract evolution equations

High order interpolation function for surface contact problem

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM

Appendix A. Stability of the logistic semi-discrete model.

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

Vulnerable European option pricing with the time-dependent for double jump-diffusion process

ACTA MATHEMATICAE APPLICATAE SINICA Sep., ( MR (2000) Õ È 32C17; 32F07; 35G30; 53C55

6.003: Signals and Systems

Cubic Γ-n normed linear spaces

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales

Riesz ( ) Vol. 47 No u( x, t) 5 x u ( x, t) + b. 5 x u ( x, t), 5 x = R D DASSL. , Riesz. , Riemann2Liouville ( R2L ) = a

On local motion of a general compressible viscous heat conducting fluid bounded by a free surface

Bulletin of the. Iranian Mathematical Society

Numerical Analysis FMN011

α ]0,1[ of Trigonometric Fourier Series and its Conjugate

Symmetry Group Theorem of the Lin-Tsien Equation and Conservation Laws Relating to the Symmetry of the Equation. Xi-Zhong Liu.

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

(II) * PACS: a, Hj 300. ) [6 9] ) [10 23] ) [26 30]. . Deng [24,25] Acta Phys. Sin. Vol. 61, No. 15 (2012)

Managing Production-Inventory Systems with Scarce Resources

Α Ρ Ι Θ Μ Ο Σ : 6.913

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

On Strong Product of Two Fuzzy Graphs

WTO. ( Kanamori and Zhao,2006 ;,2006), ,,2005, , , 1114 % 1116 % 1119 %,

Asymptotic behavior of solutions of mixed type impulsive neutral differential equations

Representation of Five Dimensional Lie Algebra and Generating Relations for the Generalized Hypergeometric Functions

I. Μητρώο Εξωτερικών Μελών της ημεδαπής για το γνωστικό αντικείμενο «Μη Γραμμικές Ελλειπτικές Διαφορικές Εξισώσεις»

Envelope Periodic Solutions to Coupled Nonlinear Equations

326. Dynamic synchronization of the unbalanced rotors for the excitation of longitudinal traveling waves

Approximation of the Lerch zeta-function

Research on real-time inverse kinematics algorithms for 6R robots

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:

Local Approximation with Kernels

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.

[1-3] : [12-13] [4-5] x ( H K x x ) + x ( H K y y ) H +w=u s t ( 1) ; :H ;K x K y x y ;w ;u s ;t [6] (2) [7] KH+MH t=q (2) :K ;M ;Q ;H ;H

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

The one-dimensional periodic Schrödinger equation

Product Innovation and Optimal Capital Investment under Uncertainty. by Chia-Yu Liao Advisor Ching-Tang Wu

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

arxiv: v3 [math.ca] 4 Jul 2013

is the home less foreign interest rate differential (expressed as it

ω = radians per sec, t = 3 sec

'ΗΠΙΕΣ' ΜΕΘΟΔΟΙ ΠΡΟΣΤΑΣΙΑΣ ΑΚΤΩΝ: ΥΦΑΛΟΙ ΠΡΟΒΟΛΟΙ ΠΕΡΙΛΗΨΗ

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

PULLBACK D-ATTRACTORS FOR THE NON-AUTONOMOUS NEWTON-BOUSSINESQ EQUATION IN TWO-DIMENSIONAL BOUNDED DOMAIN. Xue-Li Song.

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

Lotka Volterra. Stability Analysis of Delayed Periodic Lotka Volterra Systems

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Single-value extension property for anti-diagonal operator matrices and their square

Oscillation of nonlinear second-order neutral delay differential equations

OSCILLATION CRITERIA FOR SECOND ORDER HALF-LINEAR DIFFERENTIAL EQUATIONS WITH DAMPING TERM

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246).

PACS: Pj, Gg

Electronic Companion to Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution

Riemann Hypothesis: a GGC representation

Transcript:

Vol 36 ( 216 ) No 3 J of Mah (PR) 1, 2, 3 (1, 4335) (2, 4365) (3, 431) :,,,, : ; ; ; MR(21) : 35A1; 35A2 : O17529 : A : 255-7797(216)3-591-7 1 d d [x() g(, x )] = f(, x ),, (11) x = ϕ(), [ r, ], (12) x( k ) = I k (x( k )), k = 1, 2, (13), [3, 4] Lyapunov (11), (12), [5] (11), (12), (13), [6 8],, : d d [u() g(, u )] = A[u() g(, u )] + f(, u ), (14) u = ϕ(), [ r, ], (15) u( k ) = I k (u( k )), k = 1, 2,, (16) Banach, A T (), u = u( + θ), r θ, = ([ r, ], ), ϕ ϕ = sup r θ ϕ : 215-3-11 : 215-8-2 : (1982 ),,,, :

592 Vol 36 : H 1 ) A Banach T (), K >, ω > > s, T ( s) Ke ω( s) H 2 ) f : R +, f(, ) =, F (R + R +, R + ) f(, ϕ F (, ϕ ), (, ϕ) R + ϕ 1, ϕ 2, : f(, ϕ 1 ) f(, ϕ 2 ) P (, ϕ 1, ϕ 2 ) ϕ 1 ϕ 2, P (, x, y) >, x, y, g(, ) =, L() [ r, ), g(, u 1 ) g(, u 2 ) L() u 1 u 2 H 3 ) I k : ([ r, ) ), I k (ϕ()) =, I k () =, q k > I k (x 1 ) I k (x 2 ) q k x 1 x 2, q k, Q = Kq k, < L() + Q < 1 k=1 k=1 H 4 ) h(, α) ([ r, ) R +, R + ) α, h() := h(, α), h() 1 δ Ke ω (1 + L())α + 1 Ke ω( s) F (s, h s )ds,, δ (17) h() α, [ r, ], h = sup r θ h( + θ), δ = inf [ r, ) (1 L() Q) 11 u( ) : [ r, ) (14), (15), u() u() = T ()[ϕ() g(, u )] + g(, u ) + u() = ϕ(), [ r, ] 2 T ( s)f(s, u s )ds,, (18) 21 u( ) : [ r, ) (14), (15), (16), u() : u() =T ()[ϕ() g(, u )] + g(, u ) + + T ( i )I i (u( i )),, < i< u() =ϕ(), [ r, ] T ( s)f(s, u s )ds (21) [ r, ], u() = ϕ(), (, 1 ],, u() = T ()[ϕ() g(, u )] + g(, u ) + T ( s)f(s, u s )ds,

No 3 : 593 ( 1, 2 ], 1 u( 1 ) = T ( 1 )[ϕ() g(, u )] + g( 1, u 1 ) + T ( 1 s)f(s, u s )ds + I 1 (u( 1 )), (22) ( 1, 2 ] (14), (22) u() = T ( 1 )[ϕ() g(, u )] + g(, u ) + T ( s)f(s, u s )ds + T ( 1 )I 1 (u( 1 )), (23) ( 2, 3 ], ( 3, 4 ], (21) 22 H 1 ) H 4 ), (14), (15), (16) u(, ϕ) : [ r, ) u() h(, ϕ ), [ r, ) (24) T, { u () () = T ()[ϕ() g(, u )] + g(, u () ), T, u () () = ϕ(), [ r, ], (25) [ r, ] u () () ϕ() K ϕ h(, ϕ ) T, I k (ϕ()) =, u () () = ϕ(), u () () T () ϕ() g(, u ) + g(, u () + < i< Ke ω ( ϕ + L() ϕ ) + L() u () + < i< T ( i ) Ik (u () ( i )) Ke ω( i) q k (u () ( i )) (26) η() = sup{ u () (s) : r s }, T (27) [ r, ] η() = u () ( ), [, ], < L() + Q < 1, δ = inf (1 L() Q) 1 > 1, (26), (27) [ r, ) δ H 3 ) η() Ke ω (1 + L()) ϕ + L()η() + Qη(), 1 η() (1 L() Q) Ke ω (1 + L()) ϕ 1 δ Ke ω (1 + L()) ϕ, (28) u () () 1 δ Ke ω (1 + L()) ϕ h(, ϕ ) (29) [ r, ], η() = ϕ, (28) (29) u () () h(, ϕ ), [ r, T ] u () h, T

594 Vol 36 u (k) () =T ()[ϕ() g(, ϕ())] + g(, u (k) ) + T ( s)f(s, u (k 1) s )ds + T ( i )I i (u (k) ( i )), T, < i< u (k) () = ϕ(), [ r, ], k = 1, 2, k = 1, [, T ], (21) (21) u (1) () T () ϕ() g(, u ) + g(, u (1) g(, )) + T ( s) f(s, () us ) ds + T ( i ) Ii (u (1) ( i )) < i< Ke ω ( ϕ + L() ϕ ) + L() (1) u + Ke ω( s) F (s, u () s )ds + Kq i e ω( i) u (1) ( i ) < i< (211) η() = sup{ u (1) (s) : r s }, T [ r, ] η() = u (1) ( ), [, ], η() Ke ω (1 + L()) ϕ + L()η() + + Kq i e ω( i) η(), < i< u (1) () 1 δ Ke ω (1 + L()) ϕ + 1 δ Ke ω( s) F (s, us () ) ds Ke ω( s) F (s, us () )ds h(, ϕ ) [ r, ], η() = ϕ, [ r, ], u (1) () ϕ() ϕ h(, ϕ ) u (1) () h(, ϕ ), [ r, T ] u (1) h, T k u (k) () h(, ϕ ), [ r, T ] u (k) h, T, (212), T, u (k+1) () T () ϕ() g(, ϕ()) + g(, (k+1) u ) g(, ) + T ( s) f(s, us (k) ) ds + < i< T ( i ) Ii (u (k+1) ( i )) Ke ω ( ϕ + L() ϕ ) + L() (k+1) u + Ke ω( s) F (s, u (k) s )ds + Kq i e ω( i) u (k+1) ( i ) < i< (213)

No 3 : 595 u (k+1) () 1 δ Ke ω (1 + L()) ϕ + 1 δ Ke ω( s) F (s, h s )ds h(, ϕ ) [ r, ], u (k+1) () ϕ() ϕ h(, ϕ ), (212) {u (k) ()} [, T ] T, (25) (21), u (1) () u () () g(, (1) u ) g(, u () ) + + < i< T ( i ) Ii (u (1) ( i )) I i (u () ( i )) T ( s) f(s, us () ) f(s, ) ds L() (1) u u () + Ke ω( s) P (s, () us, ) () us ds + Kq i e ω( i) u (1) ( i ) u () ( i ) < i< (214) ξ() = sup{ u (1) (s) u () (s) : r s }, T, [ r, ] ξ() = u (1) ( ) u () ( ), [, ], [, T ] ξ() L()ξ() + u (1) () u () () 1 δ Ke ω( s) P (s, () us, ) () us ds + Qξ(), 1 δ Ke ω( s) P (s, us (), ) us () ds Ke ω( s) P (s, h s, h s )h s ds (215) [ r, ], η() =, (215) h, P (, h, h ), [, T 1 ], M >, N > h N, KP (, h δ, h ) M (215) u (1) () u () MN, u (1) u () MN, u (2) () u (1) 1 δ u (2) u (1) N M 2 2 2 N M 2 T 2 2! Ke ω( s) P ( s, u (1) s N M 2 T 2 2!, u () s ) u (1) s u () s ds (216)

596 Vol 36, u (k) () u (k 1) () N M k T k, k! u (k) u (k 1) N M k T k k!, { u (k) () } [, T ], u(), lim k u (k) () = u(), u() (14), (15), (16) u() v() (14), (15), (16) v h, v() =T ()[ϕ() g(, v )] + g(, v ) + + T ( i )I i (v( i )),, < i< v() =ϕ(), [ r, ] T ( s)f(s, v s )ds (217) T, (25) (21) u() v() g(, u ) g(, v ) + T ( s) f(s, u s ) f(s, v s ) ds + T ( i ) I i (u( i )) I i (v( i )) < i< L() u v + Ke ω( s) P (s, u s, v s ) u s v s ds + Kq i e ω( i) u( i ) v( i ) < i< (218) ζ() = sup{ u(s) v(s) : r s }, T, ε >, ζ() 1 δ Ke ω( s) P (s, u s, v s )ζ(s)ds M ζ(s)ds + ε Gronwall ζ() εe M εe MT, u() v() εe MT, u() v() 22 3,,,,,,

No 3 : 597 [1] [M] :, 21 [2] [M] :, 1994 [3] Arino O, Benkhali R, Ezzinbi K Exisence resuls for iniial value problems for neural funcional differenial equaions[j] J Diff Equ, 1997, 138(2): 188 193 [4] Wu Huachen, Zhi Hongguan Uniform asympoic sabiliy for perurbed neural delay differenial equaions[j] J Mah Anal Appl, 24, 291(3): 578 595 [5], [J] ( ), 21, 23(4): 488 491 [6] He Mengxing, Liu Anping, Ou Zhuoling Sabiliy for large sysems of parial funcional differenial equaions: ieraive analysis mehod[j] Appl Mah ompu, 22, 132(2): 489 53 [7] He Mengxing Global exisence and sabiliy of soluions for reacion diffusion funcional differenial equaions[j] J Mah Anal Appl, 1996, 199(2): 842 858 [8] He Mengxing, Luo Ronggui Asympoic behavior and convergence of Soluions of a semilinear ranspor equaion wih delay[j] J Mah Anal Appl, 21, 254(1): 464 483 [9] He Lianhua, Liu Anping Periodic soluions of firs-order impulsive differenial equaion[j] J Mah, 212, 32(5): 825 831 [1] Tang iaoping, Li Jingyun, Gao Wenjie Exisence of posiive periodic soluions of an impulsive holling-ii predaor-prey sysem wih ime delay[j] J Mah, 29, 29(6): 761 768 THE EISTENE AND UNIQUENESS OF THE SOLUTION FOR NEUTRAL IMPULSIVE EVOLUTION EQUATIONS WANG iao-mei 1, ZHANG Zhi-qiang 2, ZHU Hua 3 (1Deparmen of Mahemaics and Physics, Miliary Economics Academy, Wuhan 4335, hina) (2ollege of Informaion Engineering, Wuchang Insiue of Technology, Wuhan 4365, hina) (3Deparmen of Basic Sciences, Zhixing ollege, HuBei Universiy, Wuhan 431, hina) Absrac: In his paper, he exisence and uniqueness of soluions are obained By sudying he srucure of ieraive sequence of soluions o a class of nonlinear impulsive evoluion equaions wih ieraive analysis mehod and semigroup heorem, we show ha he exisence and uniqueness of soluions are inseparable linked wih impulsive delay condiion I has cerain superioriy o solve such problems wih ieraive analysis Keywords: impulsive; ieraive; exisence; uniqueness 21 MR Subjec lassificaion: 35A1; 35A2