ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

Σχετικά έγγραφα
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

Λύσεις 4ης Ομάδας Ασκήσεων

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ

Πιθανότητες και Αρχές Στατιστικής (5η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q

P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B)

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι (ΝΠΣ) ΠΙΘΑΝΟΤΗΤΕΣ Ι (ΠΠΣ) Φεβρουάριος 2010

Βιομαθηματικά BIO-156. Τυχαίες μεταβλητές Κατανομές Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα

ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ

3. Κατανομές πιθανότητας

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

Τυχαία μεταβλητή είναι μία συνάρτηση ή ένας κανόνας που αντιστοιχίζει ένα αριθμό σε κάθε αποτέλεσμα ενός πειράματος.

Περιεχόμενα 5ης Διάλεξης 1 Ανισότητα Markov 2 Διασπορά 3 Συνδιασπορά 4 Ανισότητα Chebyshev 5 Παραδείγματα Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 5

x P (x) c P (x) = c P (x), x S : x c

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13

Στατιστική. Ενότητα 3 η : Χαρακτηριστικά Τυχαίων Μεταβλητών Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή

Υπολογιστικά & Διακριτά Μαθηματικά

ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

P(Ο Χρήστος κερδίζει) = 1 P(Ο Χρήστος χάνει) = 1 P(X > Y ) = 1 2. P(Ο Χρήστος νικά σε 7 από τους 10 αγώνες) = 7

ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΣΤΑΤΙΣΤΙΚΗΣ

Τυχαία μεταβλητή (τ.μ.)

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του όγδοου φυλλαδίου ασκήσεων.

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

Περιεχόμενα. Ιδιότητες του cov(x, Y) Ιδιότητες των εκτιμητών Παράδειγμα. 1 Συσχέτιση Μεταβλητών. 2 Εκτιμητές και κατάλοιπα

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

X i = Y = X 1 + X X N.

Επισκόπηση ύλης Πιθανοτήτων Μέρος ΙΙ. M. Kούτρας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ

Κεφάλαιο 7 Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:

ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ

Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1)

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

Μάθημα 3 ο a. Τυχαία Μεταβλητή-Έννοιες και Ορισμοί

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

Τυχαίες Μεταβλητές. Ορισμός

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

Τυχαίες μεταβλητές και μέση τιμή

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του πέμπτου φυλλαδίου ασκήσεων.. Δηλαδή:

Θεωρία Πιθανοτήτων & Στατιστική

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας.

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 2

Οι παραγγελίες ακολουθούν την κατανομή Poisson. Σύμφωνα με τα δεδομένα ο

Στατιστική Ι-Θεωρητικές Κατανομές Ι

Διακριτές Κατανομές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Διακριτές Κατανομές. τεχνικές. 42 άλυτες ασκήσεις.

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ. M. Kούτρας

Στατιστική. 4 ο Μάθημα: Θεωρητικές και Εμπειρικές - Δειγματοληπτικές Κατανομές. Γεώργιος Μενεξές Τμήμα Γεωπονίας

p(x, y) = 1 (x + y) = 3x + 6, x = 1, 2 (x + y) = 3 + 2y, y = 1, 2, 3 p(1, 1) = = 2 21 p X (1) p Y (1) = = 5 49

Διμεταβλητές κατανομές πιθανοτήτων

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων

12xy(1 x)dx = 12y. = 12 y. = 12 y( ) = 12 y 1 6 = 2y. x 6x(1 x)dx = 6. dx = 6 3 x4

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο ιδάσκων : Π. Τσακαλίδης

Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

Βιομαθηματικά BIO-156

Πανεπιστήμιο Πελοποννήσου

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι Φεβρουάριος 2018 Σειρά Α Θέματα 3 ως 7 και αναλυτικές (ή σύντομες) απαντήσεις

Μέση Τιµή. Έστω Χ τ.µ. και f Χ (x) ησ.π. ήσ.π.π. της Χ Μέση ή αναµενόµενη τιµή της Χ είναι ο αριθµός: αν η Χ είναι διακριτή, και αν η Χ είναι συνεχής.

Στατιστική Επιχειρήσεων Ι. Βασικές διακριτές κατανομές

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

200, δηλαδή : 1 p Y (y) = 0, αλλού

Θεωρία Πιθανοτήτων & Στατιστική

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

pdf: X U(a, b) 0, x < a 1 b a, a x b 0, x > b

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στοχαστικές Ανελίξεις (2) Αγγελική Αλεξίου

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ

07/11/2016. Στατιστική Ι. 6 η Διάλεξη (Βασικές διακριτές κατανομές)

ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ

Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο

ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ F(x) 1, x n. 2. Η F είναι μη φθίνουσα και δεξιά συνεχής ως προς κάθε μεταβλητή. 3.

Σημειώσεις Στατιστική & Πιθανότητες

1 1 c c c c c c = 1 c = 1 28 P (Y < X) = P ((1, 2)) + P ((4, 1)) + P ((4, 3)) = 2 1/ / /28 = 18/28

Τμήμα Λογιστικής και Χρηματοοικονομικής. Πιθανότητες. Δρ. Αγγελίδης Π. Βασίλειος

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΕΞEΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ-ΣΤΑΤΙΣΤΙΚΗ ΜΑΡΤΙΟΣ 2003 Λ Υ Σ Ε Ι Σ Τ Ω Ν Α Σ Κ Η Σ Ε Ω Ν ΜΕΡΟΣ Α

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Var(X 1 + X 2 ) = σ 2 X 1. E(Y ) = np (3) xf X (x) xp(x = x) (x 1 + x 2 )f X1 X 2. x 1 f X1 X 2. (x 1, x 2 ) + x 2 f X1 X 2. (x 1, x 2 ) + x 1,x 2

Συνεχείς Κατανομές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Συνεχείς Κατανομές. τεχνικές. 30 ασκήσεις.

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ

Μέρος IV. Πολυδιάστατες τυχαίες μεταβλητές. Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ15 ( 1 )

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

Transcript:

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Σε κάθε αποτέλεσμα του πειράματος αντιστοιχεί μία αριθμητική τιμή Μαθηματικός ορισμός: Τυχαία μεταβλητή X είναι συνάρτηση με πεδίο ορισμού το δειγματικό χώρο Ω και πεδίο τιμών το σύνολο των πραγματικών αριθμών X: R Για ω. Χ ω είναι η τιμή που αντιστοιχει στο αποτέλεσμα ω του πειράματος Παραδείγματα αριθμός Κ σε 3 ρίψεις νομίσματος (0, 1,, 3) άθροισμα δύο ρίψεων ζαριού (, 3,, 1) χρόνος παραγωγής προϊόντων (τιμή σε κάποιο συνεχές διάστημα) Συμβολισμός X: τυχαία μεταβλητή x: αριθμητική τιμή ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I

ΔΙΑΚΡΙΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Πεπερασμένο ή αριθμήσιμο σύνολο τιμών Συνάρτηση μάζας πιθανότητας (pmf) πιθανότητα για κάθε τιμή της X σχήμα: πιθανότητα ως μάζα συγκεντρωμένη στην αντίστοιχη τιμή p x = P X = x = P ω : X(ω)=x X X X X p x 0, p x =1 ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I 3

ΔΙΑΚΡΙΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Παράδειγμα: X= αριθμός K σε δύο ρίψεις νομίσματος KK, K, K, 1 px 0 PX 0 P 4 1 px PX P 4 p 1 P X 1 P P X 1 ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I 4

ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΚΡΙΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Πείραμα με δύο αποτελέσματα Επιτυχία ( E: πιθανότητα p) Αποτυχία ( Α: πιθανότητα 1-p) Τυχαία μεταβλητή Bernoulli X: αριθμός επιτυχιών (0 ή 1) px1 p, px0 1- p Δυωνυμική τυχαία μεταβλητή X: αριθμός επιτυχιών σε n ανεξάρτητες επαναλήψεις του πειράματος n k n-k px k = PX = k = p (1- p), k=0,1,,n k Γεωμετρική τυχαία μεταβλητή X: αριθμός επαναλήψεων του πειράματος έως την πρώτη επιτυχία X = k k-1 αποτυχίες και μία επιτυχία k-1 px k = PX = k = (1- p) p, k=1,,3, ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I 5

ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΚΡΙΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Τυχαία μεταβλητή Poisson -λ λ px k = PX = k = e, k=0,1,, k! k Προσεγγίζει ικανοποιητικά τη διωνυμική τυχαία μεταβλητή για μεγάλο n, μικρό p και np=λ Παράδειγμα : 100 συσκευές, πιθανότητα βλάβης 0,01 για κάθε μία P5παθαίνουν βλάβη ; X= αριθμός μηχανών που παθαίνουν βλάβη Χ: διωνυμική με n=100, p=0,01 100 5 95 PX = 5 0,01 (1-0,01) 0,009 5 Προσεγγιστικά, Χ: Poisson με λ=100 0,01=1-1 5 e 1 PX = 5 = 0,00306 5! ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I 6

ΣΥΝΑΡΤΗΣΕΙΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Y = g X X : τυχαία μεταβλητή με γνωστή pmf Ζητούμενο: pmf της Y, py y px x py y = P Y = y = P g X = y px x x:g(x)=y ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I 7

ΣΥΝΑΡΤΗΣΕΙΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Παράδειγμα 1 px x, x= - 4,-3,-,-1,0,1,,3,4 9 Y X Για k=1,,3,4, 1 py 0 = px 0 = 9 py k = px k + px -k = 9 ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I 8

ΜΕΣΗ ΤΙΜΗ Ορισμός: E X x p x X X Ερμηνείες Μέσος όρος αποτελεσμάτων σε μεγάλο αριθμό επαναλήψεων του πειράματος Κέντρο βάρους της συνάρτησης μάζας πιθανότητας Παράδειγμα X: αποτέλεσμα ρίψης ζαριού 1 px x =, x=1,,3,4,5,6 6 1 EX (1 3 4 5 6) 6 ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I 9

ΜΕΣΗ ΤΙΜΗ Λόγω συμμετρίας το κέντρο βάρους βρίσκεται στο μέσον 1 6 του διαστήματος [1,6]: 3,5 ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I 10

ΙΔΙΟΤΗΤΕΣ ΜΕΣΗΣ ΤΙΜΗΣ τυχαία μεταβλητή με γνωστή pmf, Y = g X X EY = y p Y(y) y Εύρεση p y δεν είναι απαραίτητη Y X E Y = E g X = g(x) p x x Παράδειγμα V: ταχύτητα (km/h), P(V = 5) = 0,6, P(V = 30) = 0,4 Τ: χρόνος για απόσταση km 4 ET E 0,6 0,4 V 5 30 15 Γενικά, Ε g X gex Εξαίρεση: γραμμικές συναρτήσεις Ε αx+ β αe X β ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I 11

ΔΙΑΣΠΟΡΑ var X E X-E X Μέτρο δικύμανσης των τιμών της X Ιδιότητες var X 0 var αx+ β α var X H σταθερά β μετατοπίζει τις τιμές της τυχαίας μεταβλητής χωρίς να αλλάζει τη διακύμανσή τους Για ευκολότερο υπολογισμό var X E - E X Τυπική απόκλιση var(x) ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I 1

ΔΙΑΣΠΟΡΑ Παράδειγμα X: αποτέλεσμα ρίψης ζαριού 7 1 3 4 5 6 1 91 6 6 var X 91 7 35 6 1 ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I 13

ΜΕΣΗ ΤΙΜΗ ΚΑΙ ΔΙΑΣΠΟΡΑ BERNOULLI, POISSON Bernoulli X p 0 =1- p, p 1 = p E X E X 0 (1- p)+1 p = p X 0 (1- p)+1 p = p var X = p- p = p (1-p) Poisson k -λ λ px k = e, k = 0,1,, k! -λ λ EX k e = λ k! k=0 -λ λ E X k e = λ (λ+1) k! k=0 var X λ (λ+1) - λ λ k k ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I 14

ΑΠΟ ΚΟΙΝΟΥ ΣΥΝΑΡΤΗΣΗ ΜΑΖΑΣ ΠΙΘΑΝΟΤΗΤΑΣ Ταυτόχρονη μελέτη δύο ή περισσότερων τυχαίων μεταβλητών Για δύο τυχαίες μεταβλητές px,y x,y = PX = x και Y = y X,Y x,y X p x = P X = x = P X = x και Y = y p x,y Y p x,y =1 X,Y p y = p x, y x X,Y y y X,Y ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I 15

ΑΠΟ ΚΟΙΝΟΥ ΣΥΝΑΡΤΗΣΗ ΜΑΖΑΣ ΠΙΘΑΝΟΤΗΤΑΣ Παράδειγμα Υ 4 3 1 0 1/0 1/0 1/0 1/0 /0 3/0 1/0 1/0 /0 3/0 1/0 1/0 1/0 1/0 0 1 3 4 px = px,y,1 + px,y, + px,y,3 + px,y,4 = 0 py 4 = px,y 1,4 + px,y,4 + px,y 3,4 + px,y 4,4 = 0 Χ 6 3 ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I 16

ΣΥΝΑΡΤΗΣΕΙΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Z=g X,Y Εξαίρεση: γραμμικές συναρτήσεις Παράδειγμα: Z = X+ Y Υ 4 Z X,Y p z = P g X,Y = z = p x,y (x,y):g(x,y)=z Eg X,Y = g x,y px,y x,y Γενικά E g X,Y x y g EX,EY EαX+ βy+ γ αex βey γ 0 1/0 1/0 1/0 3 1 1/0 /0 3/0 1/0 1/0 /0 3/0 1/0 1/0 1/0 1/0 0 1 3 4 ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I 17 Χ

ΣΥΝΑΡΤΗΣΕΙΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (συνέχεια παραδείγματος) EZ = EX + EY px 1 = 3, px = 6, px 3 = 8, px 4 = 3 0 0 0 0 3 6 8 3 ΕX =1 +3 +4,55 0 0 0 0 py 1 = 3, py = 7, py 3 = 7, py 4 = 3 0 0 0 0 3 7 7 3 ΕY =1 +3 +4,5 0 0 0 0 EZ,55,5 7,55 ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I 18

ΠΟΛΛΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Γενίκευση για περισσότερες από δύο τυχαίες μεταβλητές Για 3 τυχαίες μεταβλητές px,y,z x,y,z PX = x και Y = y και Z = z X,Y X p x,y p x,y,z p x = p x, y,z y z z X,Y,Z X,Y,Z X,Y,Z E g X,Y,Z = g x,y,z p x,y,z x y z E α X α X α X α E X α E X α E X 1 1 n n 1 1 n n Μέση τιμή διατηρεί την γραμμικότητα της συνάρτησης Μέση τιμή διωνυμικής τυχαίας μεταβλητής n n k ΕX k p (1- p) k k=0 n-k Πιο εύκολα, X = X 1 +X + +Xn X 1+X + +Xn Bernoulli 1 n E X =E X +E X + +E X n p ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I 19

ΔΕΣΜΕΥΜΕΝΗ ΣΥΝΑΡΤΗΣΗ ΜΑΖΑΣ ΠΙΘΑΝΟΤΗΤΑΣ Δέσμευση από γεγονός Α Δέσμευση από άλλη τυχαία μεταβλητή Πολλαπλασιαστικός κανόνας Θεώρημα συνολικής πιθανότητας P X = x A px A x = PX = x A = PA Y P X = x και Y = y px,y x,y px Y x y = PX = x Y = y = P Y = y p y p x,y p y p x,y X,Y Y X Y p x = p x, y = p x, y p y X X,Y X Y Y y y ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I 0

ΔΕΣΜΕΥΜΕΝΗ ΣΥΝΑΡΤΗΣΗ ΜΑΖΑΣ ΠΙΘΑΝΟΤΗΤΑΣ Δεσμευμένη μέση τιμή EX A = x p x Θεώρημα συνολικής μέσης τιμής Α,Α,,Α : διαμέριση δειγματικού χώρου X A E X Y = y = x p x y x 1 n X Y E X = E X A P A i E X = E X Y = y p y y i i Y ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I 1

ΓΕΩΜΕΤΡΙΚΗ ΤΥΧΑΙΑ ΜΕΤΑΒΛΗΤΗ Μέση τιμή Με χρήση δεσμευμένων μέσων τιμών Διασπορά x-1 E X = x 1- p p x=1 1 E X = X X =1 P X =1 E X X >1 P X >1 1 p+ 1+ E X 1- p E X = p 1 E X = X X =1 P X =1 E X X >1 P X >1 1 p E 1 X 1- p E X p - p 1 1 1- p var X = - - = p p p p ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I

ΑΝΕΞΑΡΤΗΣΙΑ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Από κοινού συνάρτηση μάζας πιθανότητας ισούται με το γινόμενο των επιμέρους συναρτήσεων μάζας πιθανότητας π.χ. X,Y,Z ανεξάρτητες αν p x, y,z = p x p y p z X,Y,Z X Y Z για κάθε x,y,z Παράδειγμα Υ 4 0 1/0 1/0 1/0 3 1/0 /0 3/0 1/0 1/0 /0 3/0 1/0 1 1/0 1/0 1/0 0 1 3 4 Είναι οι X,Yανεξάρτητες; Όχι: px,y,4 = 1 p 18 X py 4 = 0 400 Εναλλακτικά, p 1 4 = 0 p 1 X Y X Χ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I 3

ΑΝΕΞΑΡΤΗΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Αν X,Y ανεξάρτητες E XY = E X E Y Eg X h Y = Eg X Eh Y var X+ Y = var X + var Y Παράδειγμα X,Y ανεξάρτητες, Z = X- 4Y var Y = var X +16var Y var Z = var X + var -4Y = var X + -4 Γενίκευση: Αν X,X,,X ανεξάρτητες 1 n var X X X var X var X var X 1 n 1 n Διασπορά διωνυμικής τυχαίας μεταβλητής X = X + X X 1 n X,X,,X ανεξάρτητες Bernoulli 1 n var X var X var X var X = n p 1- p 1 n ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I 4

ΣΥΝΔΙΑΣΠΟΡΑ cov X,Y = EX- E X Y- E Y Θετική: μεγάλες(μικρές) τιμές της Χ συνήθως αντιστοιχούν σε μεγάλες (μικρές) τιμές της Y Αρνητική: μεγάλες(μικρές) τιμές της Χ συνήθως αντιστοιχούν σε μικρές(μεγάλες) τιμές της Y Μηδενική: δεν υπάρχει τέτοιου είδους συσχέτιση, X,Y ασυσχέτιστες covx,y = EXY - EXEY Χ,Υ ανεξάρτητ ες cov X,Y = 0 (Το αντίθετο δεν ισχύει απαραίτητα) Παράδειγμα: p 1,0 = p 0,1 = p -1,0 = p 0,-1 X,Y X,Y X,Y X,Y XY = 0 πάντα E XY = 0 cov(x,y) = 0 EX = EY = 0 X,Y δεν είναι ανεξάρτητες διότι Χ 0 Y = 0 ( Χ δίνει πληροφορία για το Y ) 1 4 ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I 5

ΣΥΝΔΙΑΣΠΟΡΑ Διασπορά αθροίσματος τυχαίων μεταβλητών n n var X = var X + cov X,X i=1 i=1 i,j : ij i i i j ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I 6

ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ Αδιάστατη μορφή της συνδιασποράς ρ X,Y = cov X,Y var X var Y -1ρ1 ρ =1 Y = αx+ β (γραμμική σχέση) ρ=0: X,Y ασυσχέτιστες Παράδειγμα: ρίψη νομίσματος n φορές αριθμός Κ, Y: αριθμός Γ ρ X,Y = ; X: X+ Y = n Y = n- X (γραμμική σχέση) Άρα ρ X,Y =-1 (αρνητική κλίση) ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I 7