Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς
2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Στροφορµή στην Κβαντική Μηχανική 1.1.1 Τροχιακή Στροφορµή Η Τροχιακή Στροφορµή στην Κβαντική Μηχανική δίνεται από τον τελεστή ˆL = ˆr ˆp Οι ˆr και ˆp ειναι οι τελεστές της ϑέσης και της ορµής αντίστοιχα ( το παχύ σύµβολο υποδηλώνει ότι είναι ανύσµατα). Είναι σύνηθες να χρησιµοποιείται ο συµβολισµός 1, 2, αντί των x, y, z για τις συνιστώσες. Σε αυτον τον συµβολισµό ˆr = (ˆx 1, ˆx 2, ˆx ), ˆp = (ˆp 1, ˆp 2, ˆp ) Εποµένως οι συνιστώσες της τροχιακής στροφορµής οπως αυτή ορίσθηκε πιο πάνω είναι ˆL = (ˆL 1, ˆL2, ˆL ) µε τις ˆL 1, ˆL 2, ˆL να δίνονται απο τις σχέσεις ˆL 1 = ˆx 2 ˆp ˆx ˆp 2, ˆL2 = ˆx ˆp 1 ˆx 1 ˆp, ˆL = ˆx 1 ˆp 2 ˆx 2 ˆp 1. Ο τελεστής που δίνει το τετράγωνο του µέτρου της τροχιακής στροφορµής είναι L 2 = ˆL 2 1 + ˆL 2 2 + ˆL 2 Χρησιµοποιώντας τις γνωστές σχέσεις µετάθεσης για τους τελεστές ϑέσης και ορµής [ˆx i, ˆp j ] = i h δ ij,, i, j = 1, 2, µπορεί εύκολα να δείξει κανείς τις σχέσεις µετάθεσης και εξ αυτών ότι [ˆL 1, ˆL2 ] = i hˆl, [ˆL 2, ˆL ] = i hˆl 1, [ˆL, ˆL1 ] = i hˆl 2. [L 2, ˆL k ] = 0, k = 1, 2, Αυτές οι σχεσεις µετάθεσης µεταξύ των συνιστωσών της στροφορµής ονοµάζεται Αλγεβρα της Στροφορµής.
1.1 Στροφορµή στην Κβαντική Μηχανική Πρόταση: Αν τρείς αυτοσυζυγείς τελεστές Ĵ1, Ĵ 2, Ĵ ικανοποιούν την Αλγεβρα της Στροφορµής [Ĵ1, Ĵ 2 ] = i hĵ, [Ĵ2, Ĵ ] = i hĵ1, [Ĵ, Ĵ 1 ] = i hĵ2 [J 2, Ĵ k ] = 0, k = 1, 2, τότε αποδεικνύεται ότι ισχύουν τα ακόλουθα : Οι ιδιοτιµές του τελεστή J 2 είναι h 2 j (j + 1) 1 όπου ο j παίρνει ακέραιες η ηµιακέραιες τιµές j = 0, 2, 1, 2, 2,... εδοµένου του j οι ιδιοτιµές οποιασδήποτε συνιστώσας Ĵ1, Ĵ 2, Ĵ, είναι h m όπου ο κβαντικός αριθµός m παίρνει τις 2 j + 1 τιµές m = j, j + 1, j + 2,...j 1, j Ο τελεστής J 2 µετατίθεται µε όλες τις συνιστώσες Ĵk αλλά οι συνιστώσες δεν µετατίθενται µεταξύ τους. Εποµένως µπορούµε να ϑεωρήσουµε τα κοινά ιδιοανύσµατα αυτού και µόνον µιάς εκ των συνιστωσών, που συνήθως επιλέγουµε να είναι η Ĵ.Τα ιδιοανύσµατα αυτά χαρακτηρίζονται από του κβαντικούς αριθµούς j, m, µέσω των οποίων εκφράζονται οι αντίστοιχες ιδιοτιµές των όπως αυτές εδόθησαν παραπάνω, και συνήθως συµβολίζονται µε j, m >. Ως ιδιοανύσµατα των J 2 Ĵ ικανοποιούν τις σχέσεις J 2 j, m > = h 2 j(j + 1) j, m >, Ĵ j, m > = hm j, m > Τα ιδιοανύσµατα που ορίσθηκαν προηγουµένως µπορούµε, χωρίς ϐλάβη της γενικότητας,να ϑεωρήσουµε ότι είναι κανονικοποιηµένα στην µονάδα. Αντί των τελεστών Ĵ1, Ĵ 2, Ĵ µπορούµε να ϑεωρήσουµε τους Ĵ+, Ĵ, Ĵ όπου οι Ĵ± είναι οι ακόλουθοι γραµµικοί συνδυασµοί των Ĵ1, Ĵ 2 Ĵ + = Ĵ1 + i Ĵ2, Ĵ = Ĵ1 i Ĵ2 Συναρτήσει αυτών των τελεστών η Αλγεβρα της Στροφορµής δίνεται από τις σχέσεις µετάθεσης [Ĵ+, Ĵ ] = 2 hĵ, [Ĵ+, Ĵ ] = hĵ+, [Ĵ, Ĵ ] = + hĵ
4 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Από αυτές µπορεί να αποδειχθεί εύκολα ότι ο τελεστής J 2 Ĵ2 1 + Ĵ2 2 + Ĵ2 εκφράζεται συναρτήσει των Ĵ±, Ĵ ως ακολούθως J 2 = Ĵ+ Ĵ + Ĵ2 h Ĵ η ισοδύναµα J 2 = Ĵ Ĵ+ + Ĵ2 + h Ĵ Οι τελεστές Ĵ± ενεργώντας στα ιδιοανύσµατα j, m > δίνουν ιδιοανύσµατα του ίδιου j αλλά διαφορετικού m. Αποδεικνύεται ότι Ĵ ± j, m > = C ± j, m ± 1 > όπου οι σταθερές C ± για τις δύο περιπτώσεις ( +, η -) δίνονται από 1 C ± = h [j (j + 1 ) m (m ± 1 )] 1/2 1.1.2 Τροχιακή Στροφορµή στην αναπαράσταση ϑέσης Τα γενικά συµπεράσµατα που εξετέθηκαν πιο πάνω για τους τελεστές Ĵ1,2, µπορουν να εφαρµοσθούν και για την περίπτωση της τροχιακής στροφορµής που τις συντεταγµένες της συνήθως συµβολίζουµε µε ˆL 1,2,, αντί Ĵ 1,2,, και τον κβαντικό αριθµό που δίνει την ολική στροφορµή µε l αντί για j. Θα πρέπει να σηµειωθεί όµως ότι στην περίπτωση της τροχιακής στροφορµής µόνον ακέραιες τιµές έιναι επιτρεπτές για τον κβαντικό αριθµό l όπως ϑα δούµε πιο κάτω. Στην αναπαράσταση ϑέσης οι συνιστώσες της τροχιακής στροφορµής σε σφαι- ϱικές συντεταγµένες δίνονται από τις ακόλουθες εκφράσεις ˆL ± = h e ±iφ ( ± θ + i cotθ φ ) ˆL = i h φ όπου κατ αντιστοιχία µε τους τελεστές Ĵ± ˆL ± ˆL 1 ± i ˆL 2. Ο τελεστής που δίνει το µέτρο της τροχιακής στροφορµής σε σφαιρικές συντεταγ- µένες εκφράζεται ως ακολούθως L 2 = h 2 1 sin 2 θ [ sinθ θ ( sin θ θ ) + 2 φ 2 ] 1 Για την ακρίβεια µόνο το µέτρο των σταθερών προσδιορίζεται αλλά όχι η ϕάση. Η ϕάση αυτή, χωρίς ϐλάβη της γενικότητας, επιλέγουµε να είναι ίση µε την µοναδα. Αυτή η σύµβαση της επιλογής της ϕάσης ϕέρει το όνοµα των Condon Shortley", και υιοθετείται συνήθως στην διεθνή ϐιβλιογραφία.
1.1 Στροφορµή στην Κβαντική Μηχανική 5 Οι κοινές ιδιοσυναρτήσεις των L 2, ˆL που συµβολίζονται µε Y lm (θ, φ) και ικανοποιούν τις σχέσεις ιδιοσυναρτήσεων, ιδιοτιµών L 2 Y lm (θ, φ) = h 2 l ( l + 1 ) Y lm (θ, φ) ˆL Y lm (θ, φ) = h m Y lm (θ, φ) Ο κβαντικός αριθµός l λαµβάνει µόνο ακέραιες τιµές 0, 1, 2,... εδοµένου του l ο κβαντικός αριθµός m παίρνει τις 2l + 1 τιµές l, l + 1, l + 2,...l 1, l οι οποίες είναι επίσης ακέραιες εφ όσον ο κβαντικός αριθµός l είναι ακέραιος. Οι συναρτήσεις Y lm (θ, φ) είναι γνωστές στην ϐιβλιογραφία µε το όνοµα Σφαι- ϱικές Αρµονικές. Η µαθηµατική τους µορφή δίνεται από τις εκφράσεις Y lm (θ, φ) = N lm P m l ( cosθ ) e i m φ, όπου οι συναρτήσεις P m l ( cos θ ) είναι γνωστές ως συσχετισµένα πολυώνυµα Legendre. Η αναλυτικές εκφράσεις αυτών και οι ιδιότητες τους µπορούν να ϐρε- ϑούν στην ϐιβλιογραφία και δεν ϑα µας απασχολήσουν περαιτέρω. Το µέτρο του παράγοντα N lm στον ορισµό των σφαιρικών αρµονικών προσδιορίζεται από την συνθήκη κανονικοποίησης Y lm (θ, φ)y l m (θ, φ) dω = δ ll δ mm. Στην ανωτέρω έκφραση dω = sin θ dθ dφ είναι στοιχείο της στερεάς γωνίας και η ολοκλήρωση εννοείται από 0, 2π για την γωνία φ και από 0, π για την θ. Η συνθήκη κανονικοποίησης οδηγεί 2 στην N lm = ( 1) m [ 2l + 1 4π Οι Y lm (θ, φ) ϑα πρέπει να έχουν την ιδιότητα 1/2 (l m)! (l + m)! ]. Y lm (θ, φ) = Y lm (θ, φ + 2 π) διότι τα σηµεία φ και φ + 2 π αναφέρονται στο ίδιο σηµείο του χώρου. Από αυτήν την απαίτηση, λόγω του εκθετικού παράγοντα e i m φ, ο κβαντικός αριθµός m περιορίζεται να λαµβάνει µόνον ακέραιες τιµές. Επόµένως και ο κβαντικός αριθµός l παίρνει επίσης ακέραιες τιµές λόγω ότι οι δυο αριθµοί συνδέονται µε την σχέση m = l, l + 1, l + 2,...l 1, l. Οι Σφαιρικές Αρµονικές γιά l = 0, 1 δίνονται από τις ακόλουθες εκφράσεις Y 00 (θ, φ) = 1 4 π Y 11 (θ, φ) = 8 π ei φ sinθ, Y 10 (θ, φ) = 4 π cosθ, Y 1 1 (θ, φ) = + 8 π e i φ sin θ 2 µε κατάλληλη επιλογή της ϕάσης η οποία δεν προσδιορίζεται και συνήθως επιλέγεται ίση µε ( 1) m.