Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς



Σχετικά έγγραφα
Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4

Περιλήψεις Κβαντικής Μηχανικής ΙΙ Α. Λαχανάς

Περιλήψεις Κβαντικής Μηχανικής ΙΙ Α. Λαχανάς

Κβαντομηχανική Ι 6o Σετ Ασκήσεων. Άσκηση 1

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5

Δομή Διάλεξης. Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης. Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής

fysikoblog.blogspot.com

ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Εξετάσεις 1ης Ιουλίου Για την ϐασική κατάσταση του ατόµου του Υδρογόνου της οποίας η κανονικοποιηµένη στην µονάδα

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής. Σημειώσεις I: Κίνηση σε τρεις διαστάσεις, στροφορμή

Διάλεξη 2: Κεντρικά Δυναμικά. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για κεντρικά δυναμικά

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 )

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.

Χρησιμοποιείστε την πληροφορία αυτή για να δείξετε ότι ο τελεστής που θα μεταφέρει το άνυσμα

Η άλγεβρα της στροφορμής

Σχετικιστικές συμμετρίες και σωμάτια

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κεντρικά Δυναμικά Διδάσκων : Επίκ. Καθ. Μ. Μπενής

Κβαντική Φυσική Ι. Ενότητα 29: Το άτομο του υδρογόνου. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013

Κβαντική Μηχανική ΙΙ. Ενότητα 1: Γενική διατύπωση της Κβαντικής Μηχανικής Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Δομή Διάλεξης. Ορισμός Ολικής Στροφορμής. Σχέση βάσης ολικής στροφορμής (j,m j ) με βάση επιμέρους στροφορμών (m 1,m 2 )

Μετασχηματισμοί Καταστάσεων και Τελεστών

Κ. Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής Παράγωγος. x ορίζεται ως

Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013

Εύρεση των ιδιοτιμών της στροφορμής

Λυμένες ασκήσεις στροφορμής

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Πρόσθεση Στροφορμών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

Δύο διακρίσιμα σωμάτια με σπιν s 1

1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1.

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 30 Αυγούστου 2010 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 2,5 ώρες.

= + =. cos ( ) sin ( ) ˆ ˆ ˆ. Άσκηση 4.

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για

ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι

Κεφάλαιο 14: Πρόσθεση Στροφορμών

Σπιν 1 2. Γενικά. Ŝ και S ˆz γράφονται. ιδιοκαταστάσεις αποτελούν ορθοκανονική βάση στον χώρο των καταστάσεων του σπιν 1 2.

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής

Μ8 Η µερική παράγωγος

Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών

1. Μετάπτωση Larmor (γενικά)

Μάθημα 7ο. Υλοκύματα Και Η Σύγχρονη Ατομική Θεωρία

Διάλεξη 3: Το άτομο του Υδρογόνου. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για το κεντρικό δυναμικό

Κβαντική Μηχανική ΙΙ. Ενότητα 8: Ερωτήσεις και Ασκήσεις (Ασκήσεις προς Λύση) Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Το ελαστικο κωνικο εκκρεμε ς

8. Πολλαπλές μερικές παράγωγοι

Απαντησεις στις ερωτησεις της εξετασης της 24 ης Ιουνιου 2005

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ (ΚΕΦΑΛΑΙΟ 39 +)

Αρμονικός Ταλαντωτής

Δομή Διάλεξης. Εύρεση ακτινικού μέρους εξίσωσης Schrödinger. Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους. Εφαρμογή σε άτομο υδρογόνου

Συνεχές Φάσµα - Συνάρτηση δέλτα (Dirac)

Σπιν 1/2. Γενικά. 2 Υπενθυμίζουμε ότι τα έξι κουάρκ και τα έξι λεπτόνια του Καθιερωμένου Προτύπου,

Ατομική και Μοριακή Φυσική

Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

, που, χωρίς βλάβη της γενικότητας, μπορούμε να θεωρήσουμε χρονική στιγμή μηδέν, δηλαδή

Δηλαδή. Η Χαμιλτονιανή του περιστροφέα μέσα στο μαγνητικό πεδίο είναι

Επίλυση Συστήματος Γραμμικών Διαφορικών Εξισώσεων

Μηχανική Πετρωμάτων Τάσεις

3/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 08. ΤΟ ΣΠΙΝ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΟ ΣΠΙΝ

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 6

21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας

Κβαντική Φυσική Ι. Ενότητα 31: Εφαρμογές και η ακτινική εξίσωση του ατόμου του υδρογόνου. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

υναµικό Coulomb - Λύση της εξίσωσης του Schrödinger

8. Πολλαπλές μερικές παράγωγοι

Τροχιακή Στροφορµή - spin - Πρόσθεση στροφορµών

Λύσεις των θεμάτων του Διαγωνίσματος Μηχανικης ΙΙ (29/8/2001) (3), (4), όπου, (5),, (6), (9), όπου,

Sˆy. Η βάση για την οποία συζητάμε απαρτίζεται από τα ανύσματα = (1) ˆ 2 ± =± ± Άσκηση 20. (βοήθημα θεωρίας)

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις

11. Βαθµίδα, Απόκλιση, Στροβιλισµός

Â. Θέλουμε να βρούμε τη μέση τιμή

ΦΟΡΤΙΣΜΕΝΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΑ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ

Διάλεξη 1: Κβαντομηχανική σε τρεις διαστάσεις

Ποια απο τις παρακάτω είναι η σωστή µορφή του πραγµατικού µέρους της κυµατοσυνάρτησης του

Κλασική Ηλεκτροδυναμική

μαγνητικό πεδίο τυχαίας κατεύθυνσης

Κβαντική Φυσική Ι. Ενότητα 17: Εφαρμογή στην αναπαράσταση τελεστών με μήτρα και εισαγωγή στον συμβολισμό Dirac

Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Το άτομο του Υδρογόνου Διδάσκων : Επίκ. Καθ. Μ. Μπενής

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Η κυματοσυνάρτηση στην αναπαράσταση ορμής Ασκήσεις. Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. 8 Δεκεμβρίου 2017

( )U 1 ( θ )U 3 ( ) = U 3. ( ) όπου U j περιγράφει περιστροφή ως προς! e j. Γωνίες Euler. ω i. ω = ϕ ( ) = ei = U ij ej j

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση

2( ) ( ) ψ είναι οι ιδιοκαταστάσεις του τελεστή. ψ x, θα πάρουµε

() 1 = 17 ΣΥΝΑΡΤΗΣΕΙΣ LEGENDRE Ορισµοί

Η Αναπαράσταση της Θέσης (Position Representation)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 6

Κβαντική Μηχανική ΙΙ. Ενότητα 6: Άτομα σε μαγνητικά πεδία Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής

ˆ ˆ. (τελεστής καταστροφής) (τελεστής δημιουργίας) Το δυναμικό του συστήματός μας (αρμονικός ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς

Ατομική και Μοριακή Φυσική

(φορτισμένος αρμονικός 2 ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι

Transcript:

Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Στροφορµή στην Κβαντική Μηχανική 1.1.1 Τροχιακή Στροφορµή Η Τροχιακή Στροφορµή στην Κβαντική Μηχανική δίνεται από τον τελεστή ˆL = ˆr ˆp Οι ˆr και ˆp ειναι οι τελεστές της ϑέσης και της ορµής αντίστοιχα ( το παχύ σύµβολο υποδηλώνει ότι είναι ανύσµατα). Είναι σύνηθες να χρησιµοποιείται ο συµβολισµός 1, 2, αντί των x, y, z για τις συνιστώσες. Σε αυτον τον συµβολισµό ˆr = (ˆx 1, ˆx 2, ˆx ), ˆp = (ˆp 1, ˆp 2, ˆp ) Εποµένως οι συνιστώσες της τροχιακής στροφορµής οπως αυτή ορίσθηκε πιο πάνω είναι ˆL = (ˆL 1, ˆL2, ˆL ) µε τις ˆL 1, ˆL 2, ˆL να δίνονται απο τις σχέσεις ˆL 1 = ˆx 2 ˆp ˆx ˆp 2, ˆL2 = ˆx ˆp 1 ˆx 1 ˆp, ˆL = ˆx 1 ˆp 2 ˆx 2 ˆp 1. Ο τελεστής που δίνει το τετράγωνο του µέτρου της τροχιακής στροφορµής είναι L 2 = ˆL 2 1 + ˆL 2 2 + ˆL 2 Χρησιµοποιώντας τις γνωστές σχέσεις µετάθεσης για τους τελεστές ϑέσης και ορµής [ˆx i, ˆp j ] = i h δ ij,, i, j = 1, 2, µπορεί εύκολα να δείξει κανείς τις σχέσεις µετάθεσης και εξ αυτών ότι [ˆL 1, ˆL2 ] = i hˆl, [ˆL 2, ˆL ] = i hˆl 1, [ˆL, ˆL1 ] = i hˆl 2. [L 2, ˆL k ] = 0, k = 1, 2, Αυτές οι σχεσεις µετάθεσης µεταξύ των συνιστωσών της στροφορµής ονοµάζεται Αλγεβρα της Στροφορµής.

1.1 Στροφορµή στην Κβαντική Μηχανική Πρόταση: Αν τρείς αυτοσυζυγείς τελεστές Ĵ1, Ĵ 2, Ĵ ικανοποιούν την Αλγεβρα της Στροφορµής [Ĵ1, Ĵ 2 ] = i hĵ, [Ĵ2, Ĵ ] = i hĵ1, [Ĵ, Ĵ 1 ] = i hĵ2 [J 2, Ĵ k ] = 0, k = 1, 2, τότε αποδεικνύεται ότι ισχύουν τα ακόλουθα : Οι ιδιοτιµές του τελεστή J 2 είναι h 2 j (j + 1) 1 όπου ο j παίρνει ακέραιες η ηµιακέραιες τιµές j = 0, 2, 1, 2, 2,... εδοµένου του j οι ιδιοτιµές οποιασδήποτε συνιστώσας Ĵ1, Ĵ 2, Ĵ, είναι h m όπου ο κβαντικός αριθµός m παίρνει τις 2 j + 1 τιµές m = j, j + 1, j + 2,...j 1, j Ο τελεστής J 2 µετατίθεται µε όλες τις συνιστώσες Ĵk αλλά οι συνιστώσες δεν µετατίθενται µεταξύ τους. Εποµένως µπορούµε να ϑεωρήσουµε τα κοινά ιδιοανύσµατα αυτού και µόνον µιάς εκ των συνιστωσών, που συνήθως επιλέγουµε να είναι η Ĵ.Τα ιδιοανύσµατα αυτά χαρακτηρίζονται από του κβαντικούς αριθµούς j, m, µέσω των οποίων εκφράζονται οι αντίστοιχες ιδιοτιµές των όπως αυτές εδόθησαν παραπάνω, και συνήθως συµβολίζονται µε j, m >. Ως ιδιοανύσµατα των J 2 Ĵ ικανοποιούν τις σχέσεις J 2 j, m > = h 2 j(j + 1) j, m >, Ĵ j, m > = hm j, m > Τα ιδιοανύσµατα που ορίσθηκαν προηγουµένως µπορούµε, χωρίς ϐλάβη της γενικότητας,να ϑεωρήσουµε ότι είναι κανονικοποιηµένα στην µονάδα. Αντί των τελεστών Ĵ1, Ĵ 2, Ĵ µπορούµε να ϑεωρήσουµε τους Ĵ+, Ĵ, Ĵ όπου οι Ĵ± είναι οι ακόλουθοι γραµµικοί συνδυασµοί των Ĵ1, Ĵ 2 Ĵ + = Ĵ1 + i Ĵ2, Ĵ = Ĵ1 i Ĵ2 Συναρτήσει αυτών των τελεστών η Αλγεβρα της Στροφορµής δίνεται από τις σχέσεις µετάθεσης [Ĵ+, Ĵ ] = 2 hĵ, [Ĵ+, Ĵ ] = hĵ+, [Ĵ, Ĵ ] = + hĵ

4 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Από αυτές µπορεί να αποδειχθεί εύκολα ότι ο τελεστής J 2 Ĵ2 1 + Ĵ2 2 + Ĵ2 εκφράζεται συναρτήσει των Ĵ±, Ĵ ως ακολούθως J 2 = Ĵ+ Ĵ + Ĵ2 h Ĵ η ισοδύναµα J 2 = Ĵ Ĵ+ + Ĵ2 + h Ĵ Οι τελεστές Ĵ± ενεργώντας στα ιδιοανύσµατα j, m > δίνουν ιδιοανύσµατα του ίδιου j αλλά διαφορετικού m. Αποδεικνύεται ότι Ĵ ± j, m > = C ± j, m ± 1 > όπου οι σταθερές C ± για τις δύο περιπτώσεις ( +, η -) δίνονται από 1 C ± = h [j (j + 1 ) m (m ± 1 )] 1/2 1.1.2 Τροχιακή Στροφορµή στην αναπαράσταση ϑέσης Τα γενικά συµπεράσµατα που εξετέθηκαν πιο πάνω για τους τελεστές Ĵ1,2, µπορουν να εφαρµοσθούν και για την περίπτωση της τροχιακής στροφορµής που τις συντεταγµένες της συνήθως συµβολίζουµε µε ˆL 1,2,, αντί Ĵ 1,2,, και τον κβαντικό αριθµό που δίνει την ολική στροφορµή µε l αντί για j. Θα πρέπει να σηµειωθεί όµως ότι στην περίπτωση της τροχιακής στροφορµής µόνον ακέραιες τιµές έιναι επιτρεπτές για τον κβαντικό αριθµό l όπως ϑα δούµε πιο κάτω. Στην αναπαράσταση ϑέσης οι συνιστώσες της τροχιακής στροφορµής σε σφαι- ϱικές συντεταγµένες δίνονται από τις ακόλουθες εκφράσεις ˆL ± = h e ±iφ ( ± θ + i cotθ φ ) ˆL = i h φ όπου κατ αντιστοιχία µε τους τελεστές Ĵ± ˆL ± ˆL 1 ± i ˆL 2. Ο τελεστής που δίνει το µέτρο της τροχιακής στροφορµής σε σφαιρικές συντεταγ- µένες εκφράζεται ως ακολούθως L 2 = h 2 1 sin 2 θ [ sinθ θ ( sin θ θ ) + 2 φ 2 ] 1 Για την ακρίβεια µόνο το µέτρο των σταθερών προσδιορίζεται αλλά όχι η ϕάση. Η ϕάση αυτή, χωρίς ϐλάβη της γενικότητας, επιλέγουµε να είναι ίση µε την µοναδα. Αυτή η σύµβαση της επιλογής της ϕάσης ϕέρει το όνοµα των Condon Shortley", και υιοθετείται συνήθως στην διεθνή ϐιβλιογραφία.

1.1 Στροφορµή στην Κβαντική Μηχανική 5 Οι κοινές ιδιοσυναρτήσεις των L 2, ˆL που συµβολίζονται µε Y lm (θ, φ) και ικανοποιούν τις σχέσεις ιδιοσυναρτήσεων, ιδιοτιµών L 2 Y lm (θ, φ) = h 2 l ( l + 1 ) Y lm (θ, φ) ˆL Y lm (θ, φ) = h m Y lm (θ, φ) Ο κβαντικός αριθµός l λαµβάνει µόνο ακέραιες τιµές 0, 1, 2,... εδοµένου του l ο κβαντικός αριθµός m παίρνει τις 2l + 1 τιµές l, l + 1, l + 2,...l 1, l οι οποίες είναι επίσης ακέραιες εφ όσον ο κβαντικός αριθµός l είναι ακέραιος. Οι συναρτήσεις Y lm (θ, φ) είναι γνωστές στην ϐιβλιογραφία µε το όνοµα Σφαι- ϱικές Αρµονικές. Η µαθηµατική τους µορφή δίνεται από τις εκφράσεις Y lm (θ, φ) = N lm P m l ( cosθ ) e i m φ, όπου οι συναρτήσεις P m l ( cos θ ) είναι γνωστές ως συσχετισµένα πολυώνυµα Legendre. Η αναλυτικές εκφράσεις αυτών και οι ιδιότητες τους µπορούν να ϐρε- ϑούν στην ϐιβλιογραφία και δεν ϑα µας απασχολήσουν περαιτέρω. Το µέτρο του παράγοντα N lm στον ορισµό των σφαιρικών αρµονικών προσδιορίζεται από την συνθήκη κανονικοποίησης Y lm (θ, φ)y l m (θ, φ) dω = δ ll δ mm. Στην ανωτέρω έκφραση dω = sin θ dθ dφ είναι στοιχείο της στερεάς γωνίας και η ολοκλήρωση εννοείται από 0, 2π για την γωνία φ και από 0, π για την θ. Η συνθήκη κανονικοποίησης οδηγεί 2 στην N lm = ( 1) m [ 2l + 1 4π Οι Y lm (θ, φ) ϑα πρέπει να έχουν την ιδιότητα 1/2 (l m)! (l + m)! ]. Y lm (θ, φ) = Y lm (θ, φ + 2 π) διότι τα σηµεία φ και φ + 2 π αναφέρονται στο ίδιο σηµείο του χώρου. Από αυτήν την απαίτηση, λόγω του εκθετικού παράγοντα e i m φ, ο κβαντικός αριθµός m περιορίζεται να λαµβάνει µόνον ακέραιες τιµές. Επόµένως και ο κβαντικός αριθµός l παίρνει επίσης ακέραιες τιµές λόγω ότι οι δυο αριθµοί συνδέονται µε την σχέση m = l, l + 1, l + 2,...l 1, l. Οι Σφαιρικές Αρµονικές γιά l = 0, 1 δίνονται από τις ακόλουθες εκφράσεις Y 00 (θ, φ) = 1 4 π Y 11 (θ, φ) = 8 π ei φ sinθ, Y 10 (θ, φ) = 4 π cosθ, Y 1 1 (θ, φ) = + 8 π e i φ sin θ 2 µε κατάλληλη επιλογή της ϕάσης η οποία δεν προσδιορίζεται και συνήθως επιλέγεται ίση µε ( 1) m.