Εύρεση των ιδιοτιμών της στροφορμής

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εύρεση των ιδιοτιμών της στροφορμής"

Transcript

1 Εύρεση των ιδιοτιμών της στροφορμής Χρησιμοποιώντας την άλγεβρα της στροφορμής, θα υπολογίσουμε τις ιδιοτιμές του τετραγώνου της και της -συνιστώσας της. Μπορούμε, ωστόσο, να θέσουμε το πρόβλημα γενικότερα, για έναν τελεστή Ĵ με συνιστώσες ˆ, ˆ, ˆ, που ικανοποιούν της άλγεβρα της στροφορμής, δηλαδή ˆ, ˆ i ˆ i j ijk k (1) Θα αναφερόμαστε στον τελεστή Ĵ ως στροφορμή, χωρίς όμως να εννοούμε αποκλειστικά την τροχιακή στροφορμή. Η τροχιακή στροφορμή ικανοποιεί την άλγεβρα της στροφορμής (1), αλλά ενδέχεται να υπάρχει και άλλο παρατηρήσιμο μέγεθος που να ικανοποιεί την ίδια άλγεβρα. Πράγματι, υπάρχει ένα τέτοιο παρατηρήσιμο μέγεθος, και αυτό είναι το σπιν, μια κβαντική στροφορμή χωρίς κλασικό ανάλογο. Αν Ĵ είναι το τετράγωνο της στροφορμής Ĵ, δηλαδή αν ˆ ˆ ˆ ˆ, τότε όπως και στην περίπτωση της τροχιακής στροφορμής, ˆ ˆ ˆ ˆ ˆ,,, ˆ 0. Η απόδειξη είναι ίδια, δηλαδή χρησιμοποιούμε την άλγεβρα (1). Εφόσον θεωρούμε ότι η στροφορμή Ĵ, όπως και η τροχιακή στροφορμή, είναι παρατηρήσιμο μέγεθος, οι συνιστώσες της, δηλαδή οι τελεστές ˆ, ˆ, ˆ είναι ερμιτιανοί τελεστές. Επίσης, το τετράγωνο της στροφορμής Ĵ είναι και αυτό ερμιτιανός τελεστής, ως άθροισμα τετραγώνων ερμιτιανών τελεστών. Επομένως, έχει πραγματικές ιδιοτιμές, με διαστάσεις στροφορμής στο τετράγωνο. Η συνιστώσα ˆ, ως επίσης ερμιτιανός τελεστής, έχει κι αυτή πραγματικές ιδιοτιμές, με διαστάσεις στροφορμής. Ας συμβολίσουμε με την τυχαία ιδιοτιμή του Ĵ και με την τυχαία ιδιοτιμή του ˆ, όπου το και το είναι αδιάστατοι πραγματικοί αριθμοί. Σημείωση p p L. Μάλιστα, Το έχει διαστάσεις στροφορμής, αφού μπορούμε να το θεωρήσουμε ως τη φυσική μονάδα στροφορμής των μικροσυστημάτων, ή αλλιώς ως την κλίμακα στροφορμής στην κβαντική μηχανική. Αυτό ισχύει τόσο για την τροχιακή στροφορμή όσο και για το σπιν. Έτσι, λοιπόν, έχουμε τις ακόλουθες εξισώσεις ιδιοτιμών: ˆ,, () ˆ,, (3) όπου, είναι η τυχαία κοινή ιδιοκατάσταση των δύο τελεστών. Στη συνέχεια, κάνοντας χρήση της άλγεβρας της στροφορμής, θα λύσουμε τις εξισώσεις ιδιοτιμών () και (3). Παρατηρούμε ότι

2 ˆ, ˆ,, ˆ ˆ ˆ,, ˆ ˆ ˆ,,,,,, ˆ ˆ ˆ,,, ˆ ˆ ˆ ˆ (4),,,, Όμως ˆ και, ˆ, Επομένως, η (4) γράφεται ˆ ˆ 1 ˆ ˆ (5),,,, Οι τελεστές ˆ και ˆ είναι ερμιτιανοί, επομένως έχουν κι αυτοί πραγματικές ιδιοτιμές. Αυτό σημαίνει ότι οι ιδιοτιμές των, επίσης ερμιτιανών, τελεστών ˆ είναι μη αρνητικές. Άρα ˆ 0, και ˆ 0,. Έτσι, από την (5) ˆ και συμπεραίνουμε ότι 0. Εφόσον το είναι πραγματικός αριθμός, το είναι μη αρνητικός πραγματικός αριθμός, άρα το είναι επίσης μη αρνητικός πραγματικός αριθμός. Έτσι, από την τελευταία ανισότητα, παίρνουμε, άρα (6) Βλέπουμε λοιπόν ότι οι ιδιοτιμές του ˆ είναι φραγμένες (πάνω και κάτω). Με βάση τα προηγούμενα, μπορούμε να αναδιατυπώσουμε το πρόβλημα των ιδιοτιμών της στροφορμής ως το πρόβλημα της εύρεσης όλων των δυνατών ιδιοτιμών του ˆ, ισοδύναμα όλων των δυνατών τιμών του, για μια δεδομένη ιδιοτιμή του Ĵ, ισοδύναμα για μια δεδομένη τιμή του. Για να προχωρήσουμε, θα χρησιμοποιήσουμε τη σχέση ˆ ˆ ˆ ˆ (7) Οι τελεστές Ĵ και ˆ είναι οι τελεστές με τους οποίους επιθυμούμε να δουλέψουμε. Το υπόλοιπο, δηλαδή το άθροισμα ˆ ˆ, είναι μια τετραγωνική μορφή, ένα άθροισμα τετραγώνων τελεστών, το οποίο θα παραγοντοποιήσουμε χρησιμοποιώντας το αντίστοιχο της σχέσης a iba ib a b, που ισχύει στους μιγαδικούς αριθμούς. Θα πρέπει, ωστόσο, να θυμόμαστε ότι όταν μετατρέπουμε μια σχέση μιγαδικών αριθμών σε σχέση τελεστών, χάνεται η αντιμεταθετικότητα, και

3 εμφανίζονται πρόσθετοι όροι που είναι ανάλογοι των μεταθετών των εμπλεκόμενων τελεστών. Για την περίπτωσή μας, θα έχουμε, ˆ iˆ ˆ iˆ ˆ iˆ ˆ iˆ ˆ ˆ ˆ ˆ i ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ i i Αντικαθιστούμε την προηγούμενη σχέση στην (7) και παίρνουμε ˆ ˆ iˆ ˆ iˆ ˆ ˆ (8) Οι τελεστές ˆ i ˆ και ˆ i ˆ είναι ερμιτιανοί συζυγείς ο ένας του άλλου. Έτσι, αν τους συμβολίσουμε, αντίστοιχα, με Ĵ και Ĵ, τότε ˆ ˆ, και η (8) γράφεται ˆ ˆ ˆ ˆ ˆ (9) Ας υπολογίσουμε τώρα τους μεταθέτες των τελεστών Ĵ και Ĵ τελεστές που μας ενδιαφέρουν, δηλαδή με τον ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,, i, i, 0 ˆ, ˆ 0 (10) 0 0 i ˆ Ĵ και με τον ˆ. με τους δύο Αν πάρουμε τους ερμιτιανούς συζυγείς των τελεστών του αριστερού και του δεξιού μέλους της (10), θα έχουμε ˆ ˆ ˆ, ˆ 0 ˆ ˆ ˆ ˆ 0 ˆ ˆ ˆ ˆ 0 ˆ, ˆ 0 (11) Επίσης, είναι ˆ, ˆ ˆ, ˆ ˆ, ˆ ˆ ˆ ˆ ˆ i i i i i ˆ ˆ ˆ i ˆ, ˆ ˆ (1) Αν πάρουμε τους ερμιτιανούς συζυγείς των τελεστών του αριστερού και του δεξιού μέλους της (1), θα έχουμε

4 ˆ ˆ, ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ˆ ˆ (13) Ας υπολογίσουμε και τον μεταθέτη των τελεστών Ĵ και Ĵ (θα τον χρειαστούμε παρακάτω). ˆ, ˆ ˆ ˆ, ˆ ˆ ˆ, ˆ ˆ ˆ, ˆ ˆ i i i i i ˆ ˆ ˆ ˆ ˆ ˆ,,, ˆ, ˆ ˆ, ˆ ˆ, ˆ i i i i i 0 0 i ˆ, ˆ ˆ ˆ, ˆ ˆ (14) Από τη (10), συμπεραίνουμε ότι αν ο τελεστής Ĵ,, μάς δίνει ιδιοκατάσταση του δράσει σε μια ιδιοκατάσταση Ĵ με την ίδια ιδιοτιμή. ο Ĵ δεν αλλάζει το. Πράγματι, χρησιμοποιώντας τη (10), δηλαδή το ότι παίρνουμε ˆ ˆ ˆ ˆ ˆ,,, η κατάσταση ˆ, είναι ιδιοκατάσταση του. Με τη βοήθεια της (11), αποδεικνύουμε το ίδιο και για τον Ĵ. Από τη (1) συμπεραίνουμε ότι αν ο τελεστής Ĵ ˆ ˆ ˆ ˆ, Ĵ με την ίδια ιδιοτιμή, δράσει σε μια ιδιοκατάσταση του ˆ, μάς δίνει μια νέα ιδιοκατάσταση του ˆ με ιδιοτιμή μειωμένη κατά είναι. Πράγματι, ˆ ˆ, ˆ ˆ, ˆ ˆ, ˆ ˆ, ˆ, ˆ, ˆ, ˆ, ˆ, 1 ˆ, η κατάσταση ˆ, είναι ιδιοκατάσταση του ˆ με ιδιοτιμή 1 δράση του τελεστή Ĵ μειώνει το κατά 1. Με τον ίδιο τρόπο, από τη (13) συμπεραίνουμε ότι αν ο τελεστής Ĵ δράσει σε μια ιδιοκατάσταση του ˆ, μάς δίνει μια νέα ιδιοκατάσταση του ˆ με ιδιοτιμή αυξημένη κατά, δηλαδή αυξάνει το κατά 1. Δείξαμε, λοιπόν, ότι οι τελεστές Ĵ, δρώντας στις κοινές ιδιοκαταστάσεις, των τελεστών Ĵ και ˆ, δεν αλλάζουν το, ενώ αλλάζουν, κατά 1 αντίστοιχα, το.. Η

5 Επομένως, ο Ĵ δημιουργίας του ˆ. είναι τελεστής καταστροφής του ˆ και ο Ĵ είναι τελεστής Επειδή το φάσμα του ˆ είναι φραγμένο (σχέση (6)) και το βήμα αύξησης/μείωσης των ιδιοτιμών του είναι σταθερό, αντίστοιχα, ο τελεστής καταστροφής θα πρέπει να «σκοτώνει» την ιδιοκατάσταση ελάχιστης ιδιοτιμής,,, ενώ ο τελεστής δημιουργίας θα πρέπει να «σκοτώνει» την ιδιοκατάσταση μέγιστης ιδιοτιμής,. θα πρέπει, a ˆ, 0 i (15) ˆ, 0 a (16) Θα χρησιμοποιήσουμε τώρα τη σχέση (9) για να δράσουμε με τον τελεστή ιδιοκατάσταση ελάχιστης ιδιοτιμής,,i. Όπως βλέπουμε στην (9), ο εκφρασμένος συναρτήσει του γινομένου ˆ ˆ, επομένως μπορούμε να αξιοποιήσουμε τη συνθήκη (15). ˆ, ˆ ˆ ˆ ˆ, i, ˆ ˆ, ˆ, ˆ, i i i i, 0 i i i i 0 i, i i, i i Ĵ στην Ĵ είναι Εφόσον η,i είναι ιδιοκατάσταση, είναι εξ ορισμού γραμμικά ανεξάρτητη, επομένως δεν μπορεί να είναι μηδέν. Έτσι, από την τελευταία εξίσωση παίρνουμε 0 1 (17) i i i i Θα κάνουμε τώρα το ίδιο για την ιδιοκατάσταση μέγιστης ιδιοτιμής, αξιοποιήσουμε τη συνθήκη (16), πρέπει να εκφράσουμε τον τελεστή του γινομένου ˆ ˆ. Από τη (14) έχουμε ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ Επομένως, η (9) γράφεται ˆ ˆ ˆ ˆ ˆ (18) Αν τώρα δράσουμε στην,a a, θα πάρουμε ˆ, ˆ ˆ ˆ ˆ,, ˆ ˆ, ˆ, ˆ, a a a a, 0 a a a a 0 a, a a, a,a. Για να Ĵ συναρτήσει

6 Εφόσον η,a είναι ιδιοκατάσταση, είναι εξ ορισμού γραμμικά ανεξάρτητη, επομένως δεν μπορεί να είναι μηδέν. Έτσι, από την τελευταία εξίσωση παίρνουμε 0 1 (19) a a a a Από τις (17) και (19) παίρνουμε 1 1 (0) i i a a Όπως δείξαμε, ο Ĵ μειώνει το κατά 1 ενώ ο Ĵ το αυξάνει κατά ένα. Επομένως πρέπει να υπάρχει ένας φυσικός αριθμός έτσι ώστε (1) a i Με τη βοήθεια της (1), η (0) γράφεται 1 1 i i i 1 i i i i i i i i i i Έτσι, από την (1) παίρνουμε a 1 3 Εφόσον 0,1,,..., 0,,1,,..., δηλαδή το είναι μη αρνητικός ακέραιος ή ημιακέραιος, τον οποίο ας συμβολίσουμε με j, δηλαδή j, όπου. Επομένως, ο παίρνει τιμές από j έως j, με βήμα 1, δηλαδή j, j 1,..., j 1, j () Από τη (19), ή τη (17), παίρνουμε j j 1 Έτσι, μπορούμε να γράψουμε τις αρχικές εξισώσεις ιδιοτιμών () και (3) ως ˆ, 1, j j j j (3) ˆ j, j, (4) όπου το j είναι μη αρνητικός ακέραιος ή ημιακέραιος, και για κάθε τιμή του j, το δίνεται από την (). Για την περίπτωση της τροχιακής στροφορμής, το j συμβολίζεται με l και μπορεί να πάρει μόνο ακέραιες τιμές, ενώ για την περίπτωση του σπιν, το j συμβολίζεται με s και μπορεί να πάρει, θεωρητικά, και ακέραιες και ημιακέραιες τιμές.

7 Ωστόσο, όλα τα φερμιόνια του Καθιερωμένου Προτύπου (Stadard Model), δηλαδή τα έξι κουάρκ και τα έξι λεπτόνια, έχουν σπιν 1 1 s, ενώ όσον αφορά τα μποζόνια, το μποζόνιο Higgs έχει σπιν μηδέν, ενώ τα υπόλοιπα, δηλαδή το γκλουόνιο, το φωτόνιο, και τα μποζόνια W και Z, έχουν όλα σπιν 1. Για περισσότερες πληροφορίες, Σημείωση Μπορούμε εύκολα να δείξουμε ότι ανάμεσα στις ιδιοκαταστάσεις j, και j, 1 δεν υπάρχει «ενδιάμεση» ιδιοκατάσταση. Με άλλα λόγια, η δράση των τελεστών δημιουργίας και καταστροφής, Ĵ, παράγει όλο το φάσμα του ˆ. Πράγματι, αν υπήρχε ιδιοκατάσταση jq,, με 1 q, τότε δρώντας επαναληπτικά με τον Ĵ, όσες φορές χρειάζεται, παίρνουμε την ιδιοκατάσταση jq,, με j q j 1. Αν δράσουμε άλλη μία φορά με τον Ĵ, θα πάρουμε ιδιοκατάσταση με τιμή μικρότερη από j. Αυτό όμως είναι αδύνατο, αφού το j είναι η ελάχιστη τιμή του. Επομένως, ο ιδιοκατάσταση jq,. Αυτό όμως σημαίνει ότι Ĵ πρέπει να «σκοτώνει» την q j, το οποίο με τη σειρά του σημαίνει ότι q 1, δηλαδή η αρχική ιδιοκατάσταση jq, δεν είναι «ενδιάμεση», όπως υποθέσαμε. Επομένως, δεν υπάρχουν «ενδιάμεσες» ιδιοκαταστάσεις. Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. skosta@hotail.co i

Σπιν 1 2. Γενικά. Ŝ και S ˆz γράφονται. ιδιοκαταστάσεις αποτελούν ορθοκανονική βάση στον χώρο των καταστάσεων του σπιν 1 2.

Σπιν 1 2. Γενικά. Ŝ και S ˆz γράφονται. ιδιοκαταστάσεις αποτελούν ορθοκανονική βάση στον χώρο των καταστάσεων του σπιν 1 2. Σπιν Γενικά Θα χρησιμοποιήσουμε τις γενικές σχέσεις που αποδείξαμε στην ανάρτηση «Εύρεση των ιδιοτιμών της στροφορμής», που, όπως είδαμε, ισχύουν για κάθε γενική στροφορμή ˆ J με συνιστώσες Jˆ, Jˆ, J ˆ,

Διαβάστε περισσότερα

Δύο διακρίσιμα σωμάτια με σπιν s 1

Δύο διακρίσιμα σωμάτια με σπιν s 1 Δύο διακρίσιμα σωμάτια με σπιν και Σύνδεση της βάσης των ιδιοκαταστάσεων του τετραγώνου και της z συνιστώσας του ολικού σπιν με τη βάση που αποτελείται από τα τανυστικά γινόμενα των καταστάσεων των δύο

Διαβάστε περισσότερα

Λυμένες ασκήσεις στροφορμής

Λυμένες ασκήσεις στροφορμής Λυμένες ασκήσεις στροφορμής Θα υπολογίσουμε τη δράση των τελεστών κλίμακας J ± σε μια τυχαία ιδιοκατάσταση j, m των τελεστών J και Jˆ. Λύση Δείξαμε ότι η κατάσταση Jˆ± j, m είναι επίσης ιδιοκατάσταση των

Διαβάστε περισσότερα

(φορτισμένος αρμονικός 2 ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι

(φορτισμένος αρμονικός 2 ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι ΜΟΝΟΔΙΑΣΤΑΤΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΕ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΥΠΟΛΟΓΙΣΜΟΣ ΜΕΣΩΝ ΤΙΜΩΝ ΜΕ ΧΡΗΣΗ ΤΩΝ ΤΕΛΕΣΤΩΝ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ Για μια τυχαία ιδιοκατάσταση της ενέργειας,, υπολογίζουμε

Διαβάστε περισσότερα

Η άλγεβρα της στροφορμής

Η άλγεβρα της στροφορμής Η άλγεβρα της στροφορμής Στην κλασική μηχανική, η τροχιακή στροφορμή L ενός σωματιδίου είναι L r p (1) όπου r το διάνυσμα θέσης του σωματιδίου και p η ορμή του. Σε καρτεσιανές συντεταγμένες, η (1) γράφεται

Διαβάστε περισσότερα

1. Μετάπτωση Larmor (γενικά)

1. Μετάπτωση Larmor (γενικά) . Μετάπτωση Larmor (γενικά) Τι είναι η μετάπτωση; Μετάπτωση είναι η αλλαγή της διεύθυνσης του άξονα περιστροφής ενός περιστρεφόμενου αντικειμένου. Αν ο άξονας περιστροφής ενός αντικειμένου περιστρέφεται

Διαβάστε περισσότερα

Σύστημα δύο αλληλεπιδρώντων σπιν μέσα σε ομογενές μαγνητικό πεδίο (άσκηση)

Σύστημα δύο αλληλεπιδρώντων σπιν μέσα σε ομογενές μαγνητικό πεδίο (άσκηση) Σύστημα δύο αλληλεπιδρώντων σπιν μέσα σε ομογενές μαγνητικό πεδίο (άσκηση) Δύο σωμάτια με σπιν s και s αντίστοιχα και με τον ίδιο γυρομαγνητικό λόγο τοποθετούνται μέσα σε ομογενές χρονοανεξάρτητο μαγνητικό

Διαβάστε περισσότερα

ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΣΕ ΜΙΑ ΤΥΧΑΙΑ ΑΝΑΠΑΡΑΣΤΑΣΗ

ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΣΕ ΜΙΑ ΤΥΧΑΙΑ ΑΝΑΠΑΡΑΣΤΑΣΗ ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΣΕ ΜΙΑ ΤΥΧΑΙΑ ΑΝΑΠΑΡΑΣΤΑΣΗ Έστω â μια παρατηρήσιμη (διανυσματικός τελεστής) με συνεχές φάσμα ιδιοτιμών. Επίσης, έστω ότι t είναι η κατάσταση του συστήματός μας την τυχαία χρονική στιγμή

Διαβάστε περισσότερα

ˆ ˆ. (τελεστής καταστροφής) (τελεστής δημιουργίας) Το δυναμικό του συστήματός μας (αρμονικός ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι

ˆ ˆ. (τελεστής καταστροφής) (τελεστής δημιουργίας) Το δυναμικό του συστήματός μας (αρμονικός ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι ΜΟΝΟΔΙΑΣΤΑΤΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΕ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ Ξεκινώντας από τους τελεστές δημιουργίας και καταστροφής

Διαβάστε περισσότερα

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙI Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Α. Καρανίκας και Π. Σφήκας Σημειώσεις IX: Πρόσθεση στροφορμών Υπάρχουν πάμπολα φυσικά συστήματα στα οποία η κίνηση των επί μέρους σωματιδίων ή τα spin

Διαβάστε περισσότερα

Σπιν 1/2. Γενικά. 2 Υπενθυμίζουμε ότι τα έξι κουάρκ και τα έξι λεπτόνια του Καθιερωμένου Προτύπου,

Σπιν 1/2. Γενικά. 2 Υπενθυμίζουμε ότι τα έξι κουάρκ και τα έξι λεπτόνια του Καθιερωμένου Προτύπου, Σπιν / Γενικά Θα χρησιμοποιήσουμε τις γενικές σχέσεις που αποδείξαμε στην ανάρτηση «Εύρεση των ιδιοτιμών της στροφορμής», που, όπως είδαμε, ισχύουν για κάθε γενική r στροφορμή Jˆ με συνιστώσες Jˆ x, Jˆ

Διαβάστε περισσότερα

ΦΟΡΤΙΣΜΕΝΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΑ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ

ΦΟΡΤΙΣΜΕΝΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΑ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ ΦΟΡΤΙΣΜΕΝΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΑ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ Ξεκινώντας από τους τελεστές δημιουργίας και καταστροφής

Διαβάστε περισσότερα

Â. Θέλουμε να βρούμε τη μέση τιμή

Â. Θέλουμε να βρούμε τη μέση τιμή ΜΕΣΗ ΤΙΜΗ ΕΝΟΣ ΕΡΜΙΤΙΑΝΟΥ ΤΕΛΕΣΤΗ Έστω ο ερμιτιανός τελεστής Â. Θέλουμε να βρούμε τη μέση τιμή Â μια χρονική στιγμή, που αυθαίρετα, αλλά χωρίς βλάβη της γενικότητας, θεωρούμε χρονική στιγμή μηδέν, όπου

Διαβάστε περισσότερα

Δηλαδή. Η Χαμιλτονιανή του περιστροφέα μέσα στο μαγνητικό πεδίο είναι

Δηλαδή. Η Χαμιλτονιανή του περιστροφέα μέσα στο μαγνητικό πεδίο είναι Κβαντικός περιστροφέας που J J J H y z τοποθετείται y z περιγράφεται μέσα σε από τη ομογενές, Χαμιλτονιανή χρονοανεξάρτητο μαγνητικό πεδίο με κατεύθυνση στα θετικά του άξονα z, δηλαδή B B ez, με B >. Αν

Διαβάστε περισσότερα

μαγνητικό πεδίο τυχαίας κατεύθυνσης

μαγνητικό πεδίο τυχαίας κατεύθυνσης Σπιν 1 μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο τυχαίας κατεύθυνσης 1) Ηλεκτρόνιο βρίσκεται μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο B B ˆ ˆ ˆ 0xex B0 yey B0 zez, όπου B0 x, B0

Διαβάστε περισσότερα

Η κυματοσυνάρτηση στην αναπαράσταση ορμής Ασκήσεις. Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. 8 Δεκεμβρίου 2017

Η κυματοσυνάρτηση στην αναπαράσταση ορμής Ασκήσεις. Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. 8 Δεκεμβρίου 2017 Η κυματοσυνάρτηση στην αναπαράσταση ορμής Ασκήσεις Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. siroskonstantogiannis@gmail.com 8 Δεκεμβρίου 7 8//7 Coyrigt Σπύρος Κωνσταντογιάννης, 7. Με επιφύλαξη παντός δικαιώματος.

Διαβάστε περισσότερα

Δομή Διάλεξης. Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης. Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής

Δομή Διάλεξης. Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης. Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής Τροχιακή Στροφορμή Δομή Διάλεξης Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής Ιδιοτιμές και ιδιοκαταστάσεις της L

Διαβάστε περισσότερα

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής. ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου V Άσκηση : Οι θεμελιώδεις σχέσεις μετάθεσης της στροφορμής επιτρέπουν την ύπαρξη ακέραιων και ημιπεριττών ιδιοτιμών Αλλά για την τροχιακή στροφορμή L r p γνωρίζουμε ότι

Διαβάστε περισσότερα

Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική

Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική Spin Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική Δομή Διάλεξης Το πείραμα Stern-Gerlach: Πειραματική απόδειξη spin Ο δισδιάστατος χώρος καταστάσεων spin του ηλεκτρονίου: οι πίνακες Pauli Χρονική εξέλιξη

Διαβάστε περισσότερα

Είναι (1) Έστω (2) Τότε η (1) γράφεται (3) Από την (3) βλέπουμε ότι η y ( x; a ) περιγράφει μια συνοχική κατάσταση μάλιστα

Είναι (1) Έστω (2) Τότε η (1) γράφεται (3) Από την (3) βλέπουμε ότι η y ( x; a ) περιγράφει μια συνοχική κατάσταση μάλιστα Είναι i ö ö y ( ; ) ç ep ç - ˆ ep ç ( p ø ø ) ö ø () Έστω () Τότε η () γράφεται i ö ö y ( ; ) ç ep ç ep ç - ( - ˆ p ø ø ) ö ø (3) Από την (3) βλέπουμε ότι η y ( ; ) περιγράφει μια συνοχική κατάσταση μάλιστα

Διαβάστε περισσότερα

Παραμαγνητικός συντονισμός

Παραμαγνητικός συντονισμός Παραμαγνητικός συντονισμός B B teˆ teˆ B eˆ, όπου Έστω ηλεκτρόνιο σε μαγνητικό πεδίο cos sin x y z B, B. Θεωρούμε ότι η σταθερή συνιστώσα του μαγνητικού πεδίου, Be, ˆz είναι ισχυρότερη από τη χρονοεξαρτώμενη

Διαβάστε περισσότερα

, που, χωρίς βλάβη της γενικότητας, μπορούμε να θεωρήσουμε χρονική στιγμή μηδέν, δηλαδή

, που, χωρίς βλάβη της γενικότητας, μπορούμε να θεωρήσουμε χρονική στιγμή μηδέν, δηλαδή Η ΚΥΜΑΤΟΣΥΝΑΡΤΗΣΗ ΣΤΗΝ ΑΝΑΠΑΡΑΣΤΑΣΗ ΘΕΣΗΣ ΑΝΑΠΑΡΑΣΤΑΣΗ ΟΡΜΗΣ p. Θα βρούμε πρώτα τη σχέση που συνδέει την p με την x. x ΚΑΙ ΣΤΗΝ Έστω η κατάσταση του συστήματός μας μια χρονική στιγμή t 0, που, χωρίς βλάβη

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ. Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής

ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ. Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής Re Im V r V r i V r, όπου οι συναρτήσεις Re,Im V r V r είναι πραγματικές συναρτήσεις

Διαβάστε περισσότερα

Αρμονικός Ταλαντωτής

Αρμονικός Ταλαντωτής Αρμονικός Ταλαντωτής Δομή Διάλεξης Η χρησιμότητα του προβλήματος του αρμονικού ταλαντωτή Η Hamiltonian και οι τελεστές δημιουργίας και καταστροφής Το φάσμα ιδιοτιμών της Hamiltonian Οι ιδιοκαταστάσεις

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ

ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ Θεωρία της στροφορμής Στέλιος Τζωρτζάκης 1 3 4 Υπενθύμιση βασικών εννοιών της στροφορμής κυματοσυνάρτηση

Διαβάστε περισσότερα

(ταλαντούμενο) μαγνητικό πεδίο τυχαίας κατεύθυνσης Επίλυση με αλλαγή βάσης

(ταλαντούμενο) μαγνητικό πεδίο τυχαίας κατεύθυνσης Επίλυση με αλλαγή βάσης Σπιν 1 μέσα σε χρονικά μεταβαλλόμενο (ταλαντούμενο) μαγνητικό πεδίο τυχαίας κατεύθυνσης Επίλυση με αλλαγή βάσης Έστω ηλεκτρόνιο μέσα σε μαγνητικό πεδίο cos B B t, όπου B, και si cose si sie cos e είναι

Διαβάστε περισσότερα

Εξετάσεις 1ης Ιουλίου Για την ϐασική κατάσταση του ατόµου του Υδρογόνου της οποίας η κανονικοποιηµένη στην µονάδα

Εξετάσεις 1ης Ιουλίου Για την ϐασική κατάσταση του ατόµου του Υδρογόνου της οποίας η κανονικοποιηµένη στην µονάδα ΘΕΜΑ 1: Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ Εξετάσεις 1ης Ιουλίου 13 Τµήµα Α. Λαχανά) Α ) Για την πρώτη διεγερµένη κατάσταση του ατόµου του Υδρογόνου µε τροχιακή στροφορµή l = 1 να προσδιορισθουν οι αποστάσεις

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Τροχιακή Στροφορμή (Ορισμοί Τελεστών) Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Ο Μονοδιάστατος Γραµµικός Αρµονικός Ταλαντωτής 1.1.1 Εύρεση των ιδιοτοµών και ιδιοσυναρτήσεων

Διαβάστε περισσότερα

+ z, όπου I x, I y, I z είναι οι ροπές αδράνειας

+ z, όπου I x, I y, I z είναι οι ροπές αδράνειας r Έστω κβαντικός περιστροφέας ολικής στροφορμής J, που περιγράφεται από Jx J y J τη Χαμιλτονιανή H = z, όπου I x, I y, I z είναι οι ροπές αδράνειας I x I y I z του περιστροφέα ως προς τους άξονες x,y,z,

Διαβάστε περισσότερα

Ιδιοσυναρτήσεις του αρμονικού ταλαντωτή Πολυώνυμα Hermite

Ιδιοσυναρτήσεις του αρμονικού ταλαντωτή Πολυώνυμα Hermite Ιδιοσυναρτήσεις του αρμονικού ταλαντωτή Πολυώνυμα Hermite i) Δείξτε ότι δύο τυχαίες διαδοχικές ιδιοσυναρτήσεις του αρμονικού ταλαντωτή έχουν αντίθετη ομοτιμία. ii) Δείξτε ότι y n 0 ) ¹ 0, για n = 0,,...

Διαβάστε περισσότερα

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί

Διαβάστε περισσότερα

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4 ιαλέξεις Κβαντικής Μηχανικής ΙΙ - Κεφάλαιο 4 Α. Λαχανας 1/ 45 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων ακαδηµαικό

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ), και τις ενεργειακές στάθμες του, 2. E E E, όπου ˆ

ΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ), και τις ενεργειακές στάθμες του, 2. E E E, όπου ˆ ΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ) Στο απειρόβαθο πηγάδι με τοιχώματα στα σημεία x, θα υπολογίσουμε τη διασπορά της ενέργειας,, για τη μικτή κατάσταση με 5 x x x 8 μέσα στο πηγάδι

Διαβάστε περισσότερα

Αρμονικός ταλαντωτής Ασκήσεις

Αρμονικός ταλαντωτής Ασκήσεις Αρμονικός ταλαντωτής Ασκήσεις 4. Αρμονικός ταλαντωτής, τη χρονική στιγμή t, βρίσκεται στην κατάσταση ˆ i e, όπου η βασική κατάσταση του αρμονικού ταλαντωτή, ο τελεστής της ορμής, και η κλίμακα μήκους του

Διαβάστε περισσότερα

3/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 08. ΤΟ ΣΠΙΝ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΟ ΣΠΙΝ

3/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 08. ΤΟ ΣΠΙΝ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΟ ΣΠΙΝ stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΤΟ ΣΠΙΝ ΎΛΗ & ΦΩΣ 08. ΤΟ ΣΠΙΝ Στέλιος Τζωρτζάκης 1 3 4 Εισαγωγή Η ενδογενής στροφορμή ή αλλιώς σπιν αποτελεί ένα θεμελιώδες χαρακτηριστικό των σωματιδίων διότι

Διαβάστε περισσότερα

μαγνητικό πεδίο παράλληλο στον άξονα x

μαγνητικό πεδίο παράλληλο στον άξονα x Σπιν μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο παράλληλο στον άξονα ) Ηλεκτρόνιο βρίσκεται μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο με κατεύθυνση στα θετικά του άξονα, δηλαδή e,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 2: ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ. 2.3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 2: ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ. 2.3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ..3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα. Να βρείτε το μέτρο των μιγαδικών

Διαβάστε περισσότερα

Δείξτε ότι οι ιδιοκαταστάσεις της ενέργειας του ελεύθερου κβαντικού 2

Δείξτε ότι οι ιδιοκαταστάσεις της ενέργειας του ελεύθερου κβαντικού 2 Δείξτε ότι οι ιδιοκαταστάσεις της ενέργειας του ελεύθερου κβαντικού Jˆ Jˆ Jˆ περιστροφέα με Χαμιλτονιανή Hˆ = x y z και ολική στροφορμή j = x y z είναι οι ιδιοκαταστάσεις των τριών συνιστωσών της στροφορομής

Διαβάστε περισσότερα

Το θεώρημα virial1 στην κβαντική μηχανική

Το θεώρημα virial1 στην κβαντική μηχανική Το θεώρημα val στην κβαντική μηχανική Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. sposkonsanoganns@gal.co 7 Φεβρουαρίου 08 Η λέξη val προέρχεται από το λατινικό vs, που σημαίνει «δύναμη», «ενέργεια», «ισχύς»

Διαβάστε περισσότερα

21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης

21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ Στέλιος Τζωρτζάκης Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ 1 3 4 Το δυναμικό του αρμονικού ταλαντωτή Η παραβολική προσέγγιση βρίσκει άμεση

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ; ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά

Διαβάστε περισσότερα

Μια γενική έκφραση της κυματοσυνάρτησης στον χώρο των ορμών για μια δέσμια κατάσταση

Μια γενική έκφραση της κυματοσυνάρτησης στον χώρο των ορμών για μια δέσμια κατάσταση Μια γενική έκφραση της κυματοσυνάρτησης στον χώρο των ορμών για μια δέσμια κατάσταση Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. spiroskonstantogiannis@gmail.com Δεκεμβρίου 07 //07 Coprigt Σπύρος Κωνσταντογιάννης,

Διαβάστε περισσότερα

Σχετικιστικές συμμετρίες και σωμάτια

Σχετικιστικές συμμετρίες και σωμάτια Κεφάλαιο 1 Σχετικιστικές συμμετρίες και σωμάτια 1.1 Η συμμετρία Πουανκαρέ 1.1.1 Βασικοί ορισμοί και ιδιότητες Η θεμελιώδης κινηματική συμμετρία για ένα φυσικό σύστημα είναι η συμμετρία των μετασχηματισμών

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Στροφορµή στην Κβαντική Μηχανική 1.1.1 Τροχιακή Στροφορµή Η Τροχιακή Στροφορµή στην Κβαντική

Διαβάστε περισσότερα

Η Αναπαράσταση της Θέσης (Position Representation)

Η Αναπαράσταση της Θέσης (Position Representation) Η Αναπαράσταση της Θέσης (Position Representation) Δομή Διάλεξης Το παρατηρήσιμο μέγεθος της θεσης και τα αντίστοιχα πλάτη πιθανότητας (συνεχές φάσμα ιδιοτιμών και ιδιοκαταστάσεων) Οι τελεστές της θέσης

Διαβάστε περισσότερα

Για να υπολογίσουμε το ολοκλήρωμα στο δεξιό μέλος της (3), κάνουμε την αλλαγή μεταβλητής

Για να υπολογίσουμε το ολοκλήρωμα στο δεξιό μέλος της (3), κάνουμε την αλλαγή μεταβλητής Στην αναπαράσταση θέσης, η τυχαία συνοχική κατάσταση του αρμονικού ταλαντωτή περιγράφεται από μια κυματοσυνάρτηση της μορφής y ( ( Η κυματοσυνάρτηση στην αναπαράσταση ορμής, y% (, είναι ο μετασχηματισμός

Διαβάστε περισσότερα

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.

Διαβάστε περισσότερα

Δομή Διάλεξης. Ορισμός-Παραδείγματα Τελεστών. Αναμενόμενες τιμές φυσικών μεγεθών με χρήση τελεστών. Ιδιοκαταστάσεις και Ιδιοτιμές τελεστών

Δομή Διάλεξης. Ορισμός-Παραδείγματα Τελεστών. Αναμενόμενες τιμές φυσικών μεγεθών με χρήση τελεστών. Ιδιοκαταστάσεις και Ιδιοτιμές τελεστών Τελεστές Δομή Διάλεξης Ορισμός-Παραδείγματα Τελεστών Αναμενόμενες τιμές φυσικών μεγεθών με χρήση τελεστών Ιδιοκαταστάσεις και Ιδιοτιμές τελεστών Ερμητειανοί τελεστές Στοιχεία πίνακα τελεστών Μεταθέτες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 Η ΑΡΧΗ ΕΓΚΛΕΙΣΜΟΥ ΑΠΟΚΛΕΙΣΜΟΥ

ΚΕΦΑΛΑΙΟ 4 Η ΑΡΧΗ ΕΓΚΛΕΙΣΜΟΥ ΑΠΟΚΛΕΙΣΜΟΥ 50 ΚΕΦΑΛΑΙΟ Η ΑΡΧΗ ΕΓΚΛΕΙΣΜΟΥ ΑΠΟΚΛΕΙΣΜΟΥ Εισαγωγή. Η αρχή του εγκλεισμού αποκλεισμού είναι ένα ισχυρό μέσο απαρίθμησης με το οποίο υπολογίζεται ο αριθμός των στοιχείων της ένωσης και της τομής των συμπληρωμάτων

Διαβάστε περισσότερα

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες

Διαβάστε περισσότερα

ii) Υπολογίστε τις μέσες τιμές της θέσης και της ορμής του ταλαντωτή όταν t 0.

ii) Υπολογίστε τις μέσες τιμές της θέσης και της ορμής του ταλαντωτή όταν t 0. ΑΣΚΗΣΗ 4 Αρμονικός ταλαντωτής, τη χρονική στιγμή t, βρίσκεται στην κατάσταση ip ˆ x x, όπου η βασική κατάσταση του αρμονικού ταλαντωτή, ˆp x ο τελεστής της ορμής, και η κλίμακα μήκους του αρμονικού ταλαντωτή.

Διαβάστε περισσότερα

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ Στέλιος Τζωρτζάκης 1 3 4 Ο διανυσματικός χώρος των φυσικών καταστάσεων Η έννοια

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Κίνηση σε κεντρικά δυναµικά 1.1.1 Κλασική περιγραφή Η Χαµιλτωνιανή κλασικού συστήµατος που κινείται

Διαβάστε περισσότερα

16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ

16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ Στέλιος Τζωρτζάκης 1 3 4 φάση Η έννοια των ταυτόσημων σωματιδίων Ταυτόσημα αποκαλούνται όλα τα σωματίδια

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις ανάπτυξης. ** Να βρείτε τους πραγµατικούς αριθµούς x και y ώστε να ισχύουν οι ισότητες: α) x - + y = - + - y β) y + = 3 - ( + ) x γ) 4y - 3y - x = - 5x + 9 δ) (x

Διαβάστε περισσότερα

( x) Half Oscillator. Σωμάτιο βρίσκεται υπό την επίδραση του δυναμικού

( x) Half Oscillator. Σωμάτιο βρίσκεται υπό την επίδραση του δυναμικού Half Oscillator Σωμάτιο βρίσκεται υπό την επίδραση του δυναμικού ì, x ï V x í ïî mw x, x > Το σύστημα αυτό αναφέρεται ως «Half Oscillator». Στα Ελληνικά, θα χρησιμοποιήσουμε τον όρο «μισός αρμονικός ταλαντωτής»,

Διαβάστε περισσότερα

Αγγύλες Poisson. Ας θεωρήσουμε κάποια συνάρτηση των κανονικών μεταβλητών. Οι

Αγγύλες Poisson. Ας θεωρήσουμε κάποια συνάρτηση των κανονικών μεταβλητών. Οι Μηχανική ΙΙ Πέτρος Ιωάννου & Θεοχάρης Αποστολάτος 25 Μαϊου 2001 Αγγύλες Poisson Ας θεωρήσουμε κάποια συνάρτηση των κανονικών μεταβλητών Οι θέσεις και οι ορμές εξελίσσονται χρονικά σύμφωνα με τις εξισώσεις

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 10: Ερμιτιανοί τελεστές και εισαγωγή στους μεταθέτες. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 10: Ερμιτιανοί τελεστές και εισαγωγή στους μεταθέτες. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 10: Ερμιτιανοί τελεστές και εισαγωγή στους μεταθέτες Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να αναδείξει την ερμιτιανότητα

Διαβάστε περισσότερα

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2 ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου Ι Άσκηση 1: Θεωρήστε δύο ορθοκανονικά διανύσματα ψ 1 και ψ και υποθέστε ότι αποτελούν βάση σε ένα χώρο δύο διαστάσεων. Θεωρήστε επίσης ένα τελαστή T που ορίζεται στο χώρο

Διαβάστε περισσότερα

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 Περιεχόμενα 1 Εισαγωγή 2 2 Μεγιστικός τελέστης στην μπάλα 2 2.1 Βασικό θεώρημα........................ 2 2.2 Γενική περίπτωση μπάλας.................. 6 2.2.1 Στο

Διαβάστε περισσότερα

1 Arq thc Majhmatik c Epagwg c

1 Arq thc Majhmatik c Epagwg c Μαθηματικός Λογισμός Ι Φθινόπωρο 0 Σημειώσεις 7-0- Μ. Ζαζάνης Arq thc Majhati c Epagwg c Θα συμβολίζουμε το σύνολο των ϕυσικών αριθμών, {,,,...} με το σύμβολο N. Το σύνολο των ϕυσικών αριθμών, συμπεριλαμβανομένου

Διαβάστε περισσότερα

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1 Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 39 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

(1) (3) x a. Από την (3) βλέπουµε ότι η ( ) τυχαία συνοχική κατάσταση ενός αρµονικού ταλαντωτή µε κλίµακα µήκους a. â a, θα είναι,

(1) (3) x a. Από την (3) βλέπουµε ότι η ( ) τυχαία συνοχική κατάσταση ενός αρµονικού ταλαντωτή µε κλίµακα µήκους a. â a, θα είναι, Είναι i x 4 ( x ) ψ( x; ) e e () π Έστω () Τότε η () γράφεται ψ ( ; ) i x 4 ( x ) x e e (3) π είναι µια συνοχική κατάσταση µάλιστα µια Από την (3) βλέπουµε ότι η ( ) τυχαία συνοχική κατάσταση ενός αρµονικού

Διαβάστε περισσότερα

1. Nα λυθούν οι ανισώσεις. 2. Nα λυθούν οι ανισώσεις. 3. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: 4. Nα βρεθούν οι κοινές λύσεις των ανισώσεων:

1. Nα λυθούν οι ανισώσεις. 2. Nα λυθούν οι ανισώσεις. 3. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: 4. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΝΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 ο ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ. Nα λυθούν οι ανισώσεις α) 4 β) 4. Nα λυθούν οι ανισώσεις ( )( ) α) + > - (+) β). Nα βρεθούν οι κοινές λύσεις των ανισώσεων: ( ) ( ) 8 4 8 και

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος 3. Αν A 5 4, B 4, C να υπολογίσετε τις ακόλουθες πράξεις 4 3 8 3 7 3 (αν έχουν νόημα): α) AB, b) BA, c) CB, d) C B,

Διαβάστε περισσότερα

Ιδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα

Ιδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα Ιδιάζουσες τιμές πίνακα Επειδή οι πίνακες που παρουσιάζονται στις εφαρμογές είναι μη τετραγωνικοί, υπάρχει ανάγκη να βρεθεί μία μέθοδος που να «μελετά» τους μη τετραγωνικούς με «μεθόδους και ποσά» που

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό -

Διαβάστε περισσότερα

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5 Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 53 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος

Διαβάστε περισσότερα

Να αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α

Να αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1

Διαβάστε περισσότερα

Κεφάλαιο 14: Πρόσθεση Στροφορμών

Κεφάλαιο 14: Πρόσθεση Στροφορμών Κεφάλαιο 14: Πρόσθεση Στροφορμών Περιεχόμενα Κεφαλαίου Αφού δοθεί ο ορισμός ολικής στροφορμής θα γίνει η συσχέτιση της βάσης ολικής στροφορμής (jm j) με τη βάση των επιμέρους στροφορμών (m 1m ). Οι συντελεστές

Διαβάστε περισσότερα

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ ΚΕΦΑΛΑΙΟ : ΕΞΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ : ΑΠΛΗ ΜΟΡΦΗ Κάθε εξίσωση που έχει ή μπορεί να πάρει τη μορφή : α+β=0 ή α=-β () λέγεται εξίσωση ου βαθμού (ή πρωτοβάθμια εξίσωση), με άγνωστο το, ενώ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό -

Διαβάστε περισσότερα

( x) (( ) ( )) ( ) ( ) ψ = 0 (1)

( x) (( ) ( )) ( ) ( ) ψ = 0 (1) ΚΑΤΑΣΤΑΣΕΙΣ ΕΛΑΧΙΣΤΗΣ ΑΒΕΒΑΙΟΤΗΤΑΣ ΘΕΣΗΣ ΟΡΜΗΣ ΣΤΗΝ ΑΝΑΠΑΡΑΣΤΑΣΗ ΘΕΣΗΣ Στην προηγούµενη ανάρτηση, δείξαµε ότι η κατάσταση είναι κατάσταση ελάχιστης αβεβαιότητας των µη µετατιθέµενων ερµιτιανών τελεστών

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 25: Μαθηματική μελέτη του κβαντικού αρμονικού ταλαντωτή. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 25: Μαθηματική μελέτη του κβαντικού αρμονικού ταλαντωτή. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 25: Μαθηματική μελέτη του κβαντικού αρμονικού ταλαντωτή Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παρουσιάσει την μελέτη

Διαβάστε περισσότερα

Για την τοπική μελέτη μιας συνάρτησης f ενδιαφέρον έχει η συμπεριφορά της συνάρτησης γύρω απο κάποια θέση x 0

Για την τοπική μελέτη μιας συνάρτησης f ενδιαφέρον έχει η συμπεριφορά της συνάρτησης γύρω απο κάποια θέση x 0 5 Όριο συνάρτησης Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Για την τοπική μελέτη μιας συνάρτησης f ενδιαφέρον έχει η συμπεριφορά της συνάρτησης γύρω απο κάποια θέση (δηλαδή όταν το βρίσκεται πολύ κοντά στο ) ή στο

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

Δομή Διάλεξης. Ορισμός Ολικής Στροφορμής. Σχέση βάσης ολικής στροφορμής (j,m j ) με βάση επιμέρους στροφορμών (m 1,m 2 )

Δομή Διάλεξης. Ορισμός Ολικής Στροφορμής. Σχέση βάσης ολικής στροφορμής (j,m j ) με βάση επιμέρους στροφορμών (m 1,m 2 ) Πρόσθεση Στροφορμών Δομή Διάλεξης Ορισμός Ολικής Στροφορμής Σχέση βάσης ολικής στροφορμής (j,m j ) με βάση επιμέρους στροφορμών (m 1,m 2 ) Συντελεστές μετάβασης (Glebsch-Gordon) για σύνθεση από l=1, s=1/2

Διαβάστε περισσότερα

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου IV Άσκηση 1: Σωματίδιο μάζας Μ κινείται στην περιφέρεια κύκλου ακτίνας R. Υπολογίστε τις επιτρεπόμενες τιμές της ενέργειας, τις αντίστοιχες κυματοσυναρτήσεις και τον εκφυλισμό.

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

2ο ΓΕΛ ΑΓ.ΔΗΜΗΤΡΙΟΥ ΑΕΠΠ ΘΕΟΔΟΣΙΟΥ ΔΙΟΝ ΠΡΟΣΟΧΗ ΣΤΑ ΠΑΡΑΚΑΤΩ

2ο ΓΕΛ ΑΓ.ΔΗΜΗΤΡΙΟΥ ΑΕΠΠ ΘΕΟΔΟΣΙΟΥ ΔΙΟΝ ΠΡΟΣΟΧΗ ΣΤΑ ΠΑΡΑΚΑΤΩ ΠΡΟΣΟΧΗ ΣΤΑ ΠΑΡΑΚΑΤΩ ΣΤΑΘΕΡΕΣ είναι τα μεγέθη που δεν μεταβάλλονται κατά την εκτέλεση ενός αλγόριθμου. Εκτός από τις αριθμητικές σταθερές (7, 4, 3.5, 100 κλπ), τις λογικές σταθερές (αληθής και ψευδής)

Διαβάστε περισσότερα

Γραμμική Αλγεβρα ΙΙ Διάλεξη 1 Εισαγωγή Χρήστος Κουρουνιώτης Πανεπισ τήμιο Κρήτης 19/2/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 1 19/2/ / 13

Γραμμική Αλγεβρα ΙΙ Διάλεξη 1 Εισαγωγή Χρήστος Κουρουνιώτης Πανεπισ τήμιο Κρήτης 19/2/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 1 19/2/ / 13 Γραμμική Άλγεβρα ΙΙ Διάλεξη 1 Εισαγωγή Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης 19/2/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 1 19/2/2014 1 / 13 Εισαγωγή Τι έχουμε μάθει; Στο πρώτο μάθημα Γραμμικής Άλγεβρας

Διαβάστε περισσότερα

Η εξίσωση Dirac (Ι) Σπύρος Ευστ. Τζαμαρίας Στοιχειώδη Σωμάτια 1

Η εξίσωση Dirac (Ι) Σπύρος Ευστ. Τζαμαρίας Στοιχειώδη Σωμάτια 1 Η εξίσωση Dirac (Ι) Σπύρος Ευστ. Τζαμαρίας Στοιχειώδη Σωμάτια 1 Μη- Σχετικιστική Κβαντομηχανική Η μη- σχετικιστική έκφραση για την ενέργεια: Στην QM αντιστοιχούμε την ενέργεια και την ορμή με Τελεστές:

Διαβάστε περισσότερα

Μετασχηματισμοί Καταστάσεων και Τελεστών

Μετασχηματισμοί Καταστάσεων και Τελεστών Μετασχηματισμοί Καταστάσεων και Τελεστών Δομή Διάλεξης Μετασχηματισμοί Καταστάσεων Τελεστής Μετατόπισης Συνεχείς Μετασχηματισμοί και οι Γεννήτορές τους Τελεστής Στροφής Διακριτοί Μετασχηματισμοί: Parity

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 8 Ημερομηνία παράδοσης της Εργασίας: Φεβρουαρίου 8 Πριν από την λύση κάθε άσκησης καλό

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

ETY-202. Ο γενικός φορμαλισμός Dirac ETY-202 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC. Στέλιος Τζωρτζάκης 21/11/2013

ETY-202. Ο γενικός φορμαλισμός Dirac ETY-202 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC. Στέλιος Τζωρτζάκης 21/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC Στέλιος Τζωρτζάκης Ο γενικός φορμαλισμός Dirac 1 3 4 Εικόνες και αναπαραστάσεις Επίσης μια πολύ χρήσιμη ιδιότητα

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons

Διαβάστε περισσότερα

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Το Σύνολο C των Μιγαδικών Αριθμών Είναι γνωστό ότι η εξίσωση x δεν έχει λύση στο σύνολο IR των πραγματικών αριθμών, αφού το τετράγωνο κάθε πραγματικού αριθμού είναι μη αρνητικός

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 20η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Στοιχειώδη Σωματίδια. Διάλεξη 20η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Στοιχειώδη Σωματίδια Διάλεξη 20η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Φερµιόνια & Μποζόνια Συµπεριφορά της Κυµατοσυνάρτησης δύο ταυτόσηµων σωµατίων κάτω από την εναλλαγή τους στο χώρο 15 Δεκ

Διαβάστε περισσότερα

Διάλεξη 2: Κεντρικά Δυναμικά. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για κεντρικά δυναμικά

Διάλεξη 2: Κεντρικά Δυναμικά. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για κεντρικά δυναμικά Διάλεξη : Κεντρικά Δυναμικά Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schöing για κεντρικά δυναμικά Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03 Κεντρικά δυναμικά Εξάρτηση δυναμικού

Διαβάστε περισσότερα

τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι:

τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: κεφάλαιο 4 Α τριώνυμο επίλυση της εξίσωσης δευτέρου βαθμού Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: αx + βx + γ

Διαβάστε περισσότερα

= + =. cos ( ) sin ( ) ˆ ˆ ˆ. Άσκηση 4.

= + =. cos ( ) sin ( ) ˆ ˆ ˆ. Άσκηση 4. Άσκηση 4 Θεωρείστε και πάλι το σύστημα της άσκησης Τη χρονική στιγμή το σύστημα βρίσκεται στην κατάσταση a (η οποία δεν είναι ιδιοκατάσταση της amilonian) Ποιά είναι η πιθανότητα, μετά από χρόνο, να βρεθεί

Διαβάστε περισσότερα

E + m. m + E 2m (σ p)/(2m) v. i( p) x = v(p, 97/389

E + m. m + E 2m (σ p)/(2m) v. i( p) x = v(p, 97/389 97/389 Χρησιμοποιώντας τον ίδιο νορμαλισμό N = E + m έχουμε vp, s = σ p E + m E +m χs χ s, s =, 2 και ψ = vp, se i p x = vp, se ip x με p = E, p. Η επιλογή είναι χ = και χ 2 = γιατί η απουσία ενός άνω

Διαβάστε περισσότερα