Ταιριάσματα. Γράφημα. Ταίριασμα (matching) τέτοιο ώστε κάθε κορυφή να εμφανίζεται σε το πολύ μια ακμή του



Σχετικά έγγραφα
Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες

ΣΥΝΕΚΤΙΚΟΤΗΤΑ ΓΡΑΦΗΜΑΤΩΝ

Αλγόριθμοι και Πολυπλοκότητα

q(g \ S ) = q(g \ S) S + d = S.

Ελαφρύτατες διαδρομές

d(v) = 3 S. q(g \ S) S

Μέγιστη Ροή Ελάχιστη Τομή

Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων

Θεωρία Γραφημάτων 6η Διάλεξη

Θεωρία Γραφημάτων 9η Διάλεξη

S A : N G (S) N G (S) + d S d + d = S

Διάλεξη 7: X Y Σχήμα 7.2: Παράδειγμα για το Πόρισμα 7.2, όπου: 1 = {1, 2, 5}, 2 = {1, 2, 3}, 3 = {4}, 4 = {1, 3, 4}. Θ

Μαθηματικά Πληροφορικής

Μέγιστη Ροή Ελάχιστη Τομή

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες

Γέφυρες σε Δίκτυα. Μας δίνεται ένα δίκτυο (κατευθυνόμενο γράφημα) αφετηριακός κόμβος. Γέφυρα του (με αφετηρία τον ) :

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.

Τυχαιοκρατικοί Αλγόριθμοι

Κεφάλαιο 1. Πέντε Αντιπροσωπευτικά Προβλήματα. Έκδοση 1.4, 30/10/2014. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Θεωρία και Αλγόριθμοι Γράφων

Θεωρία Γραφημάτων 10η Διάλεξη

Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα

Γράφοι: κατευθυνόμενοι και μη

4η Γραπτή Ασκηση Αλγόριθμοι και Πολυπλοκότητα CoReLab ΣΗΜΜΥ 7 Φεβρουαρίου 2017 CoReLab (ΣΗΜΜΥ) 4η Γραπτή Ασκηση 7 Φεβρουαρίου / 38

3η Σειρά Γραπτών Ασκήσεων

Ενότητα 5: Αλγόριθμοι γράφων και δικτύων

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών

4η Γραπτή Ασκηση Αλγόριθμοι και Πολυπλοκότητα CoReLab ΣΗΜΜΥ 3/2/2019 CoReLab (ΣΗΜΜΥ) 4η Γραπτή Ασκηση 3/2/ / 37

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Αλγόριθμοι και Πολυπλοκότητα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ231: Δομές Δεδομένων και Αλγόριθμοι. Εαρινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ

1 Το πρόβλημα της συντομότερης διαδρομής

Αλγόριθµοι και Πολυπλοκότητα

Κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Πολυγραφήµατα (Multigraphs)

Ερώτημα 1. Μας δίνεται μια συλλογή από k ακολοθίες, k >=2 και αναζητούμε το πρότυπο Ρ, μεγέθους n.

Φροντιστήριο 11 Λύσεις

Στοιχεία Θεωρίας Γραφηµάτων (1)

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

Σειρά Προβλημάτων 5 Λύσεις

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026

Επιχειρησιακή Έρευνα I

Ελάχιστο Γεννητικό Δένδρο. Παράδειγμα - Αλγόριθμος Prim. Γιατί δουλεύουν αυτοί οι αλγόριθμοι;

Πολυπλοκότητα. Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης. Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης. Προσπάθεια υλοποίησης

Άσκηση 1. Ψευδοκώδικας Kruskal. Παρακάτω βλέπουμε την εφαρμογή του στο παρακάτω συνδεδεμένο γράφημα.

3η Σειρά Γραπτών Ασκήσεων

Διαίρει και Βασίλευε. πρόβλημα μεγέθους Ν. διάσπαση. πρόβλημα μεγέθους k. πρόβλημα μεγέθους Ν-k

ΘΕΜΑ 1: Αλγόριθμος Ford-Fulkerson

Δοµές Δεδοµένων & Ανάλυση Αλγορίθµων 3ο Εξάµηνο. Γραφήµατα. (Graphs)

2 ) d i = 2e 28, i=1. a b c

Επίπεδα Γραφήματα (planar graphs)

Σημειωματάριο Δευτέρας 4 Δεκ. 2017

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές

Φροντιστήριο #8 Ασκήσεις σε Γράφους 16/5/2017

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι έχουµε δει µέχρι τώρα. Υπογράφηµα Γράφοι

Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα.

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

HY118-Διακριτά Μαθηματικά. Τι είδαμε την προηγούμενη φορά. Θεωρία γράφων / γραφήματα. 25 -Γράφοι. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές

Προσεγγιστικοί Αλγόριθμοι

ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ Φεβρουάριος 2005 Σύνολο μονάδων: 91

Εισαγωγή στους Αλγορίθμους

Συντομότερα Μονοπάτια για Όλα τα Ζεύγη Κορυφών

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

για NP-Δύσκολα Προβλήματα

Το πρόβλημα μονοδρόμησης (The One-Way Street Problem)

Δομές Δεδομένων και Αλγόριθμοι. Λουκάς Γεωργιάδης

Διμερή γραφήματα και ταιριάσματα

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ

Εξωτερική Αναζήτηση. Ιεραρχία Μνήμης Υπολογιστή. Εξωτερική Μνήμη. Εσωτερική Μνήμη. Κρυφή Μνήμη (Cache) Καταχωρητές (Registers) μεγαλύτερη ταχύτητα

Κατανεμημένα Συστήματα Ι

Φροντιστήριο #9 Ασκήσεις σε Γράφους 18/5/2018

Κεφάλαιο 3. Γραφήµατα v1.0 ( ) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Αλγόριθµοι και Πολυπλοκότητα

e 2 S F = [V (H), V (H)]. 3-1 e 1 e 3

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Edge-coloring σε διμερή πολυγραφήματα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 3η Θεωρία Γραφηµάτων

Το πρόβλημα του σταθερού γάμου

Θεωρία Γραφημάτων 2η Διάλεξη

Αλγόριθμοι και Πολυπλοκότητα

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα

ΔΙΑΤΡΕΞΗ ΑΛΓΟΡΙΘΜΟΙ ΓΡΑΦΗΜΑΤΩΝ

Chapter 7, 8 : Completeness

Φροντιστήριο #8 Ασκήσεις σε Γράφους 24/5/2016

HY118-Διακριτά Μαθηματικά. Θεωρία γράφων/ γραφήματα. Τι έχουμε δει μέχρι τώρα. Ισομορφισμός γράφων: Μία σχέση ισοδυναμίας μεταξύ γράφων.

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

OPTICAL WAVELENGTH ROUTING ON DIRECTED FIBER TREES

u v 4 w G 2 G 1 u v w x y z 4

4. ΔΙΚΤΥΑ

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα

έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ

Transcript:

Ταιριάσματα Γράφημα Ταίριασμα (matching) Σύνολο ακμών τέτοιο ώστε κάθε κορυφή να εμφανίζεται σε το πολύ μια ακμή του Θέλουμε να βρούμε ένα μέγιστο ταίριασμα (δηλαδή με μέγιστο αριθμό ακμών)

Ταιριάσματα Γράφημα Ταίριασμα (matching) Σύνολο ακμών τέτοιο ώστε κάθε κορυφή να εμφανίζεται σε το πολύ μια ακμή του Θέλουμε να βρούμε ένα μέγιστο ταίριασμα (δηλαδή με μέγιστο αριθμό ακμών) Έστω ακμή Αν τότε η ακμή είναι ταιριασμένη, διαφορετικά είναι ελεύθερη Έστω κόμβος Αν υπάρχει ταιριασμένη ακμή που προσπίπτει στον τότε ο είναι ταιριασμένος, διαφορετικά είναι ελεύθερος

Διμερή Ταιριάσματα Διμερές Γράφημα Ταίριασμα (matching) Σύνολο ακμών τέτοιο ώστε κάθε κορυφή να εμφανίζεται σε το πολύ μια ακμή του Θέλουμε να βρούμε ένα μέγιστο ταίριασμα (δηλαδή με μέγιστο αριθμό ακμών)

Διμερή Ταιριάσματα Αναγωγή σε Μέγιστη Ροή Κατασκευάζουμε βοηθητικό δίκτυο : Εισάγουμε αφετηριακό κόμβο και τερματικό κόμβο Κατευθύνουμε τις ακμές του από το στο και τους δίνουμε χωρητικότητα Εισάγουμε ακμές και με χωρητικότητα

Διμερή Ταιριάσματα Αναγωγή σε Μέγιστη Ροή Κατασκευάζουμε βοηθητικό δίκτυο : Εισάγουμε αφετηριακό κόμβο και τερματικό κόμβο Κατευθύνουμε τις ακμές του από το στο και τους δίνουμε χωρητικότητα Εισάγουμε ακμές και με χωρητικότητα Οι ακμές που μεταφέρουν ροή από το στο δίνουν ένα ταίριασμα

Διμερή Ταιριάσματα Αναγωγή σε Μέγιστη Ροή Κατασκευάζουμε βοηθητικό δίκτυο : Εισάγουμε αφετηριακό κόμβο και τερματικό κόμβο Κατευθύνουμε τις ακμές του από το στο και τους δίνουμε χωρητικότητα Εισάγουμε ακμές και με χωρητικότητα Οι ακμές που μεταφέρουν ροή από το στο δίνουν ένα ταίριασμα. Η μέγιστη ροή αντιστοιχεί σε μέγιστο ταίριασμα. Χρόνος υπολογισμού : Ford-Fulkerson Hopcroft-Karp, Dinic

Διμερή Ταιριάσματα Διαδρομή Εναλλαγής Οι ακμές της εναλλάσσονται μεταξύ ελεύθερων και ταιριασμένων Αυξητική Διαδρομή Διαδρομή εναλλαγής που ξεκινά από ελεύθερο κόμβο και καταλήγει σε ελεύθερο κόμβο

Ταιριάσματα Ένα γράφημα είναι διμερές αν και μόνο αν δεν έχει κύκλους περιττού μήκους

Ταιριάσματα Ένα γράφημα είναι διμερές αν και μόνο αν δεν έχει κύκλους περιττού μήκους

Ταιριάσματα Οι κύκλοι περιττού μήκους προκαλούν δυσκολία στην εύρεση αυξητικών μονοπατιών

Ταιριάσματα Οι κύκλοι περιττού μήκους προκαλούν δυσκολία στην εύρεση αυξητικών μονοπατιών

Ταιριάσματα Οι κύκλοι περιττού μήκους προκαλούν δυσκολία στην εύρεση αυξητικών μονοπατιών

Ταιριάσματα Οι κύκλοι περιττού μήκους προκαλούν δυσκολία στην εύρεση αυξητικών μονοπατιών Τι μπορεί να συμβεί αν αναζητήσουμε αυξητική διαδρομή από τον παρακάτω γράφημα; στο

Ταιριάσματα διαδρομή εναλλαγής με άρτιο αριθμό ακμών, που ξεκινά από ελεύθερο κόμβο και καταλήγει σε κόμβο κύκλος εναλλαγής με περιττό αριθμό ακμών, που ξεκινά από και καταλήγει στον κόμβο Αλγόριθμος του Edmonds κοτσάνι άνθος βάση του άνθους Μπορούμε να συρρικνώσουμε το άνθος στη βάση του και συνεχίζουμε τον αλγόριθμο στο νέο γράφημα που προκύπτει

Ταιριάσματα διαδρομή εναλλαγής με άρτιο αριθμό ακμών, που ξεκινά από ελεύθερο κόμβο και καταλήγει σε κόμβο κύκλος εναλλαγής με περιττό αριθμό ακμών, που ξεκινά από και καταλήγει στον κόμβο Αλγόριθμος του Edmonds κοτσάνι άνθος βάση του άνθους Μπορούμε να συρρικνώσουμε το άνθος στη βάση του και συνεχίζουμε τον αλγόριθμο στο νέο γράφημα που προκύπτει

Ταιριάσματα διαδρομή εναλλαγής με άρτιο αριθμό ακμών, που ξεκινά από ελεύθερο κόμβο και καταλήγει σε κόμβο κύκλος εναλλαγής με περιττό αριθμό ακμών, που ξεκινά από και καταλήγει στον κόμβο Αλγόριθμος του Edmonds κοτσάνι άνθος βάση του άνθους Μπορούμε να συρρικνώσουμε το άνθος στη βάση του και συνεχίζουμε τον αλγόριθμο στο νέο γράφημα που προκύπτει

Ταιριάσματα διαδρομή εναλλαγής με άρτιο αριθμό ακμών, που ξεκινά από ελεύθερο κόμβο και καταλήγει σε κόμβο κύκλος εναλλαγής με περιττό αριθμό ακμών, που ξεκινά από και καταλήγει στον κόμβο Αλγόριθμος του Edmonds κοτσάνι άνθος βάση του άνθους Θεώρημα Έστω το γράφημα που προκύπτει από το με τη συρρίκνωση ενός άνθους. Τότε το περιέχει αυξητική διαδρομή αν και μόνο αν περιέχει αυξητική διαδρομή το.

Ταιριάσματα Αλγόριθμος του Edmonds Θεώρημα Έστω το γράφημα που προκύπτει από το με τη συρρίκνωση ενός άνθους. Τότε το περιέχει αυξητική διαδρομή αν και μόνο αν περιέχει αυξητική διαδρομή το. Ο αλγόριθμος του Edmonds συρρικνώνει κάθε άνθος που ανακαλύπτει. Ο Edmonds έδωσε μια υλοποίηση του αλγόριθμου με χρόνο εκτέλεσης Οι Micali και Vazirani σχεδίασαν ένα πιο περίπλοκο αλγόριθμο με χρόνο εκτέλεσης Οι Gabow καιtarjan σχεδίασαν ένα διαφορετικό αλγόριθμο που επιτυγχάνει τον ίδιο χρόνο εκτέλεσης

Διμερή Ταιριάσματα Ελάχιστου Κόστους Διμερές Γράφημα Κόστος ακμών Κόστος ταιριάσματος Θέλουμε να βρούμε ένα μέγιστο ταίριασμα ελάχιστου κόστους 2 1 3 4 2 5 3 1 2 1 3 4 2 5 3 1 κόστος = 12 κόστος = 9

Διμερή Ταιριάσματα Ελάχιστου Κόστους Διμερές Γράφημα Κόστος ακμών Κόστος ταιριάσματος Θέλουμε να βρούμε ένα μέγιστο ταίριασμα ελάχιστου κόστους Για απλότητα θα υποθέσουμε ότι υπάρχει τέλειο ταίριασμα, όπου όλοι οι κόμβοι είναι ταιριασμένοι. (Επομένως.) Άρα πρέπει να υπολογίσουμε ένα τέλειο ταίριασμα με ελάχιστο κόστος Θα σχεδιάσουμε ένα αλγόριθμο ο οποίος θα εκτελεί επαναλήψεις. Στη επανάληψη, ο αλγόριθμος υπολογίζει ένα ταίριασμα μεγέθους Για την επαύξηση ενός ταιριάσματος μεγέθους σε ταίριασμα μεγέθους, αναζητούμε ένα αυξητικό μονοπάτι ελάχιστου κόστους.

Διμερή Ταιριάσματα Ελάχιστου Κόστους 2 1 3 4 2 5 3 κόστος ταιριάσματος = 5 1 2 1 3 4 2 5 3 κόστος ταιριάσματος = 9 1 κόστος αυξητικής διαδρομής = 3-1+2 = 4

Διμερή Ταιριάσματα Ελάχιστου Κόστους Η αναζήτηση μπορεί να γίνει στο βοηθητικό υπολειπόμενο δίκτυο -1 1 2 3 4 2 5-3 -1 κόστος ταιριάσματος = 5-2 -3 4 2 5-3 -1 κόστος ταιριάσματος = 9 κόστος αυξητικής διαδρομής = 3-1+2 = 4 Οι ακμές και έχουν κόστος. Αν τότε το έχει την ακμή με κόστος. Διαφορετικά το έχει την ακμή με κόστος.

Διμερή Ταιριάσματα Ελάχιστου Κόστους Η αναζήτηση μπορεί να γίνει στο βοηθητικό υπολειπόμενο δίκτυο 2-1 3 4 2 5-3 -1 κόστος ταιριάσματος = 5-2 1-3 4 2 5-3 -1 κόστος ταιριάσματος = 9 κόστος αυξητικής διαδρομής = 3-1+2 = 4 Έστω ένα ταίριασμα και μια διαδρομή του από το στο. Έστω το ταίριασμα που προκύπτει από την επαύξηση μέσω της. Τότε και

Διμερή Ταιριάσματα Ελάχιστου Κόστους Ζητήματα που πρέπει να εξετάσουμε : (α) Είναι δυνατόν να εμφανιστούν κύκλοι αρνητικού κόστους; (β) Πως μπορούμε να υπολογίσουμε μια αυξητική διαδρομή ελάχιστου κόστους γρήγορα; Θα δείξουμε ότι το (α) δεν μπορεί να συμβεί στη διάρκεια εκτέλεσης του αλγόριθμου. Αυτό μας επιτρέπει για το (β) να χρησιμοποιήσουμε παρόμοια μέθοδο με τον αλγόριθμο ελαφρύτατων διαδρομών του Johnson.

Διμερή Ταιριάσματα Ελάχιστου Κόστους Θεώρημα Έστω ένα τέλειο ταίριασμα. Το είναι τέλειο ταίριασμα ελάχιστου κόστους αν και μόνο αν στο δεν υπάρχουν κύκλοι αρνητικού κόστους. κύκλος κόστος 2-1 3-4 -2-5 3 1

Διμερή Ταιριάσματα Ελάχιστου Κόστους Τιμές Κόμβων Μετατρέπουν τα κόστη των ακμών σε μη αρνητικά. Έτσι μας δίνεται η δυνατότητα να χρησιμοποιήσουμε τον αλγόριθμο του Dijkstra για την εύρεση αυξητικής διαδρομής ελάχιστου κόστους. Τιμές κόμβων Ανηγμένο κόστος Διαισθητική (οικονομική) ερμηνεία : Η ανάθεση της εργασίας στο άτομο συνεπάγεται «κόστος πρόσληψης» του και αποφέρει κέρδος άτομα εργασίες

Διμερή Ταιριάσματα Ελάχιστου Κόστους Τιμές Κόμβων Μετατρέπουν τα κόστη των ακμών σε μη αρνητικά. Έτσι μας δίνεται η δυνατότητα να χρησιμοποιήσουμε τον αλγόριθμο του Dijkstra για την εύρεση αυξητικής διαδρομής ελάχιστου κόστους. Τιμές κόμβων Οι τιμές των κόμβων είναι συμβατές με ένα ταίριασμα εάν Για κάθε ακμή, (άρα ) Για κάθε ελεύθερο κόμβο, Για κάθε ακμή, (άρα )

Διμερή Ταιριάσματα Ελάχιστου Κόστους Ιδιότητα Έστω ταίριασμα με συμβατές τιμές. Τότε, το δίκτυο δεν έχει κύκλους αρνητικού κόστους Έστω κύκλος Έχουμε και Παρατηρούμε ότι, άρα

Διμερή Ταιριάσματα Ελάχιστου Κόστους Ιδιότητα Έστω ταίριασμα με συμβατές τιμές. Τότε, το δίκτυο δεν έχει κύκλους αρνητικού κόστους Απομένει να καθορίσουμε : Πως μεταβάλλονται οι τιμές των κόμβων μετά από κάθε επαύξηση του τρέχοντος ταιριάσματος. Ποιες είναι οι αρχικές τιμές των κόμβων (πριν την πρώτη επαύξηση).

Διμερή Ταιριάσματα Ελάχιστου Κόστους Ενημέρωση των τιμών των κόμβων Έστω ότι οι ακμές και βρίσκονται στη διαδρομή επαύξησης Πριν την επαύξηση : Μετά την επαύξηση : Μπορούμε να βρούμε τις κατάλληλες τιμές των κόμβων μετά την επαύξηση χρησιμοποιώντας τις αποστάσεις (που υπολόγισε ο Dijkstra) από τον

Διμερή Ταιριάσματα Ελάχιστου Κόστους Ενημέρωση των τιμών των κόμβων η απόσταση του κόμβου από τον στο δίκτυο Σε κάθε κόμβο δίνουμε νέα τιμή Ιδιότητα Οι τιμές είναι συμβατές για το ταίριασμα μετά την επαύξηση κατά μήκος διαδρομής ελάχιστου κόστους από τον στον.

Διμερή Ταιριάσματα Ελάχιστου Κόστους Αρχικοποίηση των τιμών των κόμβων Ο αλγόριθμος ξεκινά με το κενό ταίριασμα αναθέσεις δίνουν ένα συμβατό σύνολο τιμών :, επομένως οι ακόλουθες Για κάθε κόμβο θέτουμε Για κάθε κόμβο θέτουμε ελάχιστο κόστος ακμής που εισέρχεται στον