ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ

Σχετικά έγγραφα
ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α

Να αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α

( ) = 2. f x α(x x )(x x ) f x α(x ρ) x1,2. 1, x

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

7. α) Να λύσετε την ανίσωση x 5 <4. β) Αν κάποιος αριθμός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι

β) Αν κάποιος αριθµός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι < α

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α

1. Nα λυθούν οι ανισώσεις. 2. Nα λυθούν οι ανισώσεις. 3. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: 4. Nα βρεθούν οι κοινές λύσεις των ανισώσεων:

Ανισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 /

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας

a = f( x ) =. (Μονάδες 8) 2 = =,από όπου προκύπτει ( υψώνοντας στο τετράγωνο ), x =, επομένως x = 0 x = ή Άσκηση 4679 Δίνεται η συνάρτηση:

4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας

ΕΞΙΣΩΣΕΙΣ - 2 ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ. 9). Να λυθούν οι εξισώσεις :

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση:

4. Ανισώσεις. 4.1 Ανισώσεις 1 ου Βαθμού

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ

ΑΝΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ

2 είναι λύσεις της ανίσωσης 2x2 3x+1<0.

( 2) 1 0,. Αν ρ 1, ρ 2 οι ρίζες της (ε) και

2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Α' Γενικού Λυκείου. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4

(α > β και γ > δ)=> αγ > βδ. τύπο S. άνισες. Δίνεται η συνάρτηση f με τύπο f( χ )= y j x »/ Ç + 3. παρακάτω προτάσεις: ΜΟΝΑΔΕΣ 2x5=10

ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΑΝΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ. i) x 1

ΘΕΜΑΤΑ ΘΕΜΑ 1. α) Να λύσετε την εξίσωση : 2 2 2x. β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : 1 x < α.

ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ

Τάξη A Μάθημα: Άλγεβρα

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ

( 2) 1 0,. Αν ρ 1, ρ 2 οι ρίζες της (ε) και

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ

β=0 Η εξίσωση (λ-2)χ=2λ-4 για λ=2 είναι αδύνατη. Σ Λ Αν η εξίσωση αχ+β=0 έχει δύο διαφορετικές λύσεις τότε είναι αόριστη. Σ Λ

4. Ανισώσεις. 4.1 Ανισώσεις 1 ου Βαθμού

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος

x y z xy yz zx, να αποδείξετε ότι x=y=z.

Άλγεβρα Α Λυκείου. Επαναληπτικά θέματα από διαγωνίσματα ΟΕΦΕ Πραγματικοί αριθμοί

5.ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ

β) Να αποδείξετε ότι η παραπάνω εξίσωση έχει ρίζες πραγματικές για κάθε R. Μονάδες 8 γ) Αν x

τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι:

ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ ΕΠΙΛΥΣΗ ΑΝΙΣΩΣΕΩΝ 2 ου ΒΑΜΟΥ

Σας εύχομαι καλή μελέτη και επιτυχία.

2.1 Πολυώνυμα. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα; 3 2 ii. x iii. 3 iv. vi.

α έχει μοναδική λύση την x α

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» stvrentzou@gmail.com

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.

4.1 ΑΝΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος

1, 2, Β 3, 2,λ. 7, να 2 βρείτε την τιμή του k. x x y y Α)Να βρείτε τις τιμές των x,y για τις οποίες ορίζεται η παράσταση. Β)Να αποδείξετε ότι Α=-1

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 4 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού

) = 0. Λύσεις/Ρίζες της εξίσωσης. Ακριβώς δύο άνισες πραγματικές λύσεις, τις: Η εξίσωση δεν έχει πραγματικές λύσεις

Θέματα. Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες)

4.3. ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΑΝΙΣΩΣΕΙΣ

Α. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε.

Ανισώσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 17 σελίδες. εκδόσεις. Καλό πήξιμο

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΘΕΜΑ 2 Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3()

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός

ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω.

1 η δεκάδα θεµάτων επανάληψης

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

Αριθμοί. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 28 σελίδες. εκδόσεις. Καλό πήξιμο

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

4.3 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

Εξισώσεις-Ανισώσεις. Δείκτες επιτυχίας: Τι θα μάθουμε: Περιεχόμενα Ενότητας. Αναπαριστούν γραφικά τη συνάρτηση

ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Πολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

2 3x 4 0, να υπολογίσετε χωρίς να λύσετε την

ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΣΧΟΛ. ΧΡΟΝΙΑ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Α ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΑΣΚΗΣΕΙΣ και ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ

Πολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 2 0 / 7 /

Εξισώσεις πρώτου βαθμού

ΑΠΟΛΥΤΗ ΤΙΜΗ ΠΡΑΓΜΑΤΙΚΟΥ ΑΡΙΘΜΟΥ- ΑΣΚΗΣΕΙΣ

25 Λυμένα 2 α θέματα Άλγεβρας από την Τράπεζα Θεμάτων. 1 ο GI_A_ALG_2_999

6. α) Να λύσετε την εξίσωση 2x 1 =3. β) Αν α, β με α< β είναι οι ρίζες της εξίσωσης του ερωτήματος (α), τότε να λύσετε την εξίσωση αx 2 +βx+3=0.

ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

2.3 Πολυωνυμικές Εξισώσεις

3. α) Να λύσετε την εξίσωση x 2 = 3. β) Να σχηματίσετε εξίσωση δευτέρου βαθμού με ρίζες, τις ρίζες της εξίσωσης του α) ερωτήματος.

ΘΕΜΑ 4. Δίνεται η εξίσωση. α) Να βρείτε την τιμή του λ ώστε η εξίσωση να είναι 1 ου βαθμού. (Μονάδες 5)

β) Αν επιπλέον το υπόλοιπο της διαίρεσης είναι υ(x) = - 3x + 5, τότε να βρείτε το Δ(x). (Απ. α) 5 ος β) Δ(x) = x 5 5x 4 + 6x 3 + 4x 2 11x + 5)

Ανισώσεις Γινόμενο και Ανισώσεις Πηλίκο

β. Να βρείτε την πιθανότητα πραγματοποίησης καθενός από τα δύο ενδεχόμενα του ερωτήματος α).

Qwertyuiopasdfghjklzxcvbnmq. wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty. uiopasdfghjklzxcvbnmqwertyui

( f( )) ( f( )) 0. f( ) f( ) 0 θέτουμε αντίστοιχα. ΕΞΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ. 2. Μορφή 0 με 0. Λύση: Λύση: 3. Μορφή Λύση: Βρίσκουμε,,

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 6 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

1. Το πολυώνυµο P (x) = 3 (x - 1) 2-3x είναι Α. µηδενικού βαθµού Β. πρώτου βαθµού Γ. δευτέρου βαθµού. το µηδενικό πολυώνυµο Ε.

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ

Transcript:

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ ΘΕΜΑ 1 Ο Δίνεται η συνάρτηση f ( x) x ( 1) x 3 με 0 Γ1. Να λυθεί η εξίσωση f ( x) 0 για λ = -1 Γ. Για λ=3, να λυθεί η ανίσωση f ( x) 0 Γ3. Να αποδείξετε ότι στην εξίσωση f ( x) 0, η διακρίνουσα είναι η Δ= 4λ+4 Γ4. Να βρείτε για ποια τιμή του λ ισχύει ότι x1 x x1 x ΘΕΜΑ ο Έστω η εξίσωση x +βx+6=0 α) Αν το είναι ρίζα της εξίσωσης, να βρεθεί το β. β) Για β=-5 i) Να λύσετε την εξίσωση x +βx+6=0. ii) Να παραγοντοποιήσετε το τριώνυμο x +βx+6. iii) Να λύσετε την ανίσωση x +βx+6 0 ΘΕΜΑ 3 ο Δίνονται οι ανισώσεις x 1 5 (1) και x + x 1 < 0 () Α. Να λύσετε την ανίσωση (1) Β. Να λύσετε την ανίσωση () Γ. Κατόπιν να βρείτε τις κοινές λύσεις των (1) και () και να τις γράψετε σε μορφή συνόλων. ΘΕΜΑ 4 Ο Δίνεται το τριώνυμο χ - αχ + β, όπου α= 100-36 και β = 9-8 +. α) Να αποδείξετε ότι α = 4 και β = 3. Για α = 4 και β = 3, β) Να λύσετε την εξίσωση χ - αχ + β = 0 γ) Να λύσετε την ανίσωση χ - αχ + β> 3 1

ΘΕΜΑ 5 Ο Δίνεται η εξίσωση χ +λχ -8 =0 α) Να δείξετε ότι η εξίσωση έχει πραγματικές ρίζες για κάθε λr. β) Αν η μία ρίζα της εξίσωσης ισούται με το τετράγωνο της άλλης, να βρείτε τις ρίζες και την τιμή του λ. γ) Αν 4S = P, να βρείτε την τιμή του λ. δ) Για λ = 1, να κατασκευάσετε μια εξίσωση δευτέρου βαθμού με ρίζες διπλάσιες της αρχικής. ΘΕΜΑ 6 Δίνεται η εξίσωση: με. Α) Να αποδείξετε ότι για κάθε τιμή του λ η εξίσωση έχει δυο πραγματικές και άνισες ρίζες. Β) Αν είναι οι ρίζες της παραπάνω εξίσωσης τότε να βρεθούν οι τιμές του λ ώστε να ισχύει: α). β). ΘΕΜΑ 7 ο Δίνεται η συνάρτηση f(x) = x (κ 5)x (κ 5), όπου κir. Δ1. Να αποδείξετε ότι η διακρίνουσα της εξίσωσης f(x) = 0 είναι ίση με Δ = 4(κ 3)(κ 5). Δ. Να βρείτε για ποιες τιμές του κir η εξίσωση f(x) = 0 έχει δύο πραγματικές και άνισες ρίζες. Δ3. Αν x 1, x είναι οι άνισες ρίζες της εξίσωσης f(x) = 0, να λύσετε ως προς κ την εξίσωση: 16(x 1 x ) 4 5(x 1 + x ) + 4 = 0. Δ4. Να βρείτε για ποιες τιμές του κir ισχύει: f(x) f(x) = 0, για κάθε πραγματικό αριθμό x. ΘΕΜΑ 8 Ο Δίνεται το φ(χ)=-χ +3χ-3 α) Ν.δ.ο. φ(χ)<0 για κάθε χεr β) Να λυθεί η ανίσωση x x x 3 3 3

ΘΕΜΑ 9 Ο Δίνεται η εξίσωση x x 3 1 0 (1) α) Να βρείτε τις τιμές του λ ώστε η (1) να έχει πραγματικές ρίζες β)αν χ 1,χ οι ρίζες της (1) και ισχύει χ 1 =χ,να βρείτε τις ρίζες ΘΕΜΑ 10 Ο Έστω το φ(χ)=-3χ +9χ-6 α) Να λυθεί εξίσωση φ(χ)=0 β) Να βάλετε το κατάλληλο σύμβολο <, >, == στα παρακάτω με αιτιολόγηση σε κάθε περίπτωση φ(004).0 ( )...0 γ) Να λυθεί η ανίσωση φ(χ).(χ+3) 0 004 ( )...0 φ(1)..0 00 ΘΕΜΑ 11 Ο Έστω Α(χ) = χ +6χ+9 και Β(χ) = -χ -7χ-1 Α) Να γίνουν γινόμενα τα Α(χ) και Β(χ) Β) Αν ( x) f ( x) ( x) Γ) Να λυθεί η ανίσωση ( x) 008 Δ) Να λυθεί η ανίσωση f ( x) 0 να βρεθεί το πεδίο ορισμού της και να απλοποιηθεί ο τύπος της ΘΕΜΑ 1 Ο Έστω η εξίσωση χ -(λ -3λ)χ-λ+1=0 (1). Να βρείτε το λ ώστε: Α) η (1) να έχει δύο ρίζες ετερόσημες Β) μία ρίζα της (1) να είναι 0 αριθμός - Γ) αν χ 1,χ οι ρίζες της (1) να ισχύει: 1 1 x x 1 1 3

ΘΕΜΑ 13 Ο Δίνεται η εξίσωση χ +χ-κ =0 (1),κεR Ν.δ.ο.η (1) έχει δύο πραγματικές ρίζες για κάθε τιμή του κ Αν ρ 1, ρ οι ρίζες της (1) τότε: Ν.δ.ο. ρ 1 + ρ = -1 και ρ 1.ρ = -κ και να βρείτε το αν ρ 1 (κ+ρ )+κρ >-6 ΘΕΜΑ 14 Ο Δίνεται το τριώνυμο f(x)=x +5x-3 1. Να λυθεί η ανίσωση f(x)<0. Aν χε(-3,1/) να λυθεί η εξίσωση x 7 f ( x) 0 (x 6) f ( x) 3. Αν χ<-3 να απλοποιήσετε το κλάσμα ( x 9)(1 x) ΘΕΜΑ 15 Ο Δίνεται η συνάρτηση f(x)=(λ+)χ -5λχ - με Α) Αν λ=1 : να λυθεί η ανισότητα f ( x) 0 και να βρείτε τα πρόσημα των f(-),f(-/3), f(5/), f (1/ ) Β) Αν χ 1, χ οι ρίζες της f(x)=0 και S, P το άθροισμα και το γινόμενό τους τότε: 1. Ν.δ.ο. (S- χ 1 )(S- χ )=P. Να βρεθούν οι τιμές του λ ώστε να ισχύει : (S- χ 1 )(S- χ )= S ΘΕΜΑ 16 Ο f x 1 x 1 x με 1. Δίνεται το τριώνυμο Δ1. Να βρείτε το πλήθος των ριζών της εξίσωσης f(x) =0 για τις διάφορες τιμές του R. Δ.Αν η εξίσωση 0 x1 x 1 x1 x 5 6. Δ3. Για 0 f x έχει δυο ρίζες x1, x, να απλοποιηθεί η παράσταση, να λυθεί η ανίσωση f x x 1 0 4

ΘΕΜΑ 17 Ο Δίνεται η συνάρτηση f x x 1 x 1 ( ) ( ),. 010f( x) Α. Αν λ=0, να βρείτε για ποιες τιμές του x ορίζεται το κλάσμα : Κ(x)=, και στη x 9x 5 συνέχεια να το απλοποιήσετε. Β. Έστω 0. Να δείξετε ότι αν η εξίσωση f( x) 0 έχει δύο ρίζες πραγματικές και άνισες,τότε 1. Γ. α)αν 0 και 1,να υπολογίσετε το άθροισμα και το γινόμενο των ριζών της f( x) 0 ως συνάρτηση του λ. β) Αν x1, x x1 x είναι οι ρίζες της εξίσωσης f( x) 0, να βρείτε για ποιες τιμές του 0, ισχύει : x1 x x 1x 0. 5