ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ελευθερίου Β. Χρυσούλα. Επιβλέπων: Νικόλαος Καραμπετάκης Καθηγητής Α.Π.Θ.

Σχετικά έγγραφα
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΑΣ

Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

Ax = b. 7x = 21. x = 21 7 = 3.

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ

ΣΕΙΣΜΟΣ & ΑΝΤΙΣΕΙΣΜΙΚΗ ΠΡΟΣΤΑΣΙΑ ΣΤΟ ΣΧΟΛΙΚΟ ΧΩΡΟ ΣΤΟ ΠΛΑΙΣΙΟ ΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΓΙΑ ΤΗΝ ΑΕΙΦΟΡΟ ΑΝΑΠΤΥΞΗ

ITU-R P (2009/10)

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

rs r r â t át r st tíst Ó P ã t r r r â

ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο

Ο ΗΓΙΕΣ ΣΥΓΓΡΑΦΗΣ ΙΑΤΡΙΒΩΝ & ΙΠΛΩΜΑΤΙΚΩΝ

Κλασσική Θεωρία Ελέγχου

P P Ô. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t

ο3 3 gs ftffg «5.s LS ό b a. L Μ κ5 =5 5 to w *! .., TJ ο C5 κ .2 '! "c? to C φ io -Ρ (Μ 3 Β Φ Ι <^ ϊ bcp Γί~ eg «to ιο pq ΛΛ g Ό & > I " CD β U3

A hybrid PSTD/DG method to solve the linearized Euler equations

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

ITU-R P (2012/02) &' (

ΟΙΚΟΝΟΜΟΤΕΧΝΙΚΗ ΑΝΑΛΥΣΗ ΕΝΟΣ ΕΝΕΡΓΕΙΑΚΑ ΑΥΤΟΝΟΜΟΥ ΝΗΣΙΟΥ ΜΕ Α.Π.Ε

ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t

Mesh Parameterization: Theory and Practice

Alterazioni del sistema cardiovascolare nel volo spaziale

March 14, ( ) March 14, / 52


Ηλεκτρονικός οδηγός για τους φοιτητές ενός Α.Ε.Ι.

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ

Jeux d inondation dans les graphes

ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΠΡΟΕΝΙΣΧΥΤΗ ΜΟΥΣΙΚΩΝ ΟΡΓΑΝΩΝ ΜΕ ΔΥΝΑΤΟΤΗΤΑ ΕΦΕ

9.BbF`2iBbB2`mM; A,.Bz2`2Mx2Mp2`7?`2M 7Ƀ` T `ib2hh2.bz2`2mib H;H2B+?mM;2M 8.BbF`2iBbB2`mM; AA, 6BMBi2 1H2K2Mi2 o2`7?`2m

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

! "#$ %#&'()* ## # '$ $ +, -# * +./ 0$ # " )"1.0229:3682:;;8)< &.= A = D"# '$ $ A 6 A BE C A >? D

(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X


Analysis of a discrete element method and coupling with a compressible fluid flow method


f a o gy s m a l nalg d co h n to h e y o m ia lalg e br coh the oogy lagebr


!"#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667

Κλασσική Θεωρία Ελέγχου

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2013 ιδάσκων : Π.

E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets

κ α ι θ έ λ ω ν α μ ά θ ω...


The q-commutators of braided groups


ITU-R P (2012/02)

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ

Ανάπτυξη διαδικτυακής διαδραστικής εκπαιδευτικής εφαρμογής σε λειτουργικό σύστημα Android

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

( [T]. , s 1 a as 1 [T] (derived category) Gelfand Manin [GM1] Chapter III, [GM2] Chapter 4. [I] XI ). Gelfand Manin [GM1]

þÿ ±½Äµ», ¹º» ½± Neapolis University þÿ À¹ÃÄ ¼Î½, ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å


Κλασσική Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

381 Κ.Δ.Π. 124/77. ir = > > ^ dodo" CL. g ω. (χωρ.) 1/42 (χωρ.,ν. 1/38 (χωρ.) > (χωρ) < β ><ΧΧΧΧΧ «XX. χχχχχχυχχ. χχχχχχ»χχ. I >d < 3. ΙΊ d" 'ο.

Ε.Ε. Παρ. 1(H) Αρ. 3496, Ν. 33(IIV2001

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s

program Inner-Product-1 declare m: integer initially assign end 0..P 1 p program Vector-Sum-4 declare i: integer;

Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes

(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n

ΚEΦΑΛΑΙΟ 1. Πίνακες. Από τα παραπάνω γίνεται αντιληπτό ότι κάθε γραµµή και στήλη ενός πίνακα A ορίζει µονοσήµαντα τη θέση κάθε στοιχείου A

P r s r r t. tr t. r P


Consommation marchande et contraintes non monétaires au Canada ( )

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis

Κλασσική Θεωρία Ελέγχου

Logique et Interaction : une Étude Sémantique de la


Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Μοντέρνα Θεωρία Ελέγχου

Forêts aléatoires : aspects théoriques, sélection de variables et applications


Μοντέρνα Θεωρία Ελέγχου

Αφιερώνεται στα παιδιά μας Σπυριδούλα, Αχιλλέα και Αναστασία

Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat

Σύστημα ψηφιακής επεξεργασίας ακουστικών σημάτων με χρήση προγραμματιζόμενων διατάξεων πυλών. Πτυχιακή Εργασία. Φοιτητής: ΤΣΟΥΛΑΣ ΧΡΗΣΤΟΣ

3607 Ν. 7.28/88. E.E., Παρ. I, Αρ. 2371,

!"#! $%&'$% %(' ') '#*#(& ( #'##+,-'!$%(' & ('##$%(' &#' & ('##$%('. )!#)! ##%' " (&! #!$"/001

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

Ενότητα 6: Ακρότατα συναρτησιακών διανυσματικών συναρτήσεων. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

La naissance de la cohomologie des groupes


ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 2013 ΣΗΜΕΙΩΣΕΙΣ

ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ. ΤΜΗΜΑ ΠΜΣ.. ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Ο ΤΙΤΛΟΣ ΤΗΣ ΜΕΤΑΠΤΥΧΙΑΚΗΣ ΕΡΓΑΣΙΑΣ ΜΕ ΚΕΦΑΛΑΙΑ ΓΡΑΜΜΑΤΑ ΚΑΙ ΣΤΟΙΧΙΣΗ ΣΤΟ ΚΕΝΤΡΟ

2x 1 + x 2 x 3 + x 4 = 1. 3x 1 x 2 x 3 +2x 4 = 3 x 1 +2x 2 +6x 3 x 4 = 4

سال چهارم آموزش متوسطه رشته ی ریاضی و فیزیک

Προηγμένος έλεγχος ηλεκτρικών μηχανών

ΑΣΚΗΣΗ 8. έκδοση DΥΝI-EXC b

ΣΤΑΥΡΟΥ. ΒΟΛΟΓΙΑΝΝΙ Η ΑΛΓΕΒΡΟ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ ΣΤΗ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ Υπο λήθηκε στο Τµήµα Μαθηµατικών, Τοµέας Επιστή

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 22.

... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK

E.E., Παρ. I, 729 Ν. 17/91 Αρ. 2576,

1134 Ν. 8(ΙΙ)/2001. E.E. Παρ. 1(H) Αρ. 3475,

"!$#&%('*),+.- /,0 +/.1),032 #4)5/ /.0 )80/ 9,: A B C <ED<8;=F >.<,G H I JD<8KA C B <=L&F8>.< >.: M <8G H I

Transcript:

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΕΛΕΓΧΟΥ Αναγνώριση συστημάτων με δεδομένη συνεχή και κρουστική συμπεριφορά ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Ελευθερίου Β. Χρυσούλα Επιβλέπων: Νικόλαος Καραμπετάκης Καθηγητής Α.Π.Θ. Θεσσαλονίκη, εκέμβριος 24

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΕΛΕΓΧΟΥ Αναγνώριση συστημάτων με δεδομένη συνεχή και κρουστική συμπεριφορά ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Ελευθερίου Β. Χρυσούλα Επιβλέπων: Νικόλαος Καραμπετάκης Καθηγητής Α.Π.Θ. Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την η εκεμβρίου 24. Ν. Καραμπετάκης E. Αντωνίου Ο. Κοσμίδου Καθηγητής Α.Π.Θ. Επικ. Καθηγητής Α.Τ.Ε.Ι.Θ. Αναπλ. Καθηγήτρια.Π.Θ.

.. Ελευθερίου Β. Χρυσούλα Πτυχιούχος Μαθηματικός Α.Π.Θ. Copyright Ελευθερίου Β. Χρυσούλα, 24. Με επιφύλαξη παντός δικαιώματος. All rights reserved. Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα. Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευτεί ότι εκφράζουν τις επίσημες θέσεις του Α.Π.Θ.

A(ρ)β(t) = ρ := d dt C

A(ρ)β(t) = ρ := d dt C

m n A =[a ij ] [a ij ] A(s) =[a ij (s)] a ij (s) R A(s) R m,n [s] A ν = ( aij) ν i =, 2,..., m j =, 2,..., n ν =,,..., k A(s) =A + A s +... + A k s k + A k s k A k A(s) s A(s) R p m [s] R [s] R A i R p m i =,,..., k p, m k A(s)

A(s) A(s) (A(s)) A(s) R p p [s] rank R A k = p ± A(s) R p p [s] A(s) R p p [s] A(s) A(s) =I p A(s) c r (A) (c c (A)) A(s) R p m [s] ranka(s) =p ranka(s) =m c r (A) c c (A) (A(s)) A(s) R p m [s]

A(s) i A(s) R i A(s) t(s) R[s] j A(s) A(s) R p m [s] I p (I m ) i, j A(s) i j i a

i a i A(s) j t(s) i t(s) j j i

A(s),B(s) R p m [s] U L (s) R p p [s] U R (s) R m m A(s) =U L (s)b(s)u R (s) U L (s) R p p [s] A(s) =U L (s)b(s) U R (s) R m m A(s) =B(s)U R (s) p m A(s) R p m [s] I P A(s)I m = A(s) A(s),B(s) R p m [s] U L (s) R p p [s] U R (s) R m m [s] U L (s)a(s)u R (s) =B(s) U L A(s)U R (s) =U L A(s) =U (s)b(s)u (s) L (s)u L(s)A(s)U R (s) =U (s)b(s) (s)b(s) A(s)U R(s)U (s) =U (s)b(s)u (s) R R L L R

U L (s) Rp p [s],,u R (s) Rm m [s] A(s),B(s) R p m [s] U L (s) R p p [s] U R (s) R m m [s] B(s),C(s) R p m [s] U L(s) R p p [s] U R(s) R m m [s] U L (s)a(s)u R (s) =B(s) U L(s)B(s)U R(s) =C(s) U L(s)B(s)U R (s) =C(s) U L (s)u L (s)b(s)u R(s) =U L (s)c(s) B(s)U R(s)U R (s) =U L (s)c(s)u R (s) B(s) =U L (s)c(s)u R (s) U L (s)a(s)u R (s) =B(s) U L (s)a(s)u R (s) =U L (s)c(s)u R (s) A(s) =U L (s)u L (s)c(s)u R (s)u R (s) A(s) =[U L(s)U L (s)] C(s)[U R (s)u R(s)] [U L(s)U L (s)] R p p [s] [U R (s)u R(s)] R m m [s] U L (s),u L(s),U R (s),u R(s)

A(s) R p m [s] rank R(s) A(s) =r r {p, m} A(s) S C A(s) (s) Rp m [s] S C A(s)(s) =block[diag { ε (s),ε 2 (s),ε 3 (s),..., ε r (s), p r, m r } ] C A(s) ε i (s) R [s] ε i (s) ε i+ (s) i r a ij A(s) a (s) A(s) a i (s) a j (s) a (s) a i (s) =a (s)q i (s)+r i (s),α j (s) =a (s)q j (s)+r j (s) i =, 2, 3,..., p j =, 2, 3,..., m

r i (s),r j (s) r j (s) j q j (s) a j (s) r j (s) a (s) s r 2,..., r 2p,r 2,..., r m i q i (s) j q j (s) a (s) a 22 (s) a 2m (s) a p2 (s) a pm (s) a ij (s),i=2, 3,..., p j =2, 3,..., m a (s) a (s) a (s)

ε (s) b 22 (s) b 2m (s) b p2 (s) b pm (s) b ij (s) ε (s) b ij (s) i =2,..., p j =2,..., m ε (s) ε 2 (s) c 33 (s) c 3m (s) c p3 (s) c pm (s) ε 2 (s) ε (s) c ij (s),i=3,..., p, j = 3,..., m ε 2 (s) ε (s) ε 2 (s) ε r (s) r < {p, m}

r ε i (s) A(s) ε i (s) ε i+ (s) i r ε i (s) ε i (s) = Δ i(s) Δ i (s),i=,..., r Δ (s) =, Δ i (s) = i i A(s) Δ i (s) A(s) A(s) λ s C ε i (s) i r λ s,s =,..., ν A(s) ε i (s) ε i (s) = ν s= m is (s λ s ) (s λ s ) m is m s m 2s... m rs,s=,..., ν A(s) λ s s + A(s) = s + R 2 2 [s] (s +2) 2 A(s) a = s +

a 2 (s) a 2 (s) a (s) a 2 (s) =a (s)q 2 (s)+=(s +) + 2 q 2 (s) s + s + = s + (s +2) 2 (s +2) 2 } {{ } V a 22 (s) a (s) (s +2) 2 = s 2 +4s +4=(s +)(s +3)+ 2 s +3 s + = s + (s +3) (s +2) 2 (s +)(s +3) (s +2) 2 } {{ } U 2 s + = s + s + (s +)(s +3) (s +2) 2 (s +)(s +3) } {{ } V 2 s + s + s + = s + (s +)(s +3) (s +)(s +3) } {{ } V 3

s + s + = (s +)(s +3) (s +)(s +3) s + s + } {{ } U 2 2 s +2 (s +)(s +3) = (s +)(s +3) (s +) s + s + (s +)(s +2) 2 } {{ } U 3 2 (s +)(s +3) (s +)(s +3) (s +)(s +3) = (s +)(s +2) 2 (s +)(s +2) 2 } {{ } V 4 U L (s) =U 3 (s)u 2 (s)u (s) = = (s +3) (s +) } {{ }} {{ }} {{ } U 3 U 2 U (s +) = (s +2) 2 (s +3)

U R (s) =V (s)v 2 (s)v 3 (s)v 4 (s) = = (s +)(s +3) (s +)(s +3) = } {{ }} {{ }} {{ }} {{ } V V 2 V 3 V 4 SA(s)(s) C =U L (s)a(s)u R (s) = (s +3) = s + s + = (s +2) 2 (s +) (s +2) 2 (s +)(s +3) (s +)(s +2) 2 (C λ R r n,j λ R n n ) J λ λ λ λ J λ = λ λ λ (C λ,j λ ) A(s) λ A(s) λ n

C λ C λ J λ rank = n C λ J n λ A k C λ J k λ +... + A C λ J λ + A C λ = λ i =,..., j (C λi R r n i,j λi R n i n i ) A(s) C = ( ) C λ,c λ2,..., C λj J = blockdiag (J,J 2..., J j ) n = n + n 2 +... + n j (C λ,j λ ) A(s) s + A(s) = s + R 2 2 [s] (s +2) 2 A(s) = s 2 + s + 4 4 } {{ } } {{ } } {{ } A 2 A A C =,J = 2 2 A(s) =(s +)(s +2) 2 2 A(s)

rank C CJ 2 = =2 2 2 A 2 CJ 2 + A CJ + A C = 2,2 A(s) R r r [s] l C λ,λ 2..., λ l SA(s)(s) C =diag,,,...,,f }{{} k (s),f k+ (s),..., f r (s) k A(s) C k r f i (s) R [s] A(s) f j (s) f j+ (s) j = k, k +,..., r f k (s),..., f r (s) f k (s) =(s λ ) σ k (s λ 2 ) σ 2k...(s λ l ) σ lk f k+ (s) =(s λ ) σ k+ (s λ 2 ) σ 2k+...(s λ l ) σ lk+ f r (s) =(s λ ) σ r (s λ 2 ) σ 2r...(s λ l ) σ lr σ ik σ ik+... σ ir,i =, 2,..., l f j (s) = (s λ i ) σ ij f j (s),j = k, k +,..., r f j (s) (s λ i ) σ ij A(s) s = λ i [ r ] n := f j (s) = j=k l r i=j j=k σ ij

n U L (s),u R (s) U L (s) A (s) U R (s) =S C A(s) u j (s) R r [s] j = k, k +,..., r U R (s) u q j (s) :=( ) d q ds q uj (s) f j (s) j = k, k +,..., r β i jq := q! u(q) j (λ i ) j = k, k +,..., r q =,,..., σ ij λ i C, i l A(s) σ ik σ ik+... σ ir i l j = k, k +,..., r β i j,β i j,..., β i jσ ij λ i A(s) σ ij C ij := ( ) βj,β i j, i..., βjσ i ij 2,βjσ i ij R r σ ij λ i λ i J ij := λ i λ i

i l j = k, k +,..., r C ij J ij C i := (C ik,c ik+,..., C ir ) R r m i J i := (J ik,j ik+,..., J ir ) R m i m i m i := σ ik + σ ik+ +... + σ ir A(s) C := (C,C 2,..., C l ) R r n J := blockdiag (J,J 2,..., J l ) R n n [ r ] n := m + m 2 +... + m l = f j (s) = j=k l r i= j=k σ ij s + A(s) = s + (s +2) 2 A(s) A(s) S C A(s)(s) =U L (s) A (s) U R (s)

(s +3) s + s + = +(s +)(s +3) (s +) (s +2) 2 (s +)(s +3) = (s +)(s +2) 2 λ =,λ 2 = 2 l =2 SA(s) C (s) k =2 k =2=r j = k, k +,..., r j 2 σ ij i l =2 σ 2,σ 22 σ 2 =,σ 22 =2 n =2+=3 βjq i := q! u(q) j (λ i ) q =,..., σ ij U R (s) = = (s +)(s +3) ( u (s) ) u 2 (s) u (s) = u 2 (s) = (s +)(s +3) β2,β 2,β 2 2 2 β2 = u 2 ( ) =,β2 2 = u 2 ( 2) =,β2 2 = u 2 ( 2) = C 2 =(β 2),C 22 =(β 2 2,β 2 22)

σ 2 =,σ 22 =2 J 2 =( ),J 22 = 2 2 A(s) C =(C 2,C 22 )= J = blockdiag (J 2,J 22 )= 2 2

A (ρ) β (t) =,t A (ρ) ρ := d dt A (ρ) R r r [s] β (t) :(, ) R r β (t) β (q) ( ) =β (q) (+) = β (q) (),q =,, 2 β (q) (t) q β (t) t A (ρ) =A + A ρ +... + A k ρ k + A k ρ k A i R r r,i=,,..., k β ( ),β () ( ),..., β (k ) ( ) β (t), 2,..., k t = λ C

A (ρ) A (ρ) = [ t μ β (t) = μ! β + tμ (μ )! β +... + t ]! β μ + β μ e λ t β i C, i =,,..., μ, β β (t) A (λ ) β = A () (λ ) β + A (λ ) β = μ! A(μ) (λ ) β + (μ )! A(μ ) (λ ) β +... + A () (λ ) β μ + A (λ ) β μ = β,β,..., β μ A (ρ) λ C β R r,β λ C A (ρ) β,..., β μ λ C A (ρ) β (t) μ> β,β,..., β μ

β β,β β,β,..., β μ, 2,..., μ λ C A (ρ) β j (t),j =,,..., μ β j (t) =[ρi r λ I r ] j β (t) = [ t μ j (μ j)! β t μ j + (μ j )! β +... + t ]! β μ j + β μ j β j (t) {β μ (t),β μ (t),..., β (t),β (t)} e λ t [β μ (t),β μ (t),..., β (t) β (t)] = t t μ! (μ )! t μ 2 (μ 2)! [β,β,..., β μ,β μ ] t! t μ μ! t μ (μ )! e λ t

Ψ(t) :=[β μ (t),β μ (t),..., β (t) β (t)] C := [β,β,..., β μ,β μ ] R r (μ+) λ λ λ J := R (μ+) (μ+) λ λ Ψ=Ce Jt t t μ! (μ )! t μ 2 (μ 2)! e Jt = t! t μ μ! t μ (μ )! A(s) SA(s) C (s) A(s) A(s)

[ βjq i t σ ij q t σ ij 2 q := (σ ij q)! βi j + (σ ij 2 q)! βi j +... + t ]! βi j,σ ij 2 q + βj,σ i ij q e λ it i l, j = k, k +,..., r, q =,,..., σ ij [ ] Ψ ij (t) := βj,σ i ij (t),βj,σ i ij 2 (t),..., βj i (t),βj i (t) [ ] C ij := βj,β i j, i..., βj,σ i ij R r σ ij i l, j = k, k +,..., r λ i λ i λ i J ij := R σ ij σ ij λ i λ i λ i Ψ i (t) :=[Ψ ik (t), Ψ i,k+ (t),..., Ψ ir (t)] C i := [C ik,c i,k+,..., C ir ] R r m i J i := blockdiag [J ik,j i,k+,..., J ir ] R m i m i m i = σ ik + σ i,k+ +... + σ ir

Ψ:=[Ψ (t), Ψ 2 (t),..., Ψ l (t)] C := [C,C 2,..., C l ] R r n J := blockdiag [J,J 2,..., J l ] R n n [ r ] n := m + m 2 +... + m l = f j (s) = S C A(s) = A(s) j=k Ψ Ψ X A (ρ) β (t) =,t s + s + A(s) = R 2 2 [s] (s +2) 2, 2 Ψ=Ce Jt e t J = blockdiag (J 2,J 22 )= 2 ejt = e 2t te 2t 2 e 2t

C =(C 2,C 22 )= Ψ=Ce Jt = e t e 2t te 2t = e t e 2t te 2t e 2t te 2t e 2t A (ρ) β (t) =,t B C = e t, e 2t e 2t, te 2t te 2t β (t)+ β 2 (t) = β (t) β 2 (t) = β 2 (t) t β (t) =[β (t),β 2 (t)] ρ ρ + ρ3 β (t) = A (ρ) β (t) = ρ + β 2 (t) SA(s) C A(s) = s + s3 s +

s + s3 (s2 s +) = s + s + s + }{{} s + = s + s + (s +) }{{} V 2 s + = s + (s +) (s +) } {{ } V 3 V s + = s + s + (s +) (s +) 2 }{{} U s + (s +) = (s +) 2 (s +) 2 } {{ } V 4 U R (s) =V V 2 V 3 V 4 = s2 s + s 3 s + U L (s) =U = s +

SA(s)(s) C = (s +) 2 λ =,l =,j = k, k +,..., r =2=r σ 2 =2,n=2,q =, u 2 (s) = s3 s + βjq i = { } β2,β 2 2 βjq i = q! u(q) j (λ i ) β2 = u 2 ( ) =,β22 = u () 2 ( ) = 3 C 2 =(β2,β 22) =C = C J 2 = = J = J

Ψ=Ce Jt = 3 e t = 3 e t te t = e t e t (t 3) e t e t B C = e t (t 3) e t, = (t 3) e t, e t e t

A(s) =A + A s +... + A k s k + A k s k A i R r r,i=,,..., k,a k rank R(s) A(s) =r ( ) A (s) =s k A = A k + A k s +... + A s k + A s k R r r [s] s SA(s) (s) A(s) R r r [s] s = {}}{ U L (s) A (s) U R (s) =SA(s) = blockdiag s q,..., s q k,i }{{} ν κ,,..., sˆq ν+ sˆq r }{{} k r ν ν r, q q 2... q k, < ˆq ν+ <... < ˆq r U L (s),u R (s) R r r [s] q i, (ˆq i ) A(s) s = ˆq := r i=ν+ ˆq i A(s) A(s) ν

à (s) s = A (s) à (s) s = S C (s) à (s) Ã(s) S (s) s = Ã(s) SA(s) (s) s = S Ã(s) (s) =diag [sμ,s μ 2,..., s μ j ],μ j >,j =, 2,..., r s =S (s) Ã(s) S A(s) (s) SA(s) (s) =s q S Ã(s) ( ) ( S = Ã(s) s s ),q = k ( s ) q SA(s) (s) ( ) Ũ L (s) =U L s ( ) Ũ R (s) =U R s A (s) s μ j,j =2, 3,..., r μ j := q q j >,j =2, 3,..., k μ j := q +ˆq j >,j = ν +,ν+2,..., r

q i,i=, 2,..., k A(s) s = μ j,j =2, 3,..., k s = j = μ j = ˆq i,i = ν +,ν +2,..., r s = μ j,j = ν +,ν +2,...r s = A(s) A (s) = s s2 + s + R 2 2 [s] s SA(s) (s) A (s) + Ã (s) =s 2 + s s 2 s = s s2 + s + s 2 s s 2 s S C (s) Ã (s) Ã(s)

s s2 + s + = s s2 + s + s s 2 s s 2 s 3 }{{}}{{}}{{} U Ã(s) Ã (s) s s2 + s + (s +) = s s 3 s 3 }{{}}{{}}{{} Ã (s) V Ã 2 (s) s = s s 3 } {{ } Ã 2 (s) } {{ } V 2 s 3 } {{ } Ã 3 (s) s = s s 3 s 3 s 4 } {{ }} {{ } } {{ } U 2 Ã 3 (s) Ã 4 (s) s s = s 4 }{{} Ã 4 (s) } {{ } V 3 s 4 }{{} Ã 5 (s) = = S C s 4 s 4 Ã(s) } {{ }} {{ } Ã 5 (s) V 4 S C (s) = Ã(s) }{{} S (s) = = s2 2 s 4 Ã(s) s= s 4 s 2+2

A (s) μ 2 = q +ˆq 2 =2+2=4 s = μ 2 = q q =2 2= SA(s) = s 2 = s2 s 4 s 2 A(s) s = q =2 s = ˆq 2 =2 ( ) Ũ R (s) =U R s Ũ R (s) =V V 2 V 3 V 4 = (s +) s = = (s +) (s2 + s +) s U R (s) = ( +) ( + +) s s 2 s = = s+ s s +s+s2 s 2 s = s+ s +s+s2 s 2 s

( ) Ũ L (s) =U L s Ũ L (s) =U U 2 = = s 3 s s 3 + s U L (s) = = = + s 3 s s 2 s 3 s 2 s 3

(C R r μ,j R μ μ ) J λ = J = (C,J ) A(s) λ = Ã (s) λ = μã (s) Ã (s) =A k + A k s +... + A s k + A s k R r r [s]

C C J rank = μ C J μ A C J k +... + A k C J + A k C = r,μ λ i,i=, 2,..., r à (s) (C i R r μ i,j i R μ i μ i ) A(s) (C R r μ,j R μ μ ) C =(C,C 2,..., C r ) R r μ J = blockdiag (J,J 2,..., J r ) R μ μ μ = μ + μ 2 +... + μ r A (s) (C,J ) A (s) λ = à (s) A (s) = s s2 + s + R 2 2 [s] s à (s)

à (s) = s s2 + s + s 2 s s 2 A (s) C =,J = à (s) à (s) = s2 s 3 + s 4 + s 3 + s 2 = s 4 à (s) λ = 4 C C J rank = C J 2 =4 C J μ =3 A C J 2 + A C J + A 2 C = 2,4 à (s) s =

S C (s) à (s) s = Ã(s) S Ã(s) (s) ŨL (s), ŨR (s) ŨR (s) = [ũ (s), ũ 2 (s),..., ũ r (s)], ũ j (s) R r (s) Ũ L (s) à (s) ŨR (s) =S Ã(s) à (s)ũ Rj (s) =ũ Lj (s) s μ j,j = ν +,ν +2,..., r μ j = q +ˆq j,j = ν +,..., r ũ Lj (s) j ŨL(s) ũ (q) j (s), Ã(q) (s) q ũ j (s), à (s) s = q =,, 2,..., μ j,j = ν +,..., r x jq := q!ũ(q) j () x j,x j,..., x jr R r,j = ν +,..., r à (s) s = x j,x j,..., x jr R r,j = ν +,..., r à () x j = à () () x j + à () x j = )!Ã(μ j ) () x j + 2)!Ã(μ j 2) () x j +... + (μ j (μ j à () x j,μ j = (C,J ) A (s)

A(s) = s s2 + s + R 2 2 [s] s A (s) Ã (s) s = S C (s) = S = Ã(s) s 4 Ã(s) s 4 q SA(s)(s) =s 2 = s2 s 4 s 2 Ũ R (s) = (s +) (s2 + s +) s = k = 2 j = ν +,..., r = 2 A(s) q q =,,..., μ j μ j =2+2=4 x jq 4 s = Ã (s) x jq = {x 2,x 2,x 22,x 23 } x 2 = () = (2 ++) = ũ!ũ2 2 (s) ŨR (s) x 2 =!ũ 2 () =,x 22 =,x 23 =

(C,J ) A(s) C = C 2 =(x 2,x 2,x 22,x 23 )= R r μ i = R 2 4 J = R 4 4

C j =(x j,x j,..., x j,μ ) R r μ,j j = R μ μ β ( ),β () ( ),..., β (q ) ( ) β ( ) = x jq+,β () ( ) = x jq+2,β (q ) ( ) = x jq+q q =,,..., ˆq j,j = ν +,..., r A (ρ) β (t) =,t β jq (t) =x j δ (q) (t)+x j δ (q ) (t)+... + x jq δ () (t)+x jq δ (t)

x jq δ (t) ˆq r β (t) δ (t) ˆq r s = SA(s) (s) B A (ρ) β (t) =,t β i (t) B S C (s) Ã (s) s = Ã(s) S (s) Ã(s) S A(s) (s) A(s) ŨL (s), ŨR (s) Ũ R (s) =[ũ (s), ũ 2 (s),..., ũ r (s)],u j (s) R r (s) Ũ L (s) Ã (s) ŨR (s) =S Ã(s) (s) x jq := q!ũ(q) j () Ã (s) s = (C,J ) A(s) q =,,..., μ j,j = ν +,..., r

(C,J ) [ C j := C ν+, C ν+2,..., C ] r R r μ j [ J j := J ν+, J ν+2,..., J ] r R μ j μ j j = ν +,..., r ˆq j k ˆq j ˆq j ˆq j ( C j J j ) B Ψ = ˆq r i= C j J (i) j δ(i) (t) J μ j = q +ˆq j,j = ν +,..., r ˆq j B = μ j = r j=ν+ ˆq j j = ν +,..., r A(s) A(s) = s s2 + s + R 2 2 [s] s A (ρ) β (t) = A(s) s =

(C,J )=, ˆq j =2 C J 2 2 j =2 Ψ = ˆq r i= 2 = (i) C j J j δ(i) (t) = i= C 2 = J 2 = C 2 J (i) 2δ (i) (t) = C 2 J () 2δ () (t)+ C 2 J () 2δ () (t) = = δ (t)+ δ () (t) δ (t) δ (t) = + δ() (t) δ (t) = δ (t) δ() (t) δ (t) δ (t) ˆq r s = r 2 δ (t) B =, δ (t) δ() (t) δ (t)

A(s) = s + s2 s B k =2 s 2 +=s ( s)+,s= s à (s) =s 2 s s 2 = s + s2 s 2 s 2 s s s + s2 s 2 = s2 s + s 2 s 2 s s s 2 } {{ }} {{ } } {{ } Ã(s) V à (s) s2 s + s 2 = s s2 s s 2 s 2 s + s 2 } {{ }} {{ } } {{ } U à (s) à 2 (s) s s2 = s s2 s s 2 s + s 2 s + s 2 + s 3 } {{ }} {{ } } {{ } U 2 à 2 (s) à 3 (s)

s s2 s = s s + s 2 + s 3 s 3 + s 2 } {{ }} {{ } } {{ } Ã 3 (s) V 2 Ã 4 (s) s = s3 + s 2 s 3 + s 2 s } {{ }} {{ } } {{ } U 3 Ã 4 (s) Ã 5 (s) s3 + s 2 = s3 + s 2 s s s 4 s 3 } {{ }} {{ } } {{ } U 4 Ã 5 (s) Ã 6 (s) s3 + s 2 s3 s 2 = s 4 s 3 s 4 s 3 } {{ }} {{ } } {{ } Ã 6 (s) V 3 Ã 7 (s) = = = S C s 4 s 3 s 4 + s 3 s 3 Ã(s) ( + s) } {{ }} {{ } Ã 7 (s) V 4 S (s) = S Ã(s) A(s)(s) =s 2 = s2 s 3 s 3 s A(s) s = q =2 ˆq 2 = s = μ 2 = q +ˆq 2 =2+=3 μ 2 =3 s = s = Ã (s)

x jq = {x 2,x 2,x 22 },q =,,..., μ j =,, 2 j =2 ˆq 2 = Ũ R (s) =V V 2 V 3 V 4 = s 3 + s 2 + s x 2 = ũ 2 () =,x 2 =ũ () 2 () =,x 22 = 2!ũ(2) 2 () = C =,J = C 2 = R 2, J 2 =() R (C,J ) Ψ = ˆq r = i= C j J (i) j δ(i) (t) =C 2 J () 2δ (t) = δ (t) B = δ (t) δ (t) = t β (t)+ d3 β 2 (t) = dt 3 β 2 (t)+ dβ 3 (t) = dt β 3 (t) =

B ρ ρ 3 β (t) ρ β 2 (t) = β 3 (t) à (s) =s3 A ( ) s à (s) =s 3 s 3 s 3 s = s 3 s 2 s 3 s 3 s 3 s s 2 = s s 2 s 3 s 3 } {{ }} {{ } } {{ } Ã(s) V à (s) s 3 s 3 s s s 2 = s s 2 s 3 s 3 } {{ }} {{ } } {{ } U à (s) à 2 (s) s 3 s 3 s s 2 = s s 2 s 3 s 3 } {{ }} {{ } } {{ } à 2 (s) V 2 à 3 (s)

s s 2 = s s 6 s 3 s 3 } {{ }} {{ } } {{ } Ã 3 (s) V 3 Ã 4 (s) s s 6 = s s 6 s s 3 s 7 } {{ }} {{ } } {{ } U 2 Ã 4 (s) Ã 5 (s) s s 6 s = s = SC Ã(s) s 7 s 7 } {{ }} {{ } Ã 5 (s) V 4 k =3 S (s) = Ã(s) s 2 s 7 s 3 SA(s) (s) =s 3 s 2 = s s 7 s 4 A(s) s = q =3,q 2 = ˆq 3 =4 4 μ 3 = q +ˆq j = 3+4 = 7

s = Ã (s) μ =3 3= μ 2 = q q 2 =3 =2 s = s = μ 3 = q +ˆq 3 = 3+4=7 x jq = {x 3,x 3,x 32,x 33,x 34,x 35,x 36 },q =,,..., μ j =,,..., 7 =,,..., 6 j = 3 ˆq 3 =4 Ũ R (s) =V V 2 V 3 V 4 = s 3 s 4 x 3 = () =!ũ3,x 3 =!ũ() 3 () = 3s 2 = 4s 3 s= x 32 = 2!ũ(2) 3 () = 6s = 2,x 33 = 3!ũ(3) 3 () = 6 6 2s 2 24s s= x 34 = 4!ũ(4) 3 () = = 24,x 35 = 5!ũ(5) 3 () = 2 24 s= s= s= = = = x 36

C = R3 7,J = R 7 7 C 3 =, J 3 = 3 4 4 4

Ψ = ˆq r =4 i= C 3 J (i) 3δ (i) (t) = = C () 3 J 3δ (t)+ C () 3 J 3δ () (t)+ C (2) 3 J 3δ (2) (t)+ C (3) 3 J 3δ (3) (t) = = δ (t)+ δ () (t) + δ (2) (t)+ + δ (3) (t) = δ (t) + δ() (t)+ δ(2) (t)+ δ (t) δ () (t) δ (2) (t) δ (3) (t) + δ(3) (t) = δ (t)

B = δ (t), δ () (t), δ (2) (t), δ (3) (t) δ (t)

A(ρ)β (t) = B C = βjk i (t) = σ ij k= β jk t k e λ i(t) k =,,..., σ ij i =, 2,..., l i j = z,z +,..., r q N A (ρ) =A + A ρ +... + A q ρ q A i R r r,i =, 2,..., q β i jk (t) BC A(ρ)β (t) =

C jk = ( ) βj i βj i... βjσ i ij R r σ ij λ j λ i λ i J ij = R σ ij σ ij λ i λ i β i jk (t) BC β i jk = ( t σ ij σ ij βi j+ ) tσ ij 2 σ ij 2 βi t j+...! βi jσ ij 2 + βjσ i ij e λ it i l, j = z,z+,..., r, k =,,..., σ ij A (λ ) β i j = A () (λ ) β i j + A (λ ) β i j = A(σij ) (λ ) β i j + (σ ij )! (σ ij 2)! A(σ ij 2) (λ ) βj i +... + A () (λ ) β σij 2 + A (λ ) β σij =

q λ q (σ ij ) I q(q )λ q 2 I qλ q I λ q I σ ij (q )λ q 2 I λ q I ) (A ij λ q (σ ij ) I q A A σ ij I 2I 2λ I λ 2 I I λ I I } {{ } Q i βj i βj i βj i βj i = βjσ i ij 2 βj i βjσ i ij βjσ i ij 2 βj i βj i }{{} W i ( ) A (s) q =

Q i,w i Q i,w i Q, W ) ( ) (A q A A QW = A i R r r,i =,,..., q Q i,w i 2 r q = q + A(s) A (ρ) β (t) = β (t) = 3 3 e 2t }{{} β β 2 (t) = 3 e 2t + 3 }{{} β 3 3 }{{} β te 2t q = A (s) = A s + A λ =2,r =2 ) (A A I 2I β ( ) = I β β } {{ }} {{ } Q W

A i = a i a i3 a i2 a i4,i=, ) (A A β +2β 2β = β β ( ) Q, W A,A A (s) β = 3 3 ) (A A,β = 3 3 2 3 2 3 3 3 3 3 = 3 ( ) c {{ 8 }, 38,,, { 58, 8 }},, A = 8 3 8,A = 5 8 8 A (s) = s 8 3s + 8 5s + 8 8

A (s) = (s 4 2)2 q = q =2 A(s)

A (ρ) β (t) = A (ρ) R r r [ρ],ρ = d dt A (ρ) β (t) = ˆq j B = β j (t) = x jk δ (ˆq j k) (t) k= x jk C r, k ˆq j, j l q N A (ρ) =A + A ρ +... + A q ρ q A i R r r,i =, 2,q

β j (t) B A (ρ) β (t) = C j = ( x j,x j,..., x j,q+ˆqj ) R r q+ˆq j,j j = R q+ˆq j q+ˆq j A(s) =A q s q +... + A s + A A q A q A q A A 2 A 3 A q A A A 2 A q A q A A A q 2 A q A q A A A 2 A q A q }{{} rμ j rμ j x j x j x jq x jq x jq+ x jμj + }{{} rμ j = }{{} rμ j μ j = q +ˆq j n =,,..., q q

A(s) q = q à (n) () = n!a q q,n=,, 2,..., q à (n) () =,n= q +,q +2,..., q +ˆq =μ j à () x j = à () () x j + à () x j =!Ã(q) () x j + )!Ã(q ) () x j +... + q (q à () x jq =!Ã(q) () x j + )!Ã(q ) () x j2 +... + q (q Ã() () x jq + à () x jq + =!Ã(q) () x jμj (q q +) + )!Ã(q ) () x jμj q (q +... + Ã() () x jμj 2 + à () x jμ j =

j = ν +,..., r ν A q x j = A q x j + A q x j = A q 2x j + A q x j + A q x j2 = A x j + A x j +... + A q x jq = A x j + A x j2 +... + A q x jq + A q x jq + = A x j ˆqj + A x j ˆqj +... + A q x jμj 2 + A q x jμj = q = q,μ j = q +ˆq j A q A q A q A A 2 A 3 A q A A A 2 A q A q A A A q 2 A q A q A A A 2 A q A q }{{} rμ j rμ j x j x j x j ˆqj x j ˆqj x j ˆqj + x jq+ˆqj }{{} rμ j = }{{} rμ j β jl = x j δ (l) (t)+x j δ (l ) (t)+... + x jl δ () (t)+x jl δ (t) l =,,..., ˆq j

β ( ) = x jl+,β () ( ) = x jl+2,..., β (q ) ( ) = x jl+q μ j = q +ˆq j ˆq j ) (A q A q A x jl x j x j x jq x jq x jq+ x j,q+ˆqj x j x jq 2 x jq x jq x j,q+ˆqj 2 x jq 2 x jq ) x (A q A q A A jq 2 = }{{} r r(q+) x j x j ˆqj x j x j x j ˆqj }{{}}{{} r(q+) μ j rμ j

x j x j x j ˆqj x j ˆqj x j ˆqj + x j,q+ˆqj x j x j ˆqj 2 x j ˆqj x j ˆqj x j,q+ˆqj 2 x j ˆqj 2 x j ˆqj ) x (A q A q A A j ˆqj 2 = }{{} r r(q+) x j x j ˆqj x j x j x j ˆqj }{{}}{{} r(q+) μ j rμ j ˆq j μ j = q +ˆq j A (s) q = A i A i R r r,i =,,..., q a ij μ j = q +ˆq j,j =, 2,..., l x j ˆqj,x j ˆqj +,..., x j,q+ˆqj, lq 2 A(s) = q q = q + 2

A i A (s) A (s) q = x j x j x j ˆqj x j ˆqj x j ˆqj + x j,q+ˆqj x j x j ˆqj 2 x j ˆqj x j ˆqj x j,q+ˆqj 2 x j ˆqj 2 x j ˆqj ) x (A q A q A A j ˆqj 2 = }{{} r r(q+) x j x j ˆqj x j x j x j ˆqj }{{}}{{} rμ j Q R r(q+) μ j A i A i R r r,i=,,..., q A i A i R r r,i=,,..., q Q q = q + 2 A(s) A (ρ) β (t) =

A(s) A(s) A (ρ) β (t) = β (t) = δ (t) =x δ (t) β 2 (t) = δ (t)+ δ () (t) =x δ (t)+x δ () (t) q = A(s) = A + A s A A A A A x x x 2 = ˆq =2 μ = q +ˆq =+2=3 r =2 x ji A i = a i a i3 x =,x =,x 2 = x x 2 a i2 a i4,i=, rμ = r (q +ˆq )=2(+2)=6 (q +)r 2 + lqr =(+)2 2 +

2= A x = A x + A x = A x + A x 2 = a a 2 = a = a =,a 3 = a 3 a 4 a 3 a a 2 + a a 2 = a + a a 2 = a 3 a 4 a 3 a 4 a 3 a 3 a 4 a + a a 2 = }{{} a = a 2,a 3 = a 4 a 3 + a 3 a 4 a a 2 + a a 2 x = a a 2 + a 2 x 2 }{{} = }{{} a 3 a 4 a 3 a 4 x 2 a 3 a 4 + a 4 x 2 () a 2 a 2 + a 2 x 2 = a 4 a 4 + a 4 x 2 = a 2 = a 2 + a 2 x 2 x 2 = a 2 a 2 a 2 a 4 = a 4 + a 4 x 2 a 4 = a 4 + a 4 a 2 a 2 a 2 = a 4a 2 a 2

A (s) a 2 = a 4 = A (s) = a 2 =,a 4 A =,A = a 2 }{{} a 4 a 4 a 4 a 4 a 4 A (s) =A + A s = a 4 a 4 + a 4 s a 2,a 4 = A = a 2,A = a 2 a 2 a 2 a 2 }{{} a 4 A (s) =A + A s = a 2 a 2 + a 2 s a 2,a 4 A = a 2,A = a 2 a 2 a 2 a 2 }{{} a a 4 a 4 a 4 a 2 a 4 4 a 2 A (s) =A + A s = a 2 a 2 + a 2 s + a 4 s a 4 a 2 a 4 a 2

A(s) SA(s) = s ˆq = s 2 q = q +=2 A 2 x A A 2 x = A A A 2 x 2 A A A 2 x 3 ˆq =2 μ = q +ˆq =2+2=4 r =2 x ji A i = a i a i3 a i2 a i4,i=,, 2 x =,x =,x 2 = x,x 3 = x 3 x 2 x 4

(A + A s + A 2 s 2 ) A 2 x = A x + A 2 x = A x + A x + A 2 x 2 = A x + A x 2 + A 2 x 3 = a 2 a 22 = a 2 =,a 23 = a 23 a 24 a a 2 + a 2 a 22 = a + a 2 a 22 = }{{} a 3 a 4 a 23 a 24 a 3 + a 23 a 24 a = a 22 a 3 = a 24 a a 2 + a a 2 + a 2 a 22 x = a 3 a 4 a 3 a 4 a 23 a 24 x 2 a + a a 2 + a 2 x + a 22 x 2 = a 3 + a 3 a 4 + a 23 x + a 24 x 2 = }{{} a + a 22 a 2 + a 22 x 2 =,a 3 + a 24 a 4 + a 24 x 2 =, x 2 = a 2 a 22 a a 22 a 3 a 4 + a 24a 2 a 22 a 24a a 22 =

a a 2 + a a 2 x + a 2 a 22 x 3 = a 3 a 4 a 3 a 4 x 2 a 23 a 24 x 4 a a 2 + a x + a 2 x 2 + a 2 x 3 + a 22 x 4 = a 3 a 4 + a 3 x + a 4 x 2 + a 23 x 3 + a 24 x 4 = }{{} a a 2 + a 22 x + a 2 x 2 + a 22 x 4 =,a 3 a 4 + a 24 x + a 4 x 2 + a 24 x 4 =, x 4 = a + a 2 a 22 x a 2 x 2 a 22 a 3 a 4 + a 4 x 2 a 24a a 22 + a 24a 2 a 22 + a 24a 2 a 22 x 2 = x 4 x 4 = a 3 + a 4 a 4 x 2 a 24 x a 24 a a 2 + a 2 x 2 a 22a 3 a 24 + a 22a 4 a 24 a 22a 4 x 2 a 24 = a 22,a 24 a 2,a 2,a 4 a 2 = a a 3 = a 4 x 2 = a 4 = a 2a 24 a 22 x 4 = a 2 a 22 x a 22 x 4 = a 4 a 24 x a 24 A 2 = a 22,A = a 22 a 2,A = a 2 a 2 a 24 a 24 a 4 a 4 a 2 a 24 a 22

A(s) = a 2 + sa 22 a 2 + sa 2 + s 2 a 22 a 4 + sa 24 a 2 a 24 a 22 + sa 4 + s 2 a 24 A(s) = a 2 a 22 (a 2 a 24 a 22 a 4 ) SA(s) = s2 s 2 β (t) A (ρ) β (t) = A(ρ)β(t) = A (ρ) β (s) = a 2 + sa 22 s 2 a 22 + sa 2 + a 2 = a 2 sa 22 a 4 + sa 24 s 2 a 24 + sa 4 + a 2a 24 a 22 a 4 sa 24 a 22 = s a 24 ) = (si s a 22 a 2 a 22 x 2 I 2 A 2 x A A 2 x 2 a 24 a 4 a 24 ) = (si 2 I 2 A 2 β ( ) A A 2 β () ( )

A (ρ) β 2 (s) = a 2 + sa 22 s 2 a 22 + sa 2 + a 2 + s = a 4 + sa 24 s 2 a 24 + sa 4 + a 2a 24 a 22 a = 2 a 2 + sa 22 = a 22 (a 22 a 4 a 2 a 24 + sa 2 22a 24 ) a 22 x = s a 24 = s a 22 a 2 a 22 x 3 a a 24 a 4 a 4 a 24 x 24 a 24 ) = (si 2 I 2 A 2 x 2 = A A 2 x 3 ) = (si 2 I 2 A 2 β ( ) A A 2 β () ( ) a 22 =,a 24 a 2,a 4,a 4 x 2 = a = a 2 a 3 = a 4 a 2 = x 4 = a 4 a 24 x a 24 A 2 =,A = a 2,A = a 2 a 24 a 24 a 4 a 4 a 4 A (s) = a 2 sa 2 a 4 + sa 24 a 4 + sa 4 + s 2 a 24 A (s) =a 2 a 4

SA(s) = s2 s 2 a 22 =,a 24 a 2,a 4,a 4 x 2 a = a 2 x 2 = a 4 a 24 a 3 a 24 a 2 a a 2 + a 2a 4 a 2 a 2a 3 = a 24 a 24 a 2 a 3 = a 2 + a 2a 4 a 2 a 3 = a 2 a 24 + a 2 a 4 a 24 a 24 a 3 = a 2a 24 + a 2 a 4 a 2 x 4 = a 4 a 24 a2 4 + a a 2 2 24 a 2 + a 3a 4 a 2 24 A 2 =,A = a 2 a 24 a 24 a 4 x a,a = 2 a 2 a 2 a 24 +a 2 a 4 a 2 a 4 A (s) = a 2 a 2 + sa 2 a 2 a 24 +a 2 a 4 a 2 + sa 24 a 4 + sa 4 + s 2 a 24 A (s) =a 2 a 4 + a2 2a 24 a 2 a 2 a 4 SA(s) = s2 s 2 a 22,a 24 =, a 2,a 4,a 4 x 2 = a 3 = a 4 a = a 2 a 4 =x 4 = a 2 a 22 x a 22 A 2 = a 22,A = a 22 a 2,A = a 4 a 2 a 2 a 4

A (s) = a 2 + sa 22 a 2 + sa 2 + s 2 a 22 a 4 sa 4 A (s) = a 4 a 2 SA(s) = s2 s 2 a 22,a 24 = a 2,a 4,a 2 x 2 a 3 = a 4 a x 2 = a 2 a 22 a a 22 a 4 a 3 a 4 + a 4a 2 a 22 a 4 a 4a a 22 = a 4 = a 4a 2 a 4 a a 4 x 4 = a a 22 + a2 2 + a 2+a 2 a 2 22 a 22 + a 2a x a 2 22 A 2 = a 22,A = a 22 a 2,A = a a 2 a 4 a 4 a 4 a 2 a 4 a a 4 A (s) = a + sa 22 a 2 + sa 2 + s 2 a 22 a 4 a 4 a 2 a 4 a a 4 + sa 4 A (s) = a 4 a 2 a2 a 4 a 22 + a a 2 a 4 a 22 SA(s) = s2 s 2 a 22,a 24 a,a 2,a 2,a 4

x 2 = a 2 a 22 a a 22 a 3 = a 4 a 24 a 24a 2 a 22 + a 24 + a 24a a 22 = a 4 a 24a 2 a 22 + a 24a a 22 = a 4a 22 a 24 a 2 + a 24 a a 22 a 4 = a 4a 2 a 4a + a 2a 24 a2 2a 24 + a 2a 24 a a 22 a 22 a 22 a 2 22 a 2 22 = a 4a 2 a 22 a 4 a a 22 + a 2 a 24 a 22 a 2 2a 24 + a 2 a 24 a a 2 22 = a 2a 3 a 22 a 4 a a 22 + a 2 a 24 a 22 a 2 22 = a 2a 3 a 4 a + a 2 a 24 a 22 A 2 = a 22,A = a 22 a 2,A = a 24 a 24 a 4 a a 2 a 4 a 22 a 24 a 2 +a 24 a a 22 a 2 a 3 a 4 a +a 2 a 24 a 22 A(s) = a + sa 22 a 2 + sa 2 + s 2 a 22 a 4 a 22 a 24 a 2 +a 24 a a 22 + sa 24 a 2 a 3 a 4 a +a 2 a 24 a 22 + sa 4 + s 2 a 24 A(s) = a a 2 a 3 a 4 a 2 a 2 a 4 a 22 + a 4 a 2 a 2 SA(s) = s2 a 22 s 2

a 24,a 22 = a 2 = A(s) = a 4 + sa 24 a 4 + sa 4 + s 2 a 24 a 24 =,a 22, a 4 = A(s) = a 2 + sa 22 a 2 + sa 2 + s 2 a 22 q = μ = q +ˆq =+2=3 r =2 ) (A A x x x 2 ( ) = }{{} x x r r(q+) } {{ } r(q+) μ j }{{} r μ j A i = a i a i2,i =, x =,x =,x 2 = x a i3 a i4 x 2

x ji,i =,, 2 A i,i =, x 2 = {,,, } r = A = ( ),A =(, ) A(s) = ( ) s q =2 μ = q +ˆq =2+2=4,r =2 A (s) x ) x x 2 x 3 ( ) (A 2 A A x x x 2 = x x x ji,i=,, 2, 3 A i,i=,, 2 x 2 =,x 3 = {{,,,,, 2}, {,,,,, }} A 2 =,A =,A = 2

A (s) = s s2 +2 s A (s) = 2 A R p m A R m p AA A = A A AA = A ( AA ) T = AA ( A A ) T = A A A T A A A = A β j (t) = ˆq j k= x jk δ ˆq j +k (t) x jk C r k ˆq j, j l ˆq j C j = ( x j,x j,..., x j ˆqj,x j ˆqj,..., x j,q+ˆqj 2,x j,q+ˆqj ),j =, 2,..., l

J C =(C,C 2,..., C l ) R r μ J 2,J = R μ μ J l l μ = μ j,μ j = q +ˆq j j= a Ã(s) =I r C(J ai n ) { (s a)v +(s a) 2 V 2 +... +(s a) q V q } q = ind (C, J) C CJ (V,..., V q ) CJ q C C(J ai n ) S q = C(J ai n ) q q+ˆq j k t q+ˆq j k β j (t) = x jk (q +ˆq j k )! k= j =, 2,..., l Ã(ρ) β(t) ( = Ã(ρ) =ρq A ρ )

q = ind (C, J) C j = ( x j,x j,..., x j ˆqj,x j ˆqj,..., x j,q+ˆqj 2,x j,q+ˆqj ),j =, 2,..., l J C =(C,C 2,..., C l ) R r μ J 2,J = R μ μ J l l μ = μ j,μ j = q +ˆq j j= C CJ S q = rank(s q )=n CJ q V =(V,..., V q ) C C(J ai n ) S q = C(J ai n ) q

Ã(s) =I r C(J ai n ) { (s a)v +(s a) 2 V 2 +... +(s a) q V q } A(s) =s q à ( ) s A(s) A(ρ)β(t) = β (t) = δ (t) =x δ (t) β 2 (t) = δ (t)+ δ () (t) =x δ (t)+x δ () (t) q = ˆq =2 μ = q +ˆq = +2=3 x ji = (x x x 2 ),i =,,..., 3 r =2 q = C = x,j = x 2 S q = S =(C) = x x 2 q = q =2 ˆq =2 μ = q+ˆq =2+2=4x ji =(x x x 2 x 3 ),i=

,..., 4 q =2 C = x x 3,J = x 2 x 4 S q = S 2 = = C CJ 2 x x 3 = C x 2 x 4 = CJ x x 2 S q = x 2 x x 2 2 x 4 n =4 CJ = x x 3 = x x 2 x 4 x 2 q = ind (CJ)=2 a = Ã(s) =I 2 C(J ai 4 ) { (s a)v +(s a) 2 } V 2 Ã(s) =I 2 C(J I 4 ) { (s )V +(s ) 2 } V 2 V =(V,V 2 ) C C(J I 4 )

x x 3 C (V,V 2 )= x 2 x 4 = C(J I 4 ) 2 x 2 x x 3 2 x 2 x 4 x 2 C(J I 4 ) = C = C = x x 3 = x 2 x 4 = 2 x 2 x 3 x 2 x 2 x 4 x 2

Ã(s) = x x x 3 x 2 x 2 x 4 x x 3 (s ) +(s ) 2 x 2 x 4 2 x 2 x x 3 2 x 2 x 4 x 2 = s(sx 2 2 +x 2 s+sx +sx 4 +) x 2 2 +x 2+x +x 4 (s )(x 2 2s+sx 2sx 2 +sx 4 +) x 2 2 +x 2+x +x 4 (s )s (s 2 x 2 2 3s sx 2+s 2 x +2s 2 x 2 +s 2 x 4 +2s 2 +) x 2 2 +x 2+x +x 4 x 2 2 +x 2+x +x 4 A(s) =s 2 A ( s) x 2 2 +x 2+x +x 4 (x 2 (s ) 2 + sx 2 + s + x + x 4 ) x 2 2 +x 2+x +x 4 ( 2x 2 s + x + x 2 + x 4 2) s x 2 2 +x 2+x +x 4 x 2 2 +x 2+x +x 4 (s 2 sx 2 3s + x 2 2 +2x 2 + x + x 4 +2)