Να βρεθεί ΠΓΠ ώστε να ελαχιστοποιηθεί το κόστος µεταφοράς (το πρόβληµα βασίζεται σε αυτό των Aarik και Randolph, 975). Λύση: Για κάθε δυϊλιστήριο i (i=, 2, ) και πόλη j (j=, 2,, 4), θεωρούµε την µεταβλητή x ij που αντιστοιχεί σε εκατοµµύρια λίτρων καυσίµων θέρµανσης που διακινούνται από το δυϊλιστήριο i στην πόλη j. Η αντικειµενική συνάρτηση του προβλήµατος θα είναι: Min z=8x +6x 2 +x +9x 4 +9x 2 +2x 22 +x 2 +7x 24 +4x +9x 2 +6x +5x 4 Οι περιορισµοί του προβλήµατος αφορούν την προσφορά και τη ζήτηση καυσίµων. Η προσφορά εξαρτάται από τις δυνατότητες των δυϊλιστηρίων: x +x 2 +x +x 4 5 (δυνατότητες δυϊλιστηρίου ) x 2 +x 22 +x 2 +x 24 5 (δυνατότητες δυϊλιστηρίου 2) x +x 2 +x +x 4 45 (δυνατότητες δυϊλιστηρίου ) Η ζήτηση εξαρτάται από τις απαιτήσεις σε καύσιµα κάθε πόλης: x +x 2 +x 45 (απαιτήσεις καυσίµων πόλης ) x 2 +x 22 + x 2 2 (απαιτήσεις καυσίµων πόλης 2) x +x 2 +x (απαιτήσεις καυσίµων πόλης ) x 4 +x 24 +x 4 (απαιτήσεις καυσίµων πόλης 4) Προφανώς x ij i=,2,, j=,2,,4 Γενικά, όπως άλλωστε φαίνεται και από το παραπάνω παράδειγµα, ένα πρόβληµα µεταφορών έχει τα εξής χαρακτηριστικά: Μια οµάδα m σηµείων προσφοράς. Μια οµάδα n σηµείων ζήτησης. Οτιδήποτε µετακινείται απο σηµείο προσφοράς σε σηµείο ζήτησης είναι συνάρτηση κόστους. Αν λοιπόν, στη γενική περίπτωση, είναι x ij η ποσότητα ή ο αριθµός µετακινούµενων ειδών (άνθρωποι, αγαθά, ενέργεια κ.λ.π.), c ij το κόστος µεταφοράς µιας µονάδας του είδους από το σηµείο προσφοράς i στο σηµείο ζήτησης j, s i η δυνατότητες προσφοράς του σηµείου προσφοράς i και d j οι ανάγκες του σηµείου ζήτησης j, η γενική µορφή του προβλήµατος µεταφορών είναι: 2
n min s.t. x m j= j= m n i= j= s (i c ij x ij ij i =,...,m) x ij di (i =,...,n) x ij για κάθε i=,...,m και j=, n Αν η συνολική ζήτηση ισούται µε τη συνολική προσφορά, δηλαδή m i= n s i = d j= (balanced). j, το πρόβληµα µεταφορών ονοµάζεται ισορροπηµένο Σε αυτήν την περίπτωση οι περιορισµοί προσφοράς και ζήτησης είναι δεσµευτικοί (binding). Η γενική µορφή του προβλήµατος τότε θα γίνει: n min m n i= j= c ij x ij s.t. x ij = s i (i =,...,m) m j= j= x = d (i ij i =,...,n) x ij για κάθε i=,...,m και j=, n Ένα ισορροπηµένο ΠΜ έχει τα παρακάτω πλεονεκτήµατα και για αυτό είναι επιθυµητή η χρήση τέτοιων ΠΜ: Είναι σχετικά εύκολη η εύρεση αρχικής βασικής δυνατής λύσης. Η εφαρµογή του αλγόριθµου SIMPLEX περιέχει λιγότερες αλγεβρικές πράξεις. Αν σε ένα πρόβληµα η προσφορά υπερβαίνει τη ζήτηση, µπορούµε να µετατρέψουµε ένα ΠΜ σε ισορροπηµένο προσθέτοντας ένα πλασµατικό (dummy) σηµείο προσφοράς, το οποίο θα παράγει το επιπλέον ποσό και του οποίου το κόστος µεταφοράς προς τα σηµεία ζήτησης θα είναι µηδενικό. Λόγου χάρη, στο πρόβληµα διανοµής καυσίµων, υπάρχει πλεόνασµα προσφοράς 5 εκατοµµυρίων lt. Προσθέτοντας ένα πέµπτο πλασµατικό δυϊλιστήριο µε µηδενικό κόστος µεταφοράς, το πρόβληµα µετατρέπεται σε ισορροπηµένο. Αντίθετα, αν σε ένα ΠΜ η ζήτηση υπερβαίνει την προσφορά, το ΠΜ δεν έχει δυνατή λύση. Παρόλα αυτά µπορεί σε κάποιο πρόβληµα να υπάρχει η
δυνατότητα µη κάλυψης της ζήτησης οπότε η περίσσεια ζήτησης µπορεί να εξαιρεθεί. ΠΙΝΑΚΑΣ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕΤΑΦΟΡΩΝ Ένας πίνακας προβλήµατος µεταφορών έχει την παρακάτω µορφή: ΠΡΟΣΦΟΡΑ c c 2 c n s c 2 c 22 c 2n s 2 c m c m2 c mn s m ΖΗΤΗΣΗ d d 2... d n Αποκαλούµε κελιά τα τετράγωνα του πίνακα µε το µεγαλύτερο πάχος γραµµής. Τα χωρίζουµε σε δύο τµήµατα. Στο δεξιό τµήµα τοποθετούµε το κόστος που αντιστοιχεί σε κάθε µεταβλητή. Στο αριστερό µέρος τοποθετούµε την τιµή της µεταβλητής στην οποία αντιστοιχεί το τετράγωνο, αν αυτή είναι βασική. 4
Λόγου χάρη, στο παράδειγµα διανοµής καυσίµων, ο πίνακας ΠΜ για τη βέλτιστη λύση (η οποία είναι z=2, x 2 =, x =25, x 2 =45, x 2 =5, x 2 =, x 4 =) είναι ο: υϊλιστήριο Πόλη Πόλη 2 Πόλη Πόλη 4 ΠΡΟΣΦΟΡΑ 8 6 9 25 5 υϊλιστήριο 2 45 9 2 5 7 5 υϊλιστήριο 4 9 6 5 4 ΖΗΤΗΣΗ 45 2 6.2. Εύρεση Βασικής υνατής Μεταβλητής σε ΠΜ Έστω ένα ισορροπηµένο ΠΜ µε m σηµεία προσφοράς και n σηµεία ζήτησης. Από τα προαναφερθέντα µπορούµε να συνάγουµε ότι αυτό το πρόβληµα θα έχει m+n περιορισµούς. Η εφαρµογή της µεθόδου Big-M είναι προφανώς δύσκολη, ειδικά όταν το πρόβληµα έχει µόνο ισότητες όπως το παρόν ΠΜ. Παρόλα αυτά, η εύκολη δοµή του εν λόγω προβλήµατος διευκολύνει την εύρεση βασικής δυνατής λύσης. Αρχικά, πρέπει να κάνουµε την εξής παρατήρηση: Αν σε ένα ισορροπηµένο ΠΜ όλοι οι περιορισµοί πλην ενός ικανοποιούνται, τότε και ο ένας περιορισµός ικανοποιείται. (να δειχθεί) Σύµφωνα µε την παρακάτω παρατήρηση, µπορούµε σε ένα ισορροπηµένο ΠΜ να παραλείψουµε ένα από τους περιορισµούς και να επιλύσουµε το ΠΜ για m+n- περιορισµούς. 5
Ας θεωρήσουµε λοιπόν ένα ισορροπηµένο ΠΜ µε τον παρακάτω πίνακα ΠΜ: ΠΡΟΣΦΟΡΑ 4 5 ΖΗΤΗΣΗ 2 4 Παραλείπουµε προς το παρόν τις τιµές κόστους αφού δεν είναι απαραίτητες για την εύρεση αρχικής βασικής δυνατής λύσης. Οι αρχικοί περιορισµοί µπορούν να γραφούν υπό µορφή πίνακα: = 4 2 5 4 x x x x x x 2 22 2 2 Αν αφαιρέσουµε τυχαία τον πρώτο περιορισµό, είναι: = 4 2 5 x x x x x x 2 22 2 2 Η βασική λύση για το παραπάνω σύστηµα πρέπει να έχει 4 βασικές µεταβλητές. οκιµάζουµε τις {x, x 2, x 2, x 22 }. Τότε, (κατά τα αναφερθέντα στο κεφάλαιο της Ανάλυσης Ευαισθησίας ΠΓΠ) είναι: = B 6
Λόγω του βαθµού του πίνακα Β (), αυτός δεν µπορεί να αντιστραφεί για να ευρεθεί αρχική βάση οπότε η αρχική επιλογή δεν είναι κατάλληλη. Για τον λόγο αυτόν, χρησιµοποιείται η µέθοδος του βρόχου (loop), για να καθοριστεί αν µια τυχαία οµάδα m+n- µεταβλητών αποτελεί αρχική βασική λύση σε ένα ισορροπηµένο ΠΜ. Ορισµός: Μια διατεταγµένη ακολουθία τουλάχιστον τεσσάρων κελιών πίνακα ΠΜ καλείται βρόχος αν: (α) Οποιαδήποτε δύο διαδοχικά κελιά βρίσκονται στην ίδια γραµµή ή στήλη του πίνακα ΠΜ. (β) Τρία διαδοχικά κελιά δεν βρίσκονται στην ίδια γραµµή ή στήλη του πίνακα ΠΜ. (γ) Το τελευταίο κελί της ακολουθίας έχει κοινή γραµµή ή στήλη µε το πρώτο κελί της ακολουθίας στον πίνακα ΠΜ. Ας εξετάσουµε τα παρακάτω παραδείγµατα βρόχων: Ο παραπάνω βρόχος είναι ο (2,)-(2,4)-(4,4)-(4,). Ο παραπάνω βρόχος είναι ο (,)-(,2)-(2,2)-(2,)-(4,)-(4,5)-(,5)-(,). Το παραπάνω (,)-(,2)-(2,)-(2,) δεν αποτελεί βρόχο αφού τα (,2) και (2,) δεν βρίσκονται στην ίδια γραµµή ή στήλη. 7
Το παραπάνω (,2)-(,)-(,4)-(2,4)-(2,2) δεν αποτελεί βρόχο αφού τα (,2), (,) και (,4) βρίσκονται στην ίδια γραµµή. ΘΕΩΡΗΜΑ: Σε ένα ισορροπηµένο ΠΜ µε m σηµεία προσφοράς και n σηµεία ζήτησης, τα κελιά του πίνακα ΠΜ που αντιστοιχούν σε µια οµάδα m+n- τυχαίων µεταβλητών δεν περιλαµβάνουν βρόχο όταν και µόνο όταν οι m+n- µεταβλητές αποτελούν βασική δυνατή λύση. Λόγου χάρη, στο αρχικό παράδειγµα της παραγράφου, αφού το (,)-(,2)- (2,2)-(2,) αποτελεί βρόχο, κατά το προηγούµενο θεώρηµα, η {x,x 2,x 22,x 2 } δεν αποτελεί βασική δυνατή λύση. Αντίθετα το (,)-(,2)- (,)-(2,) δεν αποτελεί βρόχο οπότε η {x,x 2,x,x 2 } αποτελεί βασική δυνατή λύση. Υπάρχουν τρεις µέθοδοι για την εύρεση αρχικής βασικής δυνατής λύσης στα ΠΜ, οι οποίες εξετάζονται παρακάτω: (Α) Η ΜΕΘΟ ΟΣ ΤΟΥ ΒΟΡΕΙΟ ΥΤΙΚΟΥ ΤΕΤΡΑΓΩΝΟΥ. Η διαδικασία ξεκινά από το επάνω δεξιά (βορειοδυτικό) τετράγωνο του πίνακα ΠΜ. Θέτουµε το x ίσο µε το ελάχιστο των d, s. Aν x =s διαγράφουµε την πρώτη γραµµή του προβλήµατος ΠΜ και θέτουµε d =d - s. Αν x =d διαγράφουµε την πρώτη στήλη του πίνακα ΠΜ και θέτουµε s =s -d. Αν x =s =d διαγράφουµε είτε την πρώτη γραµµή είτε την πρώτη στήλη και θέτουµε d = ή s = αντίστοιχα. Συνεχίζουµε τη ίδια διαδικασία για τα υπόλοιπα αποµένοντα επάνω δεξιά κελιά που δεν πέφτουν σε διαγραµµένη γραµµή ή στήλη. Τελικά θα καταλήξουµε σε µόνο ένα κελί µόνο στο οποίο θα µπορεί να τεθεί µια τιµή. ίνουµε στο κελί την τιµή µιας εκ των τιµών προσφοράς και ζήτησης της γραµµής ή της στήλης στην οποία ανήκει. Έχει βρεθεί µια βασική λύση. Για να γίνει κατανοητή η µέθοδος, ας εξετάσουµε το παρακάτω παράδειγµα: 2 4 2 5 Θέτουµε x =min(5,2)=2 οπότε διαγράφεται η στήλη και s =5-2=. 8
2 Χ 4 2 Θέτουµε x 2 =min(,4)= οπότε διαγράφεται η γραµµή και d 2 =4-=. 2 X Χ 2 Θέτουµε x 22 =min(,)= οπότε διαγράφουµε είτε τη γραµµή 2 είτε τη στήλη 2. Επιλέγουµε διαγραφή της γραµµής 2 και d 2 =. 2 X X Χ 4 2 Θέτουµε x 2 =min(,)= οπότε διαγράφουµε τη στήλη 2. Επιλέγουµε διαγραφή της γραµµής 2 και s =-=. 2 X X Χ Χ 2 Θέτουµε x =min(,2)=2 οπότε διαγράφουµε τη στήλη. Επιλέγουµε διαγραφή της γραµµής 2 και s =-2=. 2 X X 2 Χ Χ Χ 9
Θέτουµε x 4 =min(,)=. Αφού είναι η τελευταία δυνατή µεταβλητή διαγράφουµε τη γραµµή και τη στήλη 4. Έχουµε λάβει τη βασική λύση x =2, x 2 =, x 22 =, x 2 =, x =2, x 4 =. Η µέθοδος εξασφαλίζει ότι καµία µεταβλητή δεν θα λάβει αρνητική τιµή και ότι κάθε περιορισµός προσφοράς ή ζήτησης ικανοποιείται. Η µέθοδος επιτυγχάνει τη διαγραφή m+n στηλών και γραµµών. Αφού η τελευταία µεταβλητή λαµβάνει τιµή µε τη διαγραφή της αντίστοιχης γραµµής και στήλης, αποδίδονται τιµές σε m+n- µεταβλητές, οι οποίες δεν µπορούν να δηµιουργήσουν βρόχο οπότε η λύση είναι βασική δυνατή. (Β) Η ΜΕΘΟ ΟΣ ΤΟΥ ΕΛΑΧΙΣΤΟΥ ΚΟΣΤΟΥΣ Η µέθοδος του ελάχιστου κόστους χρησιµοποιεί τις τιµές κόστους κάθε µεταβλητής σε µια προσπάθεια να µειωθεί ο αριθµός των επαναλήψεων για την εύρεση βασικής λύσης. Επιλέγεται η µεταβλητή µε το µικρότερο κόστος και λαµβάνει την µεγαλύτερη δυνατή τιµή της (ελάχιστο προσφοράς-ζήτησης). Με βάση αυτήν την επιλογή ακολουθούνται όλα όσα αναφέρθηκαν στη µέθοδο του βορειοδυτικού τετραγώνου, οπότε διαγράφεται η κατάλληλη γραµµή ή στήλη, η τιµή προσφοράς ή ζήτησης µεταβάλλεται ανάλογα κ.λ.π.. Ας εξετάσουµε το παρακάτω παράδειγµα: 2 5 6 2 5 8 4 6 5 5 2 8 4 6 2
Το µικρότερο κόστος έχει η x 22. Θέτουµε x 22 =min(,8)=8, οπότε διαγράφεται η στήλη 2 και s 2 =2. 2 5 6 5 2 8 5 2 8 4 6 5 2 X 4 6 Το µικρότερο κόστος έχoυν η x και η x 2. Θέτουµε τυχαία x 2 =min(2,2)=2, οπότε διαγράφεται η γραµµή 2 και d =2-2=. 2 5 6 5 2 2 8 5 X 8 4 6 5 X 4 6 Το µικρότερο κόστος έχει η x. Θέτουµε x =min(5,)=5, οπότε διαγράφεται η γραµµή και d =-5=5. 5 2 5 6 5 2 2 8 5 X 8 4 6 5 5 X 4 6 2
Το µικρότερο κόστος έχει η x. Θέτουµε x =min(5,5)=5, οπότε διαγράφεται η γραµµή και s =5-5=. 5 2 5 6 X 2 2 8 5 X 5 8 4 4 6 X X X 6 Το µικρότερο κόστος έχει η x. Θέτουµε x =min(,4)=4, οπότε διαγράφεται η στήλη και s =-4=6. 5 2 5 6 5 2 2 8 5 X 5 8 4 4 6 6 X X X 6 Αποµένει η x 4, της οποία διαγράφουµε τη γραµµή και τη στήλη και θέτουµε x 4 =min(6,6)=6 Τελικά έχουµε βρει µια αρχική βασική δυνατή λύση x =5, x 2 =2, x 22 =8, x =5, x =4, x 4 =6. Παρά το ότι φαίνεται ότι η µέθοδος δείχνει να βρίσκει βασικές δυνατές λύσεις µε χαµηλό κόστος, κάτι τέτοιο δεν ισχύει πάντοτε [Winston]. 22
(Γ) Η ΜΕΘΟ ΟΣ VOGEL Είναι η δυσκολότερη µέθοδος στην εφαρµογή [Gloer et al 977] αλλά απαιτεί λιγότερες επαναλήψεις από τις υπόλοιπες για την εύρεση βασικής δυνατής λύσης. Για τον λόγο αυτόν είναι η προτιµώµενη. Εφαρµόζεται ως εξής: Για κάθε γραµµή και στήλη υπολογίζουµε µια ποινή η οποία είναι η διαφορά ανάµεσα στις δύο µικρότερες τιµές κάθε γραµµής ή στήλης. Επιλέγουµε στη συνέχεια τη γραµµή ή τη στήλη µε τη µεγαλύτερη ποινή και ως βασική µεταβλητή, την µεταβλητή της γραµµής ή της στήλης αυτής µε το µεγαλύτερο κόστος. Με τον ίδιο τρόπο όπως και στις δύο προηγούµενες µεθόδους επανα-υπολογίζουµε τις νέες τιµές προσφοράς ή ζήτησης και διαγράφουµε την αντίστοιχη γραµµή ή στήλη. Επαναλαµβάνουµε τη διαδικασία υπολογίζοντας τις νέες ποινές µέχρι να µείνει µόνο ένα κελί στο οποίο αντιστοιχίζουµε την τιµή της γραµµής και της στήλης στην οποία αντιστοιχεί. Με τον τρόπο αυτόν έχουµε βρει µια αρχική βασική δυνατή λύση. Εξετάζουµε το παρακάτω παράδειγµα: 6 7 8 Ποινή: 7-6= 5 8 78 5 Ποινή: 5 5 5 Ποινή: 5-6=9 Ποινή: 8-7=7 Ποινή: 78-8=7 78-5=6 Την µεγαλύτερη ποινή την έχει η στήλη 2 οπότε θέτουµε x 2 =min(,5)=5. ιαγράφουµε τη στήλη 2 και s =9-5=5. Υπολογίζουµε τις νέες ποινές οπότε έχουµε τον πίνακα: 6 5 7 8 Ποινή: 2 5 8 78 5 Ποινή: 6 5 Χ 5 Ποινή: 9 Ποινή: - Ποινή:7 2
Την µεγαλύτερη ποινή την έχει η στήλη οπότε θέτουµε x =min(5,5)=5. ιαγράφουµε τη στήλη (θα µπορούσαµε να διαγράψουµε και τη γραµµή ) και s =5-5=. Υπολογίζουµε τις νέες ποινές οπότε έχουµε τον πίνακα: 6 5 7 5 8 Ποινή: - 5 8 78 5 Ποινή: - 5 Χ Χ Ποινή: 9 Ποινή: - Ποινή: - Αφού σε κάθε γραµµή έχουν διαγραφεί 2 από τα κελιά δεν υπάρχουν πλέον ποινές στις γραµµές. Αποµένει η στήλη οπότε θέτουµε x =min(,5)=. ιαγράφουµε τη γραµµή και θέτουµε d =5-=5.. 6 5 7 5 8 Χ Ποινή: - 5 8 78 5 Ποινή: - 5 Χ Χ Ποινή: - Ποινή: - Ποινή: - Παραµένει η µεταβλητή x 2 οπότε x 2 =5 και διαγράφουµε στήλη και γραµµή 2: Η βασική δυνατή λύση είναι x =, x 2 =5, x =5 και x 2 =5. 24
6.. Η Μέθοδος SIMPLEX σε Προβλήµατα Μεταφορών (ΠΜ) Η εφαρµογή του αλγόριθµου SIMPLEX σε ΠΜ είναι απλούστερη ως προς την αλγεβρική της διαδικασία σε ό,τι αφορά, κυρίως, την είσοδο νέας µεταβλητής στη βάση. ΙΑ ΙΚΑΣΙΑ ΕΙΣΟ ΟΥ ΣΤΗ ΒΑΣΗ Ακολουθούνται τα παρακάτω βήµατα: Καθορίζεται (σύµφωνα µε κριτήριο που ακολουθεί) η µεταβλητή που θα εισέλθει στη βάση. Βρίσκεται ο βρόχος (ο οποίος είναι µοναδικός) ο οποίος περιέχει την µεταβλητή που θα εισέλθει στη βάση και κάποιες βασικές µεταβλητές. Υπολογίζοντας µόνο τις µεταβλητές του βρόχου, σηµειώνουµε αυτές (εκτός αυτής που εισέρχεται) που βρίσκονται σε άρτιο αριθµό κελιών µακριά από το κελί της εισερχόµενης µεταβλητής ως άρτιες και αυτές που βρίσκονται σε περιττό αριθµό κελιών µακριά από το κελί της εισερχόµενης µεταβλητής ως περιττές (επί του βρόχου φυσικά). Βρίσκουµε το κελί της περιττής µεταβλητής που έχει την µικρότερη τιµή, την οποία ονοµάζουµε τιµή θ. Ελαττώνουµε την τιµή κάθε περιττής µεταβλητής κατά θ και αυξάνουµε την τιµή κάθε άρτιας µεταβλητής κατά θ. Οι τιµές εκτός βρόχου δεν αλλάζουν. Αν θ= η εισερχόµενη µεταβλητή θα έχει τιµή και µια περιττή µεταβλητή που θα έχει τιµή θα εγκαταλείψει τη βάση. Στην περίπτωση αυτή η λύση ήταν εκφυλισµένη πριν την διαδικασία εισαγωγής βάσης και παραµένει εκφυλισµένη. Αν πάνω από ένα κελιά έχουν τιµή ίση µε θ, η επιλογή γίνεται κατά βούληση. Και πάλι όµως η λύση είναι εκφυλισµένη. Για την επίδειξη των παραπάνω θα χρησιµοποιήσουµε το παράδειγµα διανοµής καυσίµων: Με εφαρµογή της µεθόδου βορειοδυτικού τετραγώνου, µια αρχική βασική δυνατή λύση είναι η x =5, x 2 =, x 22 =2, x 2 =2, x = και x 4 =. Έστω ότι επιθυµούµε να βρούµε τη νέα βασική λύση όταν εισέρχεται στη βάση η µεταβλητή x 4 : 5 5 2 2 5 4 45 2 25
Ο βρόχος που περιλαµβάνει τη x 4 και κάποιες από τις βασικές µεταβλητές είναι ο: (,4) [άρτιο]-(,4) [περιττό]-(,) [άρτιο]-(2,)[περιττό]-(2,) [άρτιο]-(,) [περιττό]. Τα κελιά µε άρτιες τιµές είναι τα (,4), (,), (2,) ενώ τα κελιά µε περιττές τιµές είναι τα (,), (,4), (2,). Το κελί µε την µικρότερη τιµή είναι το x 2 =2 oπότε θ=2. Η νέα βασική δυνατή µεταβλητή φαίνεται στον παρακάτω πίνακα: 5-2=5 +2= 5 +2= 2 2-2= (µη βασική) +2= - 2= 45 2 5 4 Η νέα λύση είναι βασική δυνατή αφού δεν περιέχει βρόχο και είναι η x =5, x 4 =2, x 2 =, x 22 =2, x = και x 4 =. Όλες οι άλλες µεταβλητές έχουν τιµή. ΥΠΟΛΟΓΙΣΜΟΣ ΝΕΑΣ ΓΡΑΜΜΗΣ Όπως αναλύθηκε σε προηγούµενο κεφάλαιο, για µια βασική λύση BV, ο νέος συντελεστής κάθε µεταβλητής x ij (c ij ) της γραµµής υπολογίζεται ως συνάρτηση του παλαιού συντελεστή c ij ως: c' ij =c BV B - a ij -c ij όπου a ij η στήλη µε τους συντελεστές για την µεταβλητή x ij (στο αρχικό ΠΜ έχουµε αφαιρέσει τον πρώτο περιορισµό προσφοράς κατά τα προαναφερθέντα). Αφού έχουµε πρόβληµα ελαχιστοποίησης, η βάση θα παραµείνει βέλτιστη αν όλες οι νέες τιµές c ij είναι µη θετικές, αλλιώς εισάγουµε στη βάση την µεταβλητή µε τον πλέον θετικό συντελεστή. Υπολογίζουµε την τιµή c BV B - η οποία έχει m+n- στοιχεία (ο πρώτος περιορισµός προσφοράς έχει απαλειφεί): BV c B = [ u... u... ] 2 όπου u 2,,u m τα στοιχεία που αντιστοιχούν στους m- περιορισµούς προσφοράς και,, n τα στοιχεία που αντιστοιχούν στους n m n 26
περιορισµούς ζήτησης. Για τον καθορισµό του c BV B -, σε κάθε πίνακα οι βασικές µεταβλητές έχουν c ij =. Συνεπώς για κάθε βασική µεταβλητή είναι c BV B - a ij -c ij = (*). Γενικά, σε ΠΜ, η παραπάνω εξίσωση είναι εύκολη ως προς την επίλυσή της. Λόγου χάρη, για το παράδειγµα διανοµής καυσίµων, η αρχική βασική λύση φαίνεται στον παρακάτω πίνακα: 5 8 6 9 5 9 2 2 2 7 5 4 9 6 5 4 45 2 Η βάση είναι η {x,x 2,x 22,x 2,x,x 4 }. Από τη σχέση (*) είναι: c' = 2 2 4 ' = u2 u 2 4 9 = u2 + [ u u ] 8 = 8 = [ ] 9 c 2 = 27
[ ] 2 u 2 u u ' c 2 2 4 2 2 22 = + = = [ ] u u u ' c 2 4 2 2 2 = + = = [ ] 6 u 6 u u ' c 4 2 2 = + = = [ ] 5 u 5 u u ' c 4 4 2 2 4 = + = = Για κάθε βασική µεταβλητή x ij (εκτός αυτών όπου i=) παρατηρούµε ότι η (*) µειώνεται σε u i + j =c ij. Aν ορίσουµε u =, η (*) µειώνεται σε u i + j =c ij για όλες τις βασικές µεταβλητές. Συνεπώς για να επιλύσουµε ως προς c BV B -, πρέπει να επιλύσουµε το σύστηµα m+n εξισώσεων : u =, u i + j =c ij για όλες τις βασικές µεταβλητές. Για το παράδειγµα διανοµής καυσίµων: u = u 2 + 2 =2 u + =9 u 2 + = 28
u 2 + =9 u + =6 u + 4 =5 Επιλύοντας προκύπτει =8, u 2 =, 2 =, =2, u =4, 4 =. Για κάθε µη βασική µεταβλητή υπολογίζουµε τα c ij : c' 2 =+-6=5 c =+2-=2 c 4 =+-9=-8 c 24 =+-7=-5 c =4+8-4=-2 c 2 =4+-9=6 Η c 2 είναι η πλέον θετική, οπότε η x 2 θα εισέλθει στη βάση. ΚΑΘΟΡΙΣΜΟΣ ΤΗΣ ΜΗ ΒΑΣΙΚΗΣ ΜΕΤΑΒΛΗΤΗΣ ΠΟΥ ΕΙΣΕΡΧΕΤΑΙ ΣΤΗ ΒΑΣΗ Έστω u i η περιθώρια τιµή του i περιορισµού προσφοράς και j η περιθώρια τιµή του j περιορισµού ζήτησης. Αφού απαλείφεται ο ος περιορισµός προσφοράς είναι u =. Αν αυξήσουµε το δεξιό µέλος ενός περιορισµού προσφοράς i και το δεξιό µέλος ενός περιορισµού ζήτησης j κατά, η βέλτιστη τιµή θα µειωνόταν κατά u i - j. Έστω ότι η x ij είναι µη βασική. Αν αυξήσουµε την x ij κατά, το κόστος αυξάνει κατά c ij αλλά και µια µονάδα λιγότερη θα µεταφερθεί από το σηµείο προσφοράς i στο σηµείο ζήτησης j. Αυτό ισοδυναµεί µε µείωση του δεξιού µέλους τόσο του περιορισµού προσφοράς όσο και του περιορισµού ζήτησης κατά µονάδα. Το z θα αυξηθεί κατά u i - j. Άρα αύξηση του x ij κατά θα αυξήσει το z συνολικά κατά c ij -u i - j. Άρα, αν c ij -u i - j (ή u i + j -c ij ) για όλες τις µη βασικές µεταβλητές, η τρέχουσα βάση είναι βέλτιστη. Αν όµως για κάποια µη βασική µεταβλητή είναι c ij -u i - j < (ή u i + j -c ij >), το z µπορεί να µειωθεί κατά u i + j -c ij ανά µονάδα του x ij, εισάγοντας το x ij στη βάση. Γενικά λοιπόν, αν c ij -u i - j (ή u i + j -c ij ) για όλες τις µη βασικές µεταβλητές, η τρέχουσα βάση είναι βέλτιστη. Αλλιώς η µη βασική µεταβλητή µε την πλέον θετική τιµή του u i + j -c ij πρέπει να εισέλθει στη βάση. Για να βρούµε τα u i και j ενεργούµε ως εξής: ο συντελεστής της µη βασικής µεταβλητής στη γραµµή είναι η ποσότητα που θα µειωθεί το z για µοναδιαία αύξηση του x ij, δηλαδή u i + j -c ij. Οπότε µπορούµε να επιλύσουµε ως προς u i και j το σύστηµα u = και u i + j -c ij = για όλες τις βασικές µεταβλητές. Η παραπάνω διαδικασία φαίνεται στο ακόλουθο παράδειγµα (τµήµα της επίλυσης του παραδείγµατος διανοµής καυσίµων): 29
5 8 6 9 5 9 2 2 2 7 5 4 9 6 5 4 45 2 Βρίσκουµε τα u i και j επιλύοντας το σύστηµα: u = u + =8 u 2 + =9 u 2 + 2 =2 u 2 + = u + =6 u + 4 =5 Η λύση στο παραπάνω σύστηµα είναι =8, u 2 =, 2 =, =2, u =4, 4 =. Για κάθε µη βασική λύση υπολογίζουµε τα c ij =u i + j -c ij οπότε: c' 2 =+-6=5 c =+2-=2 c 4 =+-9=-8 c 24 =+-7=-5 c =4+8-4=-2 c 2 =4+-9=6 Ο πλέον θετικός συντελεστής είναι ο c 2 οπότε η x 2 θα εισέλθει στη βάση. ΠΑΡΑ ΕΙΓΜΑ Ας θεωρήσουµε το παράδειγµα διανοµής καυσίµων, στο οποίο έχουµε µια αρχική βασική δυνατή λύση. Έχουµε καθορίσει ότι η µεταβλητή x 2 θα εισέλθει στη βάση. Στον παρακάτω πίνακα φαίνεται ο βρόχος ο οποίος περιλαµβάνει την x 2 και κάποιες από τις βασικές µεταβλητές και είναι ο (,2)-(,)-(2,)-(2,2). Τα περιττά κελιά του βρόχου είναι τα (,) και (2,2).
5 8 6 9 5 9 2 2 2 7 5 4 9 6 5 4 45 2 Αφού x = και x 22 =2, η εισαγωγή της βάσης θα µειώσει τις x και x 22 κατά και θα αυξήσει τις τιµές των x 2 και x 2 ανά. Η βάση φαίνεται στον παρακάτω πίνακα: j = 8 2 7 u i= 5 8 6 9 5 9 2 2 2 7 5-2 4 9 6 5 4 45 2 Οι νέες τιµές u i, j είναι: u = u 2 + = u 2 + 2 =2 u 2 + =9 u + 4 =5 u + 2 =9 u + =8 Υπολογίζοντας τα c ij για κάθε µη βασική µεταβλητή, είναι c 2 =5, c 24 = και c =2 οι µόνοι θετικοί συντελεστές. Άρα εισάγουµε στη βάση τη x 2. Ο βρόχος που αφορά τη x 2 και κάποιες από τις βασικές µεταβλητές είναι (,2)-(2,2)-(2,)-(,). Τα περιττά κελιά είναι τα (2,2) και (,). Αφού x 22 = είναι η µικρότερη τιµή περιττού κελιού, µειώνουµε τα x 22 και x
κατά και αυξάνουµε τα x 2 και x 2 κατά, οπότε προκύπτει ο παρακάτω πίνακας: j = 8 6 2 2 u i = 25 8 6 9 5 2 9 2 7 5 4 9 6 5 4 45 2 Οι νέες τιµές u i, j είναι: u = u + 2 =6 u 2 + =9 u + 2 =9 u + =8 u + 4 =5 u 2 + = Υπολογίζοντας τα c ij για κάθε µη βασική µεταβλητή, είναι c =2 ο µόνος θετικός συντελεστής. Άρα εισάγουµε στη βάση τη x. Ο βρόχος που αφορά τη x και κάποιες από τις βασικές µεταβλητές είναι (,)-(2,)- (2,)-(,). Τα περιττά κελιά είναι τα (2,) και (,). Αφού x =25 είναι η µικρότερη τιµή περιττού κελιού, µειώνουµε τα x 2 και x κατά 25 και αυξάνουµε τα x και x 2 κατά 25, οπότε προκύπτει ο παρακάτω πίνακας: 2
j = 6 6 2 Προσφορά u i = 8 6 9 5 2 9 2 7 5 4 9 6 5 4 Ζήτηση 45 2 Οι νέες τιµές u i, j είναι: u = u 2 + = u 2 + =9 u + = u + 4 =5 u + 2 =9 u + 2 =6 Όλοι οι συντελεστές c ij είναι µη θετικοί οπότε έχουµε βρει τη βέλτιστη λύση που είναι x 2 =, x =25, x 2 =45, x 2 =5, x 2 =, x 4 = και z=2 ΕΥΡΩ. 6.4. Ανάλυση Ευαισθησίας σε Προβλήµατα Μεταφορών Η µέθοδος SIMPLEX στα ΠΜ απλουστεύεται, συνεπώς απλουστεύεται και η διαδικασία της ανάλυσης ευασθησίας σε αυτή. Ας εξετάσουµε λοιπόν κάποιες χαρακτηριστικές περιπτώσεις ανάλυσης ευαισθησίας: Θα πραγµατοποιήσουµε ανάλυση ευαισθησίας στο πρόβληµα διανοµής καυσίµων, του οποίου ο βέλτιστος πίνακας ΠΜ είναι ο:
j = 6 6 2 Προσφορά u i = 8 6 9 5 2 9 2 7 5 4 9 6 5 4 Ζήτηση 45 2 (Α) ΑΛΛΑΓΗ ΣΥΝΤΕΛΕΣΤΗ ΜΗ ΒΑΣΙΚΗΣ ΜΕΤΑΒΛΗΤΗΣ ΤΗΣ ΑΝΤΙΚΕΙΜΕΝΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ. Αλλαγή του συντελεστή αντικειµενικής συνάρτησης µη βασικής µεταβλητής δεν επηρεάζει το δεξιό µέλος των περιορισµών, οπότε η βάση θα παραµένει βέλτιστη. Αφού λοιπόν δεν αλλάζει η ποσότητα c BV B -, οπότε τα u i, j δεν αλλάζουν. Στη γραµµή, µόνο ο συντελεστής του x ij θα αλλάξει. Οπότε, όσο ο συντελεστής της µεταβλητής στη γραµµή είναι µη θετικός η βάση παραµένει βέλτιστη. Στο παράδειγµά µας θα εξετάσουµε το εύρος τιµών για το οποίο το κόστος µεταφοράς εκατοµµυρίου lt καυσίµων από τ δυϊλιστήριο στην πόλη διατηρεί τη βάση ως βέλτιστη. Έστω ότι αλλάζουµε το c από 8 σε 8+. Η βάση θα παραµείνει βέλτιστη για c =u + -c =+6-(8- )=-2- ή -2 ή c 8-2=6. (Β) ΑΛΛΑΓΗ ΣΥΝΤΕΛΕΣΤΗ ΒΑΣΙΚΗΣ ΜΕΤΑΒΛΗΤΗΣ ΣΤΗΝ ΑΝΤΙΚΕΙΜΕΝΙΚΗ ΣΥΝΑΡΤΗΣΗ Στην περίπτωση αυτή αλλάζει η ποσότητα c BV B - οπότε µπορεί να αλλάξουν και οι συντελεστές των µη βασικών µεταβλητών. Πρέπει να καθορίσουµε τα u i, j για να εξετάσουµε τη συµπεριφορά των µη βασικών µεταβλητών. Η τρέχουσα βάση παραµένει βέλτιστη αν όλοι οι συντελεστές των µη βασικών µεταβλητών στη γραµµή είναι µη θετικοί. Στο παράδειγµά µας θα εξεταστεί για ποιό εύρος κόστους η βάση παραµένει βέλτιστη για µεταβολή του κόστους µεταφοράς καυσίµων από το δυϊλιστήριο στην πόλη. Έστω ότι αλλάζουµε το c σε c +. Τότε είναι u + =+. Για να βρούµε τις τιµές των u i και j επιλύουµε το παρακάτω σύστηµα: 4
u = u + 2 =9 u 2 + =9 u + =+ u + 2 =6 u + 4 =5 u 2 + = Επιλύοντας έχουµε u =, 2 =6, =+, =6+, u 2 =-, u = και 4 =2. H βάση παραµένει βέλτιστη αν οι συντελεστές των µη βασικών µεταβλητών στη γραµµή παραµένουν µη θετικοί: c' =u + -8 = -2 c 4 =u + 4-9=-7 c 22 = u 2 + 2-2 =-- c 24 = u 2 + 4-7=-2- c = u + -4 =-5+ c = u + -6 = - Λαµβάνοντας το κοινό διάστηµα όλων των εξισώσεων προκύπτει τελικά ότι η βάση παραµένει βέλτιστη για -2 2 ή 8 c 2. (Γ) ΤΑΥΤΟΧΡΟΝΗ ΑΥΞΗΣΗ ΠΡΟΣΦΟΡΑΣ S I ΚΑΙ ΖΗΤΗΣΗΣ D J ΚΑΤΑ. Η αλλαγή αυτή διατηρεί ένα ισορροπηµένο ΠΜ. Αφού τα u i και j µπορούν να θεωρηθούν οι αρνητικές τιµές των περιθώριων τιµών κάθε περιορισµού, ισχύει ότι αν η τρέχουσα βάση παραµένει βέλτιστη, τότε: Νέα τιµή z = Παλαιά τιµή z + u i + j. ηλαδή, αν στο παράδειγµά µας αυξήσουµε την ζήτηση της πόλης 2 κατά και την προσφορά του δυϊλιστηρίου κατά, το νέο κόστος θα είναι 2+ 6+ =26 ΕΥΡΩ. Αναλυτικότερα, µπορούµε να δούµε τα εξής: Αν η µεταβλητή x ij είναι βασική στη βέλτιστη λύση, αυξήστε την κατά. Αν η µεταβλητή x ij είναι µη βασική στη βέλτιστη λύση, βρείτε τον βρόχο που περιλαµβάνει αυτή και µερικές βασικές µεταβλητές. Βρείτε ένα περιττό κελί στη γραµµή. Αυξήστε την τιµή του κελιού αυτού κατά και αυξοµειώστε τις τιµές των κελιών του βρόχου κατά. Στο παράδειγµά µας, στην πρώτη περίπτωση, έστω ότι αυξάνουµε τα s και d 2 κατά 2. Αφού η µεταβλητή x 2 είναι βασική, η νέα βέλτιστη λύση είναι: 5
j = 6 6 2 Προσφορά u i = 8 2 6 25 9 7 45 9 2 5 7 5 4 9 6 5 4 Ζήτηση 45 2 Η νέα βέλτιστη λύση είναι z=2+2u +2 2 =2 ΕΥΡΩ. Στη δεύτερη περίπτωση, έστω ότι αυξάνουµε τα s και d κατά. Αφού η x είναι µη βασική µεταβλητή στην τρέχουσα βάση, πρέπει να βρούµε τον βρόχο του x και κάποιων βασικών µεταβλητών. Ο βρόχος είναι (,)- (,)-(2,)-(2,). Το περιττό κελί στη γραµµή είναι το x. Άρα η νέα βέλτιστη λύση θα βρεθεί αυξάνοντας το x και το x 2 κατά και µειώνοντας το x 2 κατά. Αυτό φαίνεται στον παρακάτω πίνακα: j = 6 6 2 Προσφορά u i = 8 6 26 9 6 46 9 2 4 7 5 4 9 6 5 4 Ζήτηση 46 2 Η νέα βέλτιστη τιµή του z είναι 2+u + =26 ΕΥΡΩ. 6
6.5. Προβλήµατα Ανάθεσης Τα προβλήµατα ανάθεσης αποτελούν µια κατηγορία των ΠΜ για τα οποία η επίλυση µε τον αλγόριθµο SIMPLEX είναι µη αποδοτική. Στην παράγραφο αυτή θα περιγράψουµε τα προβλήµατα αυτά όπως και αποδοτικές µεθόδους για την επίλυσή τους. Αρχικά όµως ας δώσουµε ένα παράδειγµα: Εταιρεία κατασκευής χωµατουργικών διαθέτει τέσσερα (4) µηχανήµατα χωµατουργικών εργασιών (ΜΧΕ) και τέσσερις (4) εργασίες (Ε) τις οποίες πρέπει να πραγµατοποιήσει, στα πλαίσια ενός έργου οδοποιίας. Ο χρόνος που απαιτεί κάθε µηχάνηµα για να πραγµατοποιήσει την κάθε εργασία φαίνεται στον παρακάτω πίνακα (πίνακας κόστους προβλήµατος ανάθεσης): Πίνακας 6.5. Πίνακας κόστους προβλήµατος ανάθεσης. ΜΧΕ \ Ε Ε Ε2 Ε Ε4 ΜΧΕ 4 5 8 7 ΜΧΕ2 2 2 6 5 ΜΧΕ 7 8 9 ΜΧΕ4 2 4 6 Επιθυµία της εταιρείας είναι να τοποθετήσει κάθε µηχάνηµα στην κατάλληλη εργασία για να ελαχιστοποιήσει το χρόνο κατασκευής. Να επιλυθεί το ΠΓΠ. Λύση: Ορίζουµε: x ij = αν στο ΜΧΕ i έχει ανατεθεί η εργασία j x ij = αν όχι. 7
Το πρόβληµα µπορεί να διατυπωθεί ως εξής: Min z: 4x +5x 2 +8x +7x 4 +2x 2 +2x 22 +6x 2 +5x 24 +7x +8x 2 +x +9x 4 +2x 4 +4x 42 +6x 4 +x 44 x +x 2 +x +x 4 = x 2 +x 22 +x 2 +x 24 = x +x 2 +x +x 4 = x 4 +x 42 +x 4 +x 44 = x +x 2 +x +x 4 = x 2 +x 22 +x 2 +x 42 = x +x 2 +x +x 4 = x 4 +x 24 +x 4 +x 44 = Οι πρώτοι τέσσερις περιορισµοί εξασφαλίζουν ότι σε κάθε ΜΧΕ αντιστοιχεί µια εργασία και οι άλλες τέσσερις ότι η εργασία πραγµατοποιείται. Εξαιρώντας προς στιγµήn το γεγονός ότι x ij -,, το πρόβληµα είναι ισορροπηµένο ΠΜ µε προσφορά και ζήτηση παντού ίση µε. Αυτός είναι και ο ορισµός του προβλήµατος ανάθεσης. Τελικά, ένα πρόβληµα καθορισµού εξαρτάται από το κόστος ανάθεσης µέσου κ.λ.π. σε εργασία. Ο πίνακας του προβλήµατος καθορισµού που περιέχει τις τιµές κόστους ονοµάζεται πίνακας κόστους. Για να βρούµε µια αρχική βασική λύση στο πρόβληµα µας χρησιµοποιούµε τηn µέθοδο του ελάχιστου κόστους και προκύπτει ο παρακάτω πίνακας: Εργασία Εργασία Εργασία Εργασία 5 8 7 ΜΧΕ 4 5 8 7 ΜΧΕ 2-2 2 2 6 5 ΜΧΕ -5 7 5 9 ΜΧΕ 4-2 4 6 Παρατηρούµε ότι ο µόνος θετικός συντελεστής µεταβλητής είναι ο c 4 (να υπολογιστεί για εξάσκηση), οπότε η x 4 εισέρχεται στη βάση. Ο βρόχος που περιέχει τη x 4 και κάποιες βασικές µεταβλητές είναι ο (4,) - (,) (,2) (4,2). Τα περιττά κελιά είναι τα x και x 42 και αφού είναι και τα δυο ίσα µε το, επιλέγουµε στην τύχη να εξάγουµε το x από τη βάση. 8
Προκύπτει ο παρακάτω πίνακας (να επαληθευτούν οι πράξεις για εξάσκηση): Εργασία Εργασία Εργασία Εργασία 5 7 7 ΜΧΕ 4 5 8 7 ΜΧΕ 2-2 2 2 6 5 ΜΧΕ -4 7 5 9 ΜΧΕ 4-2 4 6 Στον τελευταίο πίνακα, αν υπολογίσουµε τα νέα c ij, παρατηρούµε ότι όλα είναι αρνητικά. Συνεπώς έχουµε λάβει βέλτιστη λύση: x 2 =, x 24 =, x = και x 4 =. Απαιτούνται 5+5++2=5 ώρες εργασίας κατ ελάχιστο, στο ΜΧΕ ανατίθεται το έργο 2, στο ΜΧΕ 2 το έργο 4, στο ΜΧΕ το έργο και στο ΜΧΕ 4 το έργο. 6.5.. Η Ουγγρική Μέθοδος για την Επίλυση Προβληµάτων Ανάθεσης (ΠΑ) Είναι γεγονός ότι τα προβλήµατα ανάθεσης έχουν υψηλή πιθανότητα εκφυλισµού [Whinston], συνεπώς η χρήση του αλγόριθµου SIMPLEX για προβλήµατα µεταφορών µπορεί να µην παρέχει ικανοποιητική απόδοση. Για τον λόγο αυτόν εξετάζουµε την ουγγρική µέθοδο η οποία είναι η παρακάτω: Έστω ο πίνακας κόστους του προβλήµατος ανάθεσης. Βρίσκουµε το στοιχείο µε την ελάχιστη τιµή σε κάθε γραµµή του πίνακα κόστους m x m. Κατασκευάζουµε νέο πίνακα αφαιρώντας από κάθε στοιχείο της κάθε γραµµής, το µικρότερο στοιχείο αυτής. Εκτελούµε για το νέο πίνακα την ίδια εργασία ανά στήλη και προκύπτει ένας τελικός πίνακας που ονοµάζεται και πίνακας οριακού κόστους. ιαγράφουµε όλες τις γραµµές και στήλες του πίνακα οριακού κόστους που χρειάζονται ώστε να καλύψουν όλα τα µηδενικά του πίνακα, µε τον ελάχιστο αριθµό διαγραφών. Αν οι διαγεγραµµένες γραµµές και στήλες είναι m το πλήθος, υπάρχει βέλτιστη λύση. Αν όχι προχωρούµε στο επόµενο βήµα. Βρίσκουµε το µικρότερο στοιχείο κ του πίνακα οριακού κόστους (έστω λ) στον πίνακα, το οποίο δεν βρίσκεται σε γραµµή ή στήλη που έχει διαγραφεί στο προηγούµενο βήµα. Αφαιρούµε το κ από 9
όλα τα µη διαγεγραµµένα στοιχεία και το προσθέτουµε στα στοιχεία τα οποία διαγράφονται και σε γραµµή και σε στήλη ταυτόχρονα. Επιστρέφουµε στο προηγούµενο βήµα. ΠΑΡΑΤΗΡΗΣΕΙΣ ΕΠΙ ΤΗΣ ΜΕΘΟ ΟΥ Για να επιλυθεί πρόβληµα ανάθεσης µεγιστοποίησης πολλαπλασιάστε τον πίνακα κόστους (ή κερδους εφόσον έχουµε µεγιστοποίηση) µε - για να επιλυθεί ως πρόβληµα ελαχιστοποίησης. Αν το πρόβληµα είναι µη ισορροπηµένο, πρέπει να µετατραπεί σε ισορροπηµένο κατά τα προαναφερθέντα. Σε µεγάλα προβλήµατα είναι πιθανά δύσκολη η εύρεση ελάχιστου αριθµού διαγραφών [Gillet 976]. Θα γίνει επίδειξη του αλγορίθµου µε το παράδειγµα ανάθεσης µηχανηµάτων σε έργα: Ο αρχικός πίνακας κόστους είναι: Ελάχιστο γραµµής 4 5 8 7 5 2 2 6 5 2 7 8 9 2 4 6 2 Αφαιρούµε από κάθε γραµµή το ελάχιστο και προκύπτει ο πίνακας: 9 2 4 4 5 6 2 4 8 Ελάχιστο στήλης 2 Αφαιρούµε από κάθε στήλη το ελάχιστο και πραγµατοποιούµε διαγραφές των στηλών και γραµµών ώστε να καλύψουµε όλα τα µηδενικά (οι γραµµές και στήλες που διαγράφονται είναι οι γραµµοσκιασµένες): 4
9 4 4 5 4 2 4 6 Είναι m=4 ενώ οι διαγεγραµµένες γραµµές είναι τρεις οπότε η λύση δεν είναι βέλτιστη. Το µικρότερο στοιχείο που δεν διαγράφεται είναι το κελί (2,4) που είναι ίσο µε. Από κάθε µη διαγεγραµµένο κελί αφαιρούµε και προσθέτουµε στα διαγεγραµµένα εις διπλούν κελιά, δηλαδή τα (,) και (,), οπότε προκύπτει ο παρακάτω πίνακας στον οποίο εφαρµόζουµε το δεύτερο βήµα της µεθόδου: 9 5 5 4 5 Για να καλυφθούν όλα τα µηδενικά του πίνακα χρειάζεται να διαγραφούν τέσσερις γραµµές και στήλες του πίνακα. Επίσης είναι m=4 οπότε η λύση είναι βέλτιστη. Για να βρούµε τις τιµές αυτής παρατηρούµε ότι στη στήλη, το µόνο διαγεγραµµένο µηδέν είναι στη θέση (,), οπότε x =. Επίσης εξαιρείται η γραµµή και η στήλη. Ανάλογα, στη στήλη 2, είναι x 2 = οπότε εξαιρούνται η γραµµή και η στήλη 2. Επίσης, στη στήλη 4 το διαγεγραµµένο µηδεν (που δεν βρίσκεται σε γραµµή που έχει εξαιρεθεί είναι στη θέση (2,4) και είναι x 24 =. Eξαιρούνται και η γραµµή 2 µε τη στήλη 4. Τέλος, x 4 = οπότε εξαιρείται και η στήλη. Τελικά η λύση είναι x =, x 2 =, x 24 =, x 4 =. Η ουγγρική µέθοδος προσφέρει µια εύκολη εναλλακτική λύση σε προβλήµατα ανάθεσης, λόγω της απλότητας εφαρµογής της. 4