Ύλη Λογικού Σχεδιασµού Ι



Σχετικά έγγραφα
Εισαγωγή. Συνδυαστικά: Οι έξοδοι είναι συνάρτηση των εισόδων

4 η Θεµατική Ενότητα : Συνδυαστική Λογική. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Συνδυαστική Λογική. Επιμέλεια Διαφανειών: Δ.

3 η Θεµατική Ενότητα : Απλοποίηση Συναρτήσεων Boole. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

1 η Θεµατική Ενότητα : Αριθµητικά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

Επανάληψη Βασικών Στοιχείων Ψηφιακής Λογικής

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Απλοποίηση Συναρτήσεων Boole. Επιμέλεια Διαφανειών: Δ.

ΑΣΚΗΣΗ 4 ΣΧΕΔΙΑΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΛΟΓΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ

3. Απλοποίηση Συναρτήσεων Boole

a -j a 5 a 4 a 3 a 2 a 1 a 0, a -1 a -2 a -3

Αθροιστές. Ημιαθροιστής

e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ Συνδυαστικά Κυκλώµατα. 3.2 Σχεδιασµός Συνδυαστικής Λογικής 3.3 ιαδικασία Ανάλυσης 3.4 ιαδικασία Σχεδιασµού.

4.1 Θεωρητική εισαγωγή

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση

Ψηφιακά Συστήματα. 6. Σχεδίαση Συνδυαστικών Κυκλωμάτων

Ψηφιακή Σχεδίαση Εργαστηριο 1. Τμήμα: Μηχανικών Πληροφορικής κ Τηλεπικοινωνιών Διδάσκων: Δρ. Σωτήριος Κοντογιαννης Μάθημα 2 ου εξαμήνου

7. ΥΑ ΙΚΗ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες

Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία

Ψηφιακοί Υπολογιστές

ΚΕΦΑΛΑΙΟ 3 ο Αλγεβρα BOOLE και Λογικές Πύλες

ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Κυκλώµατα µε MSI. υαδικός Αθροιστής & Αφαιρέτης

2 η Θεµατική Ενότητα : Σύνθετα Συνδυαστικά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

Συνδυαστικά Κυκλώματα

PLD. Εισαγωγή. 5 η Θεµατική Ενότητα : Συνδυαστικά. PLAs. PLDs FPGAs

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΒΑΣΙΚΕΣ ΕΞEΙΔΙΚΕΥΣΕΙΣ ΣΕ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΚΑΙ ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ

Συνδυαστικά Λογικά Κυκλώματα

Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ.

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων

"My Binary Logic" Ένας προσομοιωτής λογικών πυλών στο Scratch

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ. Κεφάλαιο 3

Ψηφιακά Κυκλώματα (1 ο μέρος) ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική

Εισαγωγή στην Πληροφορική

Ψηφιακή Λογική και Σχεδίαση

Οικουμενικές Πύλες (ΝΑΝD NOR), Πύλη αποκλειστικού Η (XOR) και Χρήση KarnaughMaps

ΑΣΚΗΣΗ 3 ΣΥΝΔΥΑΣΤΙΚΑ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ: ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ

100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

ΜΕΡΟΣ 1 ο : Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα

σύνθεση και απλοποίησή τους θεωρήµατα της άλγεβρας Boole, αξιώµατα του Huntington, κλπ.

Συνδυαστική λογική και βασικά λογικά κυκλώματα. URL:

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Άλγεβρα Boole και Λογικές Πύλες 2. Επιμέλεια Διαφανειών: Δ.

w x y Υλοποίηση της F(w,x,y,z) με πολυπλέκτη 8-σε-1

Γ2.1 Στοιχεία Αρχιτεκτονικής. Γ Λυκείου Κατεύθυνσης

Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 2013 Διάρκεια εξέτασης : 160 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών:

Σ ή. : υαδικά. Ε ό. ή Ενότητα

i Το τρανζίστορ αυτό είναι τύπου NMOS. Υπάρχει και το συμπληρωματικό PMOS. ; Τι συμβαίνει στο τρανζίστορ PMOS; Το τρανζίστορ MOS(FET)

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Συνδυαστική Λογική / Κυκλώματα

Εργαστήριο Ψηφιακής Σχεδίασης

ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ. ιδάσκων : ρ. Β. ΒΑΛΑΜΟΝΤΕΣ. Πύλες - Άλγεβρα Boole 1

5.1 Θεωρητική εισαγωγή

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3

Βοηθητικές Σημειώσεις στη ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ

ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Ι ΕΞΕΤΑΣΕΙΣ ΦΕΒΡΟΥΑΡΙΟΥ 2010

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων

Ενότητα 8 Η ΠΥΛΗ XOR ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΩΔΙΚΟΠΟΙΗΣΗ

9 ο Μαθητικό Συνέδριο Πληροφορικής Κεντρικής Μακεδονίας. "My Binary Logic" Ένας προσομοιωτής λογικών πυλών στο Scratch

1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα

Περίληψη ΗΜΥ-210: Λογικός Σχεδιασµός. Λογικές Πύλες. BUFFER, NAND και NOR. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005

ΦΟΙΤΗΤΡΙΑ : ΒΟΥΛΓΑΡΙ ΟΥ ΜΑΡΙΑ, ΑΕΜ: 2109 ΕΠΙΒΛΕΠΩΝ : ΚΑΛΟΜΟΙΡΟΣ ΙΩΑΝΝΗΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ

Εισαγωγή στα Ψηφιακά Συστήματα

ΜΙΧΑΛΗΣ ΨΑΡΑΚΗΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ

Εισαγωγή στην πληροφορική

ΣΥΝΔΙΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ

Κεφάλαιο Τρία: Ψηφιακά Ηλεκτρονικά

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές

7 η Θεµατική Ενότητα : Καταχωρητές, Μετρητές και Μονάδες Μνήµης

Ελίνα Μακρή

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit!

C D C D C D C D A B

6.1 Θεωρητική εισαγωγή

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΑΣΚΗΣΗ 7 ΚΩΔΙΚΕΣ Η ΟΘΟΝΗ 7 ΤΜΗΜΑΤΩΝ - ΚΩΔΙΚΟΠΟΙΗTΕΣ ( ENCODERS )

ΣΠ. ΛΟΥΒΡΟΣ, Ν. ΣΚΛΑΒΟΣ

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ

Πράξεις με δυαδικούς αριθμούς

Η κανονική μορφή της συνάρτησης που υλοποιείται με τον προηγούμενο πίνακα αληθείας σε μορφή ελαχιστόρων είναι η Q = [A].

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1

Εργαστήριο Εισαγωγής στη Σχεδίαση Συστημάτων VLSI

Αρχιτεκτονικές Υπολογιστών BOOLEAN ALGEBRA

Μετατροπή δυαδικών αριθμών

Ψηφιακά Συστήματα. 3. Λογικές Πράξεις & Λογικές Πύλες

Παράσταση αριθμών «κινητής υποδιαστολής» floating point

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τμήμα Εφαρμοσμένης Πληροφορικής & Πολυμέσων. Ψηφιακή Σχεδίαση. Κεφάλαιο 2: Συνδυαστικά Λογικά

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφική Σχεδίαση

Λογική Σχεδίαση. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Αθηνών. Διδάσκων: Θωμάς Καμαλάκης

6.1 Καταχωρητές. Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f.

Ενότητα 6 ΑΝΑΛΥΣΗ & ΣΥΝΘΕΣΗ ΣΥΝΔΥΑΣΤΙΚΗΣ ΛΟΓΙΚΗΣ ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ ΠΟΛΛΩΝ ΕΠΙΠΕΔΩΝ

Ελίνα Μακρή

( 1) R s S. R o. r D + -

Transcript:

4 η Θεµατική Ενότητα : Συνδυαστική Λογική Ύλη Λογικού Σχεδιασµού Ι Κεφ 2 Κεφ 3 Κεφ 4 Κεφ 6 Συνδυαστική Λογική 2

Εισαγωγή Λογικά Κυκλώµατα Συνδυαστικά: Οι έξοδοι είναι συνάρτηση των εισόδων Ακολουθιακά: Οι έξοδοι είναι συνάρτηση των εισόδων και της κατάστασης των στοιχείων µνήµης(προηγούµενες είσοδοι) n είσοδοι Συνδυαστικό Λογικό Κύκλωµα ιαδικασία Σχεδιασµού.Καθορισµός Προβλήµατος 2.Καθορισµός εισόδων/εξόδων 3.Ονοµασία εισόδων/εξόδων 4.Πίνακας Αλήθειας 5.Απλοποίηση συναρτήσεων 6.Σχεδιασµός Λογικού ιαγράµµατος m έξοδοι m συναρτήσεις Boole n µεταβλητών Επιλογή Απλοποιηµένης Έκφρασης.Ελάχιστος αριθµός Πυλών 2.Ελάχιστος αριθµός εισόδων Πύλης 3.Ελάχιστο χρόνο διάδοσης σήµατος 4.Ελάχιστος αριθµός διασυνδέσεων 5.Περιορισµοί οδήγησης Συνδυαστική Λογική 3 Ηµι-Αθροιστής Άθροιση 2 bits Κρατούµενο (Carry), Άθροισµα (Sum). To κρατούµενο τροφοδοτεί την επόµενη σηµαντικότερη βαθµίδα x y C S (α) S=x y+xy C=xy (β) S=(x+y)(x +y ) C=xy (γ) S=(C+x y ) C=xy (δ) S=C (x+y) C=(x +y ) Συνδυαστική Λογική 4

x y C S Ηµι-Αθροιστής (γ) S=(C+x y ) C=xy (δ) S=C (x+y) C=(x +y ) Συνδυαστική Λογική 5 Πλήρης-Αθροιστής Άθροιση 3 bits Κρατούµενο (Carry), Άθροισµα (Sum). To κρατούµενο τροφοδοτεί την επόµενη σηµαντικότερη βαθµίδα x y z C S Συνδυαστική Λογική 6

Αφαιρέτες Ηαφαίρεση γίνεται µε πρόσθεση στον µειωτέο του συµπληρώµατος του αφαιρετέου. Ηµιαφαιρέτης x y Β D D=x y+xy Η D είναι ίδια µε την συνάρτηση S του Αθροιστή B=x y Πλήρης Αφαιρέτης x y z Β D x: Μειωτέος y: Αφαιρετέος z: Προηγούµ. Κρατούµενο Συνδυαστική Λογική 7 Μετατροπή Κωδίκων Η ύπαρξη πολλών κωδίκων οδηγεί στην ανάγκη µετατροπών ανάλογα µε την λειτουργία του κάθε συστήµατος. Γίνεται κυρίως για λόγους επικοινωνίας µεταξύ τους. Οι αχρησιµοποίητες καταστάσεις µπορούν να αποτελέσουν αδιάφορους όρους. Συνδυαστική Λογική 8

Μετατροπή Κωδίκων Χάρτες µετατροπέα κώδικα BCD σε excess-3 Συνδυαστική Λογική 9 Συνδυαστική Λογική

Μετατροπή Κωδίκων Z=D y=cd+c D =CD+(C+D) x=b C+B D+BC D = =B (C+D)+BC D = =B (C+D)+B(C+D) w=a+bc+bd=a+b(c+d) Συνδυαστική Λογική Ανάλυση Κυκλώµατος Από το κύκλωµα βρίσκουµε τις συναρτήσεις Boole:. Ονοµάζουµε τις εισόδους του κυκλώµατος 2. Βρίσκουµε τις συναρτήσεις σε κάθε επίπεδο µέχρι το τελευταίο. Συνδυαστική Λογική 2

Ανάλυση Κυκλώµατος Συνδυαστική Λογική 3 Οικουµενικότητα Πύλης Όχι-Και Οικουµενική Πύλη: Κάθε ψηφιακό σύστηµα µπορεί να υλοποιηθεί µε αυτήν. Συνδυαστική Λογική 4

Οικουµενικότητα Πύλης Όχι-Και. Σχεδιάζουµε το λογικό διάγραµµα µε πύλες ΚΑΙ, Η και ΌΧΙ 2. Μετατρέπουµε όλες τις πύλες ΚΑΙ σε ΌΧΙ-ΚΑΙ µε σύµβολα ΚΑΙ-αντιστροφής 3. Μετατρέπουµε όλες τις πύλες Η σε ΌΧΙ-ΚΑΙ µε σύµβολα αντιστροφής-η 4. Για κάθε κύκλο που δεν αναιρείται βάζουµε έναν αντιστροφέα Συνδυαστική Λογική 5 F=A+(B +C)(D +BE ) Συνδυαστική Λογική 6

Οικουµενικότητα Πύλης Όχι-Και F=(CD+E)(A+B ) Χρ. Καβουσιανός Συνδυαστική Λογική 7 Εξαγωγή Συνάρτησης & Πίνακα Αλήθειας Τ =(CD) =C +D T 2 =(BC ) =B +C T 3 =(B T ) = =B+CD T 4 =(AT 3 ) =[A(B+CD)] F=(T 2 T 4 )= =BC +A(B+CD) Συνδυαστική Λογική 8

Οικουµενικότητα Πύλης Ούτε. Σχεδιάζουµε το λογικό διάγραµµα µε πύλες ΚΑΙ, Η και ΌΧΙ 2. Μετατρέπουµε όλες τις πύλες Η σε ΟΥΤΕ µε σύµβολα αντιστροφής-η 3. Μετατρέπουµε όλες τις πύλες ΚΑΙ σε ΌΥΤΕ µε σύµβολα αντιστροφής- ΚΑΙ 4. Για κάθε κύκλο που δεν αναιρείται βάζουµε έναν αντιστροφέα Συνδυαστική Λογική 9 Οικουµενικότητα Πύλης Ούτε F=(ΑΒ+E)(C+D) Συνδυαστική Λογική 2

Οικουµενικότητα Πύλης Ούτε F=[(C+D)B +A](Β+C )=(A+C+D)(A+B )(B+C ) Συνδυαστική Λογική 2 Η Συνάρτηση Αποκλειστικό Ή Αποκλειστικό Ή (XOR) x y=x y+xy Σχ. Αντιστρ. Αποκλειστικό OYTE (XNOR) (x y) =xy+x y Είναι Αντιµεταθετική & Προσεταιριστική εν φτιάχνονται συχνά πύλες XOR > 2 εισόδους Η Συνάρτηση XOR πολλών µεταβλητών είναι περιττή: παίρνει τιµή µόνο όταν περιττός αριθµός εισόδων είναι ίσος µε Συνδυαστική Λογική 22

Η Συνάρτηση Αποκλειστικό Ή Συνδυαστική Λογική 23 Γεννήτρια & Ελεγκτής Ισοτιµίας Συνδυαστική Λογική 24

Γεννήτρια & Ελεγκτής Ισοτιµίας Τα κυκλώµατα αυτά χρησιµοποιούνται στην ανίχνευση λαθών κατά την µετάδοση ή λειτουργία των κυκλωµάτων Το bit ισοτιµίας είναι περιττή πληροφορία η οποία όµως µπορεί να χρησιµοποιηθεί για την ανίχνευση µονού αριθµού λαθών. Συνδυαστική Λογική 25 ΑΣΚΗΣΗ Συνδυαστική Λογική 26

Στην άρση βαρών µια προσπάθεια ενός αθλητή θεωρείται έγκυρη όταν τη δέχονται τουλάχιστον δύο από τους τρεις κριτές (Κ,Κ2,Κ3) και άκυρη διαφορετικά. Σχεδιάστε συνδυαστικό κύκλωµα, χρησιµοποιώντας µόνο πύλες NOR, το οποίο να δίνει έξοδο (Χ) ίση µε λογικό όταν µια προσπάθεια θεωρείται άκυρη. Συµβολίστε µε λογικό την αποδοχή της προσπάθειας από έναν κριτή και µε λογικό το αντίθετο. Συνδυαστική Λογική 27 Κ Κ2 Κ3 X Συνδυαστική Λογική 28

Συνδυαστική Λογική 29 Συνδυαστική Λογική 3

Συνδυαστική Λογική 3 Άσκηση Το σύστηµα ασφάλειας του χρηµατοκιβωτίου µιας τράπεζας έχει δυο πόρτες, την εξωτερική (X) και την εσωτερική (S) που οδηγεί στο χώρο που φυλάγεται ο χρυσός της τράπεζας. Οι δυο αυτές πόρτες έχουν ηλεκτρονικές κλειδαριές µε θέσεις για τρία κλειδιά τα οποία έχουν: Ο ιευθυντής (D) - Ο Υποδιευθυντής (Υ) - Ο Ταµίας (Τ). Η εξωτερική πόρτα ανοίγει µε τα κλειδιά οποιονδήποτε δύο από τους παραπάνω υπαλλήλους. Συνδυαστική Λογική 32

Η εσωτερική πόρτα ανοίγει µόνο µε τα κλειδιά και των τριών υπαλλήλων. Συµβολίστε µε λογικό την παρουσία ενός υπαλλήλου µε το κλειδί και µε λογικό το αντίθετο. Συµβολίστε µε λογικό την κατάσταση µία πόρτα να είναι ανοιχτή και µε λογικό την κατάσταση να είναι κλειστή. Συνδυαστική Λογική 33 Α. Αν το σύστηµα ασφαλείας υλοποιείται µε ένα συνδυαστικό κύκλωµα, καθορίστε τις εισόδους και τις εξόδους του και κατασκευάστε τον πίνακα αλήθειας. Β. Απλοποιείστε το κύκλωµα χρησιµοποιώντας χάρτες Karnaugh και σχεδιάστε το µε λογικές πύλες. Συνδυαστική Λογική 34

Λύση Είναι προφανές ότι στο συνδυαστικό κύκλωµα οι είσοδοι αντιστοιχούν στα τρία κλειδιά που έχουν οι υπάλληλοι (D,Υ,Τ) ενώ οι έξοδοι του είναι οι δύο πόρτες (X,S). Λαµβάνοντας υπόψη τα δεδοµένα της εκφώνησης ο πίνακας αλήθειας συµπληρώνεται όπως φαίνεται παρακάτω: Συνδυαστική Λογική 35 Συνδυαστική Λογική 36

Χ = Σ ( 3, 5, 6,7 ) S=Σ ( 7 ) Συνδυαστική Λογική 37 Συνδυαστική Λογική 38

Συνδυαστική Λογική 39 Συνδυαστική Λογική 4

Άσκηση Συνδυαστική Λογική 4 Συνδυαστική Λογική 42

Συνδυαστική Λογική 43 Συνδυαστική Λογική 44

Συνδυαστική Λογική 45 Συνδυαστική Λογική 46

Άσκηση Συνδυαστική Λογική 47 Συνδυαστική Λογική 48

Συνδυαστική Λογική 49 Συνδυαστική Λογική 5

Συνδυαστική Λογική 5 Συνδυαστική Λογική 52

Συνδυαστική Λογική 53