Μοντέλα Βαθμονόμησης-Analytic Hierarchy Process

Σχετικά έγγραφα
Συστήματα Στήριξης Αποφάσεων

του Ανθρώπινου υναµικού µε το Πρότυπο ANALYTIC HIERARCHY PROCESS (AHP) School of Economics) ΤΕΙ ΑΘΗΝΑΣ CFRAGOS@TEIATH.GR Τηλ..

Εισαγωγή στη Διαδικασία Ιεραρχικής Ανάλυσης. Ρόκου Έλενα Μεταδιδακτορική Ερευνήτρια ΕΜΠ Κηρυττόπουλος Κωνσταντίνος Επ.

Ιεραρχική αναλυση αποφασεων Analytic hierarchy process (AHP)

«Συστήματα Υποστήριξης Αποφάσεων» «Εφαρμογή Υποστήριξης Απόφασης με την Μέθοδο Ιεραρχικής Ανάλυσης Αποφάσεων AHP»

ΤΕΤΡΑ ΙΑ ΑΝΑΛΥΣΗΣ Ε ΟΜΕΝΩΝ, ΤΕΥΧΟΣ 15 (σσ ) DATA ANALYSIS BULLETIN, ISSUE 15 (pp ) Ιεραρχική Ανάλυση

Στο στάδιο ανάλυσης των αποτελεσµάτων: ανάλυση ευαισθησίας της λύσης, προσδιορισµός της σύγκρουσης των κριτηρίων.

ΑΞΙΟΛΟΓΗΣΗ ΚΡΙΤΗΡΙΩΝ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΩΝ. Δ. Καραμανώλης Αν. Καθηγητής Τμ. Δασολογίας & Φυσικού Περιβάλλοντος

Συστήματα Στήριξης Αποφάσεων

Μέθοδοι Βελτιστοποίησης

1.4 Μέθοδος Αναλυτικής Ιεράρχησης

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήµη των Αποφάσεων, ιοικητική Επιστήµη 5 ο Εξάµηνο. Τµήµα Στατιστικής & Αναλογιστικών-Χρηµατοοικονοµικών Μαθηµατικών

Σημείωμα Αδειοδότησης

Διαχείριση Περιβάλλοντος - Νομοθεσία

Περιεχόµενα µαθήµατος

1/12/2016. Πλεονεκτήματα. Μειονεκτήματα. (Roy, 1994)

ΜΕΘΟΔΟΣ NAIADE ΑΞΙΟΛΟΓΗΣΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΟΥ ΧΩΡΟΥ ΠΟΛΥΚΡΙΤΗΡΙΑΚΗ ΑΞΙΟΛΟΓΗΣΗ. Υπεύθυνη Μαθήματος Αναστασία Στρατηγέα Αναπλ. Καθηγ. Ε.Μ.Π.

Κεφάλαιο 4: Μεθοδολογία Αναλυτικής Ιεράρχησης

Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Περιγραφή µεθόδων πολυκριτηριακής ανάλυσης/λήψης αποφάσεων και επιλογή της µεθόδου για εφαρµογή στα πλαίσια του προγράµµατος. 1.

Πολυκριτήρια Ανάλυση και Λήψη Αποφάσεων

Παραδοτέο Π.1 (Π.1.1) Εκθέσεις για προµήθεια εκπαιδευτικού υλικού

ΑΣΚΗΣΗ 6 Συνδεσμολογία Αντιστάσεων ΙI (αντιστάσεις σε παράλληλη σύνδεση) Σκοπός

Αξιολόγηση και επιλογή δράσης (έργου)

«Ο κύριος στόχος δεν είναι να ανακαλύψουµε

ΧΩΡΟΤΑΞΙΑ H ΔΙΑΔΙΚΑΣΙΑ TOY ΣΧΕΔΙΑΣΜΟΥ. Αναστασία Στρατηγέα. Υπεύθυνη Μαθήματος

Επιχειρησιακή Έρευνα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ

Στρατηγικές Επιλογής Προσωπικού: Η Περίπτωση του ΟΤΕ Α.Ε

Εγχειρίδιο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Έργων

ΕΠΙΧΕΙΡΗΣΙΑΚΗ EΡΕΥΝΑ & ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ OPERATIONS RESEARCH & MANAGEMENT SCIENCE

Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis)

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1)

ΜΟΝΤΕΛΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ

Εφαρμοσμένα Μαθηματικά ΙΙ

Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων

Σχολή Περιβάλλοντος, Γεωγραφίας & Εφαρμοσμένων Οικονομικών. Τμήμα Γεωγραφίας. Εφαρμοσμένη ανάλυση Γεωγραφικών Δεδομένων με την αξιοποίηση ΣΓΠ

Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων

Συστήματα Στήριξης Αποφάσεων

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1

«ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ» Ακαδημαϊκό έτος: Άσκηση : «Πολυκριτήρια Μέθοδος UTADIS»

Πολυκριτηριακός Γραμμικός Προγραμματισμός. Συστήματα Αποφάσεων Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης

Αριθμητική Ανάλυση 4.5 Ιδιοτιμές και ιδιοδιανύσματα πινάκων. Γ. Παπαευαγγέλου, ΕΔΙΠ, ΤΑΤΜ/ΑΠΘ

Διαχείριση Υδατικών Πόρων Πολυκριτηριακή ανάλυση

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Ταλμούδ. Πώς η θεωρία παιγνίων έλυσε ένα θρησκευτικό μυστήριο

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Μαθηματικών Π.Μ.Σ. Θεωρητικής Πληροφορικής και Θεωρίας Συστημάτων και Ελέγχου

ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΣΤΗ ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Μοντελοποίηση Προσομοίωση

Οµάδες ψηφοφόρων Αρ. Μελών Οµάδων Προτιµήσεις Α 1 x > y > z Β 1 y > z >x Γ 1 z > x > y

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ

ΜΕΘΟΔΟΣ ΠΟΛΥΚΡΙΤΗΡΙΑΚΗΣ ΑΝΑΛΥΣΗΣ ELECTRE

ΠΟΛΥΚΡΙΤΗΡΙΑΚΗ ΑΝΑΛΥΣΗ

ΙΕΡΑΡΧΙΚΗ ΑΝΑΛΥΣΗ ΑΠΟΦΑΣΕΩΝ (ΑΗΡ) Ένα Μοντέλο Λήψης Αποφάσεων σε Συνθήκες Πολλαπλών Κριτηρίων

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΠΑΡΑΓΩΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ

ΣΥΣΤΗΜΑ ΥΠΟΣΤΗΡΙΞΗΣ ΑΠΟΦΑΣΕΩΝ ΓΙΑ ΑΡΙΣΤΟΠΟΙΗΣΗ ΤΩΝ ΣΥΣΤΗΜΑΤΩΝ ΝΕΡΟΥ

ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ

1 ιαδικασία διαγωνιοποίησης

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2.

ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

Ο ΤΟΠΟΣ ΕΓΚΑΤΑΣΤΑΣΗΣ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

ΔΙΟΙΚΗΤΙΚΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ I ΑΝΑΛΥΣΗ ΑΠΟΦΑΣΕΩΝ. Αναπλ. Καθηγητής Δ.Μ. Εμίρης Λέκτορας Ι. Γιαννατσής ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ

Διδακτική Μαθηματικών Ι Ενδεικτικές οδηγίες για τη δραστηριότητα

Πολυκριτηριακά Συστήµατα Υποστήριξης Αποφάσεων

Μέθοδοι Βελτιστοποίησης

Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ. Value at Risk (VaR) και Expected Shortfall

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6)

Συστήματα Υποστήριξης Αποφάσεων

Εισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί

Μάθημα: Συστήματα Υποστήριξης Αποφάσεων

Διαχείριση Εφοδιαστικής Αλυσίδας II

Συστήματα Υποστήριξης Αποφάσεων Ενότητα # 1: Μία Ανατομία των Αποφάσεων

Κύρια σημεία. Η έννοια του μοντέλου. Έρευνα στην εφαρμοσμένη Στατιστική. ΈρευναστηΜαθηματικήΣτατιστική. Αντικείμενο της Μαθηματικής Στατιστικής

ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ I ΑΝΑΛΥΣΗ ΑΠΟΦΑΣΕΩΝ. Λέκτορας Ι. Γιαννατσής Καθηγητής Π. Φωτήλας ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ

ΑΞΙΟΛΟΓΗΣΗ ΕΡΓΩΝ ΣΤΟΝ ΤΟΜΕΑ ΤΩΝ ΜΕΤΑΦΟΡΩΝ. Λ. Γιάνναρου, Ε. Ζέρβας Σχολή Θετικών Επιστημών & Τεχνολογίας, Ελληνικό Ανοιχτό Πανεπιστήμιο

3) το παράθυρο Πίνακας τιμών όπου εμφανίζονται οι τιμές που παίρνουν οι παράμετροι

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

Ένα υπόδειγμα επιλογών στη φαρμακευτική περίθαλψη για τη βελτίωση της ατομικής χρησιμότητας των καταναλωτών υγείας.

Η βασική μας εκπαίδευση στο WISC-V GR αποτελείται από 2 μέρη:

Μάθηµα 11. Κεφάλαιο: Στατιστική

Σεμινάριο Τελειοφοίτων. 6- Εμπειρική μέτρηση & ανάλυση

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ

Two projects Η συμβολή της Αστρονομίας στην ανάπτυξη των επιστημών: A) Το Ηλιακό μας Σύστημα και B) 2 ος Νόμος του Kepler!

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής

Παρουσίαση 2 η : Αρχές εκτίμησης παραμέτρων Μέρος 1 ο

E[ (x- ) ]= trace[(x-x)(x- ) ]

ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΣΤΥΛΙΑΝΗΣ Κ. ΣΟΦΙΑΝΟΠΟΥΛΟΥ Αναπληρώτρια Καθηγήτρια. Τµήµα Τεχνολογίας & Συστηµάτων Παραγωγής.

ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ. Διπλωματική Εργασία

Ανάλυση δικτύων διανομής

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

Transcript:

Μοντέλα Βαθμονόμησης-Analytic Hierarchy Process

Αναλυτική Ιεραρχική ιαδικασία Η Αναλυτική Ιεραρχική ιαδικασία ανήκει στην κατηγορία των μεθόδων συγκρίσεων σε ζεύγη και αναπτύχθηκε στα τέλη της δεκαετίας του 70 ως μέθοδος διαμόρφωσης αναλογικών κλιμάκων μέτρησης για την αξιολόγηση των παραμέτρων ημιδομημένων προβλημάτων απόφασης [Saaty 1977, Saaty 1978]. Παρά το γεγονός ότι η αξιωματική θεμελίωσή της παρουσιάστηκε μετά από σχεδόν μια δεκαετία [Saaty 1986], η μέθοδος είχε ήδη αρχίσει να γίνεται εξαιρετικά δημοφιλής μεταξύ ερευνητών και μελετητών [Vargas 1990, Saaty & Forman 1996]. Ενδεικτικό των παραπάνω είναι το γεγονός ότι ήδη μέχρι το 1987 η μέθοδος αποτέλεσε αντικείμενο 21 διδακτορικών διατριβών μόνο στις ΗΠΑ [Shim 1989].

Αναλυτική Ιεραρχική ιαδικασία-βασικές Αρχές Η χρήση ιεραρχικών δομών για την μοντελοποίηση του προβλήματος απόφασης. Η αξιολόγηση των παραμέτρων του προβλήματος απόφασης σε ζεύγη για κάθε επίπεδο της ιεραρχίας Η χρήση της θεμελιώδους κλίμακας των προτιμήσεων για την απόδοση της έντασης των σχέσεων επικράτησης Η χρήση του ιδιοδιανύσματος του πίνακα των ανά ζεύγος συγκρίσεων για τον υπολογισμό των τοπικών προτεραιοτήτων Ο έλεγχος της συνέπειας των κρίσεων

Μοντελοποίηση του προβλήματος απόφασης Η διαμόρφωση ιεραρχικών δομών για τη διατύπωση του προβλήματος απόφασης αποτελεί την πρώτη βασική αρχή της AHP και η οποία επιβάλλει την αποσύνθεση του προβλήματος απόφασης στα συστατικά του μέρη Θεμελιώδες όργανο της ανθρώπινης σκέψης, οι ιεραρχίες αφορούν την αναγνώριση και ομαδοποίηση των στοιχείων του προβλήματος απόφασης σε επίπεδα αναλόγως με τη σπουδαιότητά τους στο σύστημα αξιών του λήπτη απόφασης Ο αριθμός των επιπέδων της ιεραρχίας καθορίζει το βάθος της ανάλυσης, ενώ ο αριθμός των κριτηρίων το πλάτος της. εδομένου ότι τα στοιχεία της ιεραρχίας διαμορφώνουν επίπεδα, όταν ομαδοποιούνται ως προς κάποια παράμετρο υψηλότερου επιπέδου, θα πρέπει να αποδίδουν τον ίδιο βαθμό λεπτομέρειας στην ανάλυση. Η διαμόρφωση των ιεραρχιών δεν υπακούει σε συγκεκριμένους κανόνες και ως εκ τούτου ένα συγκεκριμένο πρόβλημα είναι δυνατό να μοντελοποιηθεί με διαφορετικές ιεραρχικές δομές. Είναι αποδεκτό ότι το μοντέλο απόφασης διαμορφώνεται αποκλειστικά από τους λήπτες απόφασης, έτσι ώστε να απηχεί την εμπειρία και τη διαίσθηση τους πάνω στο πρόβλημα

Μοντελοποίηση του προβλήματος απόφασης

Πίνακες ανά ζεύγος συγκρίσεων Η δεύτερη θεμελιώδης αρχή της μεθόδου αφορά τον προσδιορισμό των τοπικών προτεραιοτήτων τ.έ. οι σχετικές επικρατήσεις των παραμέτρων της ιεραρχίας που ανήκουν στο ίδιο επίπεδο (στοιχεία τέκνου), ως προς τα στοιχεία της ιεραρχίας στα οποία αναφέρονται (στοιχεία γονέα). Η διαδικασία υλοποιείται σε πίνακες ανά ζεύγος συγκρίσεων Η τιμή που αποκτά το στοιχείο a ij, υπολογίζεται με τη χρήση των δομών σαφούς προτίμησης (Α i PΑ j ) και αδιαφορίας (Α i IΑ j ) σύμφωνα με τις παρακάτω σχέσεις Ως συνέπεια των παραπάνω διαμορφώνονται συμμετρικά θετικοί πίνακες ως προς τα στοιχεία της διαγωνίου δηλώνοντας έτσι την αντίστροφη σχέση προτίμησης Όταν ικανοποιείται η μεταβατική ιδιότητα ο πίνακας λέγεται συνεπής

Η κλίμακα των προτιμήσεων Προκειμένου να διαμορφωθεί ένα κοινό πλαίσιο για τον καθορισμό του μέτρου των σχετικών επικρατήσεων στους πίνακες αξιολόγησης των παραμέτρων της ιεραρχίας παρέχεται από τη μέθοδο η θεμελιώδης κλίμακα των προτιμήσεων (fundamental scale of preferences) Πίνακας 4.1: Η θεμελιώδης και η εκθετική κλίμακα των προτιμήσεων της ΑΗΡ Κλίμακες Προτιμήσεων Θεμελιώδης Εκθετική Μεταβλητή Έκφρασης 1 0 = 1 Ισοδύναμη Επικράτηση (IE) 3 1 Μέτρια Επικράτηση (ΜΕ) 5 2 Ισχυρή Επικράτηση (ΙΧΕ) 7 3 Πολύ Ισχυρή Επικράτηση (ΠΙΕ) 9 4 Εξαιρετική Επικράτηση (ΕΕ) 2, 4, 6, 8 Αντίστροφοι των παραπάνω 0,5, 1,5, 2,5, 3,5 Για συμβιβασμό ανάμεσα στις παραπάνω τιμές Αν σε ένα στοιχείο i επισυνάπτεται ένας από τους παραπάνω αριθμούς κατά τη σύγκριση της με το στοιχείο j, τότε η j ως προς τη i έχει την αντίστροφη τιμή 1,1-1,9 Για συνδεδεμένες δραστηριότητες Ερμηνεία Τα δύο στοιχεία συνεισφέρουν εξίσου στον αντικειμενικό στόχο Η εμπειρία και η κρίση ευνοεί λίγο το στοιχείο γραμμής Η εμπειρία και η κρίση ευνοούν ισχυρά το στοιχείο γραμμής Το στοιχείο γραμμής είναι πολύ πιο ισχυρό σε σχέση με το στοιχείο στήλης Υπάρχουν ισχυρότατες ενδείξεις ότι το στοιχείο γραμμής είναι σημαντικότερο Για την απόδοση συμβιβαστικών θέσεων μεταξύ των παραπάνω Η σύγκριση γίνεται επιλέγοντας το μικρότερο στοιχείο ως μονάδα υπολογισμού (εκτίμησης) και το μεγαλύτερο ως πολλαπλάσιο αυτής της μονάδας Όταν τα στοιχεία είναι παραπλήσια και σχεδόν διακριτά τότε μέτρια τιμή είναι η 1,3 και πολύ ισχυρή η 1,9

Πίνακες ανά ζεύγος συγκρίσεων Έχοντας το μέτρο της επικράτησης κάθε στοιχείου έναντι των υπολοίπων στο ίδιο επίπεδο της ανάλυσης διαμορφώνονται οι πίνακες ανά ζεύγος συγκρίσεων Η συνεκτικότητα του τελικού αποτελέσματος εξαρτάται επιπροσθέτως από τις αρχές α/ της ομοιογένειας των παραμέτρων που αξιολογούνται σε έναν πίνακα ανά ζεύγος συγκρίσεων, δηλαδή τη διαμόρφωση ιεραρχικών επίπεδων, έτσι ώστε οι λεκτικές μεταβλητές της κλίμακας να επαρκούν για την διατύπωση των ανά ζεύγος συγκρίσεων. β/ της ανεξαρτησίας των στοιχείων μεταξύ των επιπέδων, δηλαδή οι αξιολογήσεις πρέπει να πραγματοποιούνται ανεξάρτητα από τη φύση και τις ιδιότητες των παραμέτρων που απαρτίζουν τα επόμενα επίπεδα της ιεραρχίας

Ο προσδιορισμός των τοπικών προτεραιοτήτων ως διαδικασία επιδιώκει να υπολογιστούν οι βαρύτητες των παραμέτρων του προβλήματος απόφασης, προσδιορίζοντας έτσι τον βαθμό ικανοποίησης του στοιχείου γονέα (π.χ. τα υποκριτήρια ως προς το κριτήριο στο οποίο ανήκουν, τα κριτήρια ως προς τον στόχο της ανάλυσης κ.ο.κ.) Σύμφωνα με την ΑΗΡ οι τοπικές προτεραιότητες ισούται με το χαρακτηριστικό ιδιοδιάνυσμα του πίνακα των προτιμήσεων ύο είναι οι κυρίαρχες προσεγγίσεις που υποστηρίζουν τον υπολογισμό του χαρακτηριστικού ιδιοδιανύσματος στους πίνακες ανά ζεύγος συγκρίσεων Η προσεγγιστική διαδικασία Η ακριβής μέθοδος Μέθοδος των δυνάμεων

Η προσεγγιστική μέθοδος Στην προσεγγιστική μέθοδο, γνωστή και ως μέθοδο της αθροιστικής ομαλοποίησης, το κύριο ιδιοδιάνυσμα υπολογίζεται από τον μέσο όρο των γραμμών ομαλοποιημένου με το άθροισμα των στηλών πίνακα των ανά ζεύγος συγκρίσεων [Saaty 2005]. Η μαθηματική διατύπωση της μεθόδου δίνεται από τις παρακάτω σχέσεις, όπου η βαρύτητα του κριτηρίου της γραμμής i, α ij το στοιχείο του πίνακα των ανά ζεύγος συγκρίσεων που ορίζεται από τη γραμμή i και τη στήλη j, και n η διάσταση του. Μολονότι η προσεγγιστική διαδικασία δεν στηρίζεται σε ικανοποιητικό μαθηματικό υπόβαθρο, πρόσφατες προσομοιώσεις δείχνουν ότι παρέχει ισοδύναμα αποτελέσματα με τη μέθοδο του ιδιοδιανύσματος [Srdjevic 2005].

Η προσεγγιστική μέθοδος Η διαδικασία σε βήματα Υπολογισμός των επιμέρους αθροισμάτων των στηλών του πίνακα Ομαλοποίηση των στοιχείων στήλης του πίνακα με το αντίστοιχο άθροισμα Το διάνυσμα της βαρύτητας των παραμέτρων προκύπτει από τον μέσο όρο των γραμμών του πίνακα του Βήματος 2. Παράδειγμα Υπολογισμού Τοπικών Προτεραιοτήτων

Η προσεγγιστική μέθοδος Παράδειγμα επιλογής αυτοκινήτου Βήμα 1 ο : ιαμόρφωση μοντέλου απόφασης

Η προσεγγιστική μέθοδος Παράδειγμα επιλογής αυτοκινήτου Βήμα 2 ο : Πίνακας Απόφασης ΚΡΙΤΗΡΙΑ 1 ΟΥ ΕΠΙΠΕ ΟΥ ΟΙΚΟΝΟΜΙΚΑ ΚΡΙΤΗΡΙΑ ΤΕΧΝΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΕΜΦΑΝΙΣΗ ΤΟΠΙΚΑ ΒΑΡΗ ΚΡΙΤΗΡΙΑ 2 ΟΥ ΕΠΙΠΕ ΟΥ ΑΡΧΙΚΟ ΚΟΣΤΟΣ ΚΑΤΑΝΑΛΩΣΗ ΦΟΡΟΛΟΓΙΑ (ΤΕΛΟΣ) ΙΠΠΟ ΥΝΑΜ Η ΧΩΡΗΤΙΚΟΤ. ΤΟΠΙΚΑ ΒΑΡΗ ALFA ROMEO 25.600 10.3 358 140 405 2 ο ΒMW 30.650 7.7 219 122 460 3 ο AUDI 31.800 10 356 160 350 1 ο

Η προσεγγιστική μέθοδος Παράδειγμα επιλογής αυτοκινήτου Βήμα 3 ο : Αξιολόγηση Κριτηρίων 1 ου επιπέδου

Η προσεγγιστική μέθοδος Παράδειγμα επιλογής αυτοκινήτου Βήμα 4 ο : Αξιολόγηση Οικονομικών Υποκριτηρίων

Η προσεγγιστική μέθοδος Παράδειγμα επιλογής αυτοκινήτου Βήμα 5 ο : Αξιολόγηση Τεχνικών Χαρακτηριστικών

Η προσεγγιστική μέθοδος Παράδειγμα επιλογής αυτοκινήτου Βήμα 6 ο : Υπολογισμός Συνολικής Βαρύτητας ΚΡΙΤΗΡΙΑ 1 ΟΥ ΕΠΙΠΕ ΟΥ ΟΙΚΟΝΟΜΙΚΑ ΚΡΙΤΗΡΙΑ ΤΕΧΝΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΕΜΦΑΝΙΣΗ ΤΟΠΙΚΑ ΒΑΡΗ 0.512 0,360 0,128 ΚΡΙΤΗΡΙΑ 2 ΟΥ ΕΠΙΠΕ ΟΥ ΑΡΧΙΚΟ ΚΟΣΤΟΣ ΚΑΤΑΝΑΛΩΣΗ ΦΟΡΟΛΟΓΙΑ (ΤΕΛΟΣ) ΙΠΠΟ ΥΝΑΜΗ ΧΩΡΗΤΙΚΟΤ. ΤΟΠΙΚΑ ΒΑΡΗ 0,640 0,154 0,206 0,875 0,125 0,128 ΣΥΝΟΛΙΚΑ ΒΑΡΗ 0,328 0,079 0,105 0,315 0,045 0,128 ALFA ROMEO 25.600 10.3 358 140 405 2 ο ΒMW 30.650 7.7 219 122 460 3 ο AUDI 31.800 10 356 160 350 1 ο

Η προσεγγιστική μέθοδος Παράδειγμα επιλογής αυτοκινήτου Βήμα 7 ο : Αξιολόγηση Εναλλακτικών Σεναρίων στα Κριτήρια της Ανάλυσης

Η προσεγγιστική μέθοδος Παράδειγμα επιλογής αυτοκινήτου Βήμα 7 ο : Αξιολόγηση Εναλλακτικών Σεναρίων στα Κριτήρια της Ανάλυσης

Η προσεγγιστική μέθοδος Παράδειγμα επιλογής αυτοκινήτου Βήμα 7 ο : Αξιολόγηση Εναλλακτικών Σεναρίων στα Κριτήρια της Ανάλυσης

Η προσεγγιστική μέθοδος Παράδειγμα επιλογής αυτοκινήτου Βήμα 7 ο : Αξιολόγηση Εναλλακτικών Σεναρίων στα Κριτήρια της Ανάλυσης

Η προσεγγιστική μέθοδος Παράδειγμα επιλογής αυτοκινήτου Βήμα 8 ο : Στάθμιση εναλλακτικών σεναρίων στα κριτήρια της ανάλυσης

Τεχνολογική Οικονομική Ενδεικτική Βιβλιογραφία Κ.Π. Αναγνωστόπουλος (2004), Τεχνολογική Οικονομική, Εταιρεία Αξιοποίησης & ιαχείρισης της Περιουσίας του ημοκριτείου Πανεπιστημίου Θράκης. Saaty T.L. (1977), "A scaling method for priorities in hierarchical structures", Journal of Mathematical Psychology, Vol. 15, pp. 234-281. Saaty T.L. (1978), "Modeling unstructured decision problems-the theory of analytical hierarchies", Mathematics and Computers in Simulation, Vol. 20, pp. 147-158. Saaty T.L. (1986), "Axiomatic foundations of the Analytic Hierarchy Process", Management Science, vol. 32, Νο.7, pp. 841-855. Saaty T.L., Forman E.H. (1996), The Hierarchon: A Dictionary of Hierarchies, AHP series, volume V, RWS publications. Shim J.P. (1989), "Bibliographical research on the Analytic Hierarchy Process (AHP)", Socio- Economic Planning Sciences, Vol. 23, No. 3, pp. 161-167. Saaty, T.L (2005), "The Analytic Hierarchy and Analytic Network Process for the measurement of intangible criteria and for decision making", In Multiple Criteria Decision Analysis: State of the Art Surveys (eds. J. Figuera, S. Greco, M. Ehrgott), International Series in Operations Research Management Science, Springer, pp. 345-407.

Καλό διάβασμα