2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

Σχετικά έγγραφα
Παραδείγματα (2) Διανυσματικοί Χώροι

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

Παραδείγματα (1 ο σετ) Διανυσματικοί Χώροι

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι

Παραδείγματα (2 ο σετ) Διανυσματικοί Χώροι Επιμέλεια: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 8/6/2017 Διδάσκων: Ι. Λυχναρόπουλος

Παραδείγματα Διανυσματικοί Χώροι (3)

Κεφάλαιο 4 Διανυσματικοί Χώροι

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ

Κεφάλαιο 4 Διανυσματικοί Χώροι

,..., v n. W πεπερασμένα παραγόμενοι και dimv. Τα ακόλουθα είναι ισοδύναμα f είναι ισομορφιμός. f είναι 1-1. f είναι επί.

1. Για καθένα από τους ακόλουθους διανυσματικούς χώρους βρείτε μια βάση και τη διάσταση. 3. U x y z x y z x y. {(,, ) } a b. c d

D = / Επιλέξτε, π.χ, το ακόλουθο απλό παράδειγμα: =[IA 1 ].

Γραµµική Αλγεβρα. Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 19/6/2018 Διδάσκων: Ι. Λυχναρόπουλος

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Σεπτεμβρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Επιστήμης Υπολογιστών

Γραμμική Αλγεβρα ΙΙ Διάλεξη 7 Βάσεις Διάσταση Χρήστος Κουρουνιώτης Πανεπισ τήμιο Κρήτης 7/3/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 7 7/3/ / 1

n = dim N (A) + dim R(A). dim V = dim ker L + dim im L.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τµήµα Εφαρµοσµένων Μαθηµατικών

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

X = {(x 1, x 2 ) x 1 + 2x 2 = 0}.

Κεφάλαιο 5 Γραμμικοί Μετασχηματισμοί

Βάση και Διάσταση Διανυσματικού Χώρου

Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss Jordan

ΚΕΦΑΛΑΙΟ 2. Γραμμικοί Κώδικες. 2.1 Η έννοια του Γραμμικού κώδικα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΚΕΦ. 7: ΓΡΑΜΜΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ

, ορίζουμε deta = ad bc. Πρόταση Ένας πίνακας Α είναι αντιστρέψιμος τότε και μόνο αν deta 0.

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ. Διανυσματικός χώρος

Παραδείγματα Διανυσματικοί Χώροι

AX=B (S) A A X=A B I X=A B X=A B I X=A B X=A B X=A B X X

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ 10ο Σετ Ασκήσεων (Λύσεις) Γραμμικοί Μετασχηματισμοί

Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss-Jordan Παραγοντοποίηση LU, LDU

Παραδείγματα Γραμμικοί Μετασχηματισμοί

Εφαρμοσμένα Μαθηματικά ΙΙ

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

f I X i I f i X, για κάθεi I.

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ Μαθηματικά για Οικονομολόγους ΙI-Μάθημα 4 Γραμμικά Συστήματα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανυσματικοί Χώροι (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Διδάσκων: Ι. Λυχναρόπουλος

Αριθμητική Ανάλυση και Εφαρμογές

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 17 Οκτωβρίου 2011

Κεφάλαιο 7 Βάσεις και ιάσταση

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 6

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανυσματικοί Χώροι (3) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

a 11 a 1n b 1 a m1 a mn b n

Κεφάλαιο 4 ιανυσµατικοί Χώροι

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

6. ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΑΝΤΙΣΤΡΟΦΑ ΠΡΟΒΛΗΜΑΤΑ

Διανύσµατα στο επίπεδο

1.2 Συντεταγμένες στο Επίπεδο

Κεφάλαιο 6 Ιδιοτιμές και Ιδιοδιανύσματα

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες,

Εφαρμοσμένα Μαθηματικά ΙΙ 7ο Σετ Ασκήσεων (Λύσεις) Γραμμικά Συστήματα- Απαλοιφή Gauss Επιμέλεια: I. Λυχναρόπουλος

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων εξέτασης προόδου στο μάθημα «Γραμμική Άλγεβρα» (ΗΥ119)

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0.

n. Έστω αποτελείται από όλους τους πίνακες που αντιμετατίθενται με ένα συγκεκριμένο μη μηδενικό nxn πίνακα Τ:

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

ΜΑΣ121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ I Εαρινό εξάμηνο , Διδάσκων: Γιώργος Γεωργίου ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ, Διάρκεια: 2 ώρες 18 Νοεμβρίου, 2017

εξίσωση πρώτου βαθμού

1 Χώροι πηλίκα { } x = y x y Y. Με τις πράξεις της πρόσθεσης και του βαθμωτού πολλαπλασιασμού που ορίζονται με τον

Εισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί

(β) Από την έκφραση (22) και την απαίτηση (20) βλέπουμε ότι η συνάρτηση Green υπάρχει αρκεί η ομογενής εξίσωση. ( L z) ( x) 0

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 6

Γραµµικη Αλγεβρα Ι. Ακαδηµαϊκο Ετος Βοηθος Ασκησεων: Χ. Ψαρουδάκης

ΚΕΦΑΛΑΙΟ 5: ΓΡΑΜΜΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών

Γραμμική Άλγεβρα Ενότητα 2: Διανυσματικοί χώροι

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1)

8.1 Διαγωνοποίηση πίνακα

6 Συνεκτικοί τοπολογικοί χώροι

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου

Παρατήρηση. 1. Το άθροισμα των διανυσμάτων και είναι ανεξάρτητο από το σημείο. 2. Το άθροισμα των διανυσμάτων και μπορεί να βρεθεί να βρεθεί και με

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 4

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y.

Γραμμική Άλγεβρα Ι,

ΠΛΗ 12- Σχέση ισοδυναμίας, γραμμικά συστήματα και απαλοιφή Gauss

Gauss. x + y + z = 2 3x + 3y z = 6 x y + z = 1. x + y + z = r x y = 0 3x + y + sz = s 0

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y.

Transcript:

.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Έστω διανύσματα που ανήκουν στο χώρο δ i = ( a i, ai,, ai) i =,,, και έστω γραμμικός συνδυασμός των i : xδ + x δ + + x δ = b που ισούται με το διάνυσμα b, όπου b = ( b, b,, b ). Όταν b 0, ο γραμμικός συνδυασμός αντιστοιχεί στο μη ομογενές σύστημα A x= και όταν b, στο ομογενές σύστημα A x= 0, όπου A ο πίνακας με στήλες τα διανύσματα δ, δ,, δ. Θα εξετάσουμε πρώτα την περίπτωση του ομογενούς συστήματος εξισώσεων και στη συνέχεια του μη-ομογενούς. δ : b. Ομογενή Συστήματα Εάν r είναι η τάξη του πίνακα Α, όπως έχουμε δεί στα συστήματα, η γενική λύση του ομογενούς συστήματος γράφεται σαν γραμμικός συνδυασμός ενός πεπερασμένου πλήθους ( r) στοιχείων του. Επομένως, το σύνολο των λύσεων ενός ομογενούς συστήματος αποτελεί διανυσματικό χώρο και λέγεται μηδενόχωρος του A. Ο μηδενόχωρος του A είναι υπόχωρος του και συμβολίζεται με ( A) N. Έστω τώρα ο διανυσματικός χώρος που παράγεται από τις στήλες του πίνακα A, π.χ. τα διανύσματα δ, δ,, δ : < δ, δ,, δ >. Ο χώρος αυτός αποτελείται από στοιχεία του και είναι υπόχωρος του, ονομάζεται χώρος των στηλών του πίνακα A, και συμβολίζεται με R ( A). Εάν το σύστημα A x= 0 έχει μόνο την τετριμμένη λύση x= 0, τότε τα διανύσματα δ, δ,, δ είναι γραμμικά ανεξάρτητα και αποτελούν βάση για το χώρο R ( A), συνεπώς di R ( A) =. Επιπλέον, αφού το σύστημα έχει μόνο την τετριμμένη λύση, η τάξη r του πίνακα A ισούται με ενώ ο μηδενόχωρος έχει διάσταση μηδέν γιατί περιέχει μόνο το μηδενικό στοιχείο. Αντίθετα, έστω ότι υπάρχουν μη τετριμμένες λύσεις στο ομογενές σύστημα A x= 0. Για παράδειγμα, έστω μία λύση ( a, a,, a ) όχι όλα μηδέν. Τότε: aδ + a δ + + a δ και τα διανύσματα δ, δ,, δ είναι γραμμικά εξαρτημένα μεταξύ τους. Εάν η τάξη του πίνακα A είναι r τότε r < και ο μηδενόχωρος N ( A) περιέχει και άλλα στοιχεία (άπειρα στο πλήθος) εκτός του μηδενικού διανύσματος. Κάθε στοιχείο του μηδενόχωρου γράφεται με τη βοήθεια r ελεύθερων μεταβλητών και συνεπώς σαν

γραμμικός συνδυασμός r γραμμικά ανεξάρτητων διανυσμάτων. Αποδεικνύεται ότι αυτά τα r διανύσματα αποτελούν μία βάση του συγκεκριμένου χώρου. Καταλήγουμε δηλαδή στο συμπέρασμα ότι di N ( A) = r. Τέλος, αναφορικά με τα διανύσματα δ, δ,, δ, υπάρχουν ακριβώς r που είναι γραμμικά ανεξάρτητα και αποτελούν μια βάση του χώρου των στηλών R ( A), δηλαδή di R ( A) = r. Εκτός των δύο υποχώρων που μόλις αναφέραμε, δοθέντος ενός πίνακα Α, μπορούμε να σκεφτούμε και τον χώρο των γραμμών του πίνακα, δηλαδή τον χώρο που προκύπτει εάν πάρουμε όλους τους γραμμικούς συνδυασμούς των γραμμών του πίνακα. Επειδή οι γραμμές του πίνακα Α είναι στοιχεία του διανυσματικού χώρου, ο χώρος των γραμμών είναι υπόχωρος του. Τέλος, επειδή οι γραμμές του πίνακα Α είναι στήλες για τον πίνακα Α Τ, ο χώρος των γραμμών του Α συμπίπτει με τον χώρο των στηλών του Α Τ και συμβολίζεται με R ( A ). Κατά τη διάρκεια της επίλυσης του ομογενούς συστήματος A x= 0 και μετά την εφαρμογή της απαλοιφής Gauss, εάν ο πίνακας Α έχει τάξη r τότε ακριβώς r γραμμές θα είναι μη μηδενικές. Οι υπόλοιπες, εφ όσον υπάρχουν, θα είναι μηδενικές. Έτσι για τη δημιουργία του χώρου των γραμμών R ( A ) αρκούν οι r μη μηδενικές, γιατί οι άλλες δεν συνεισφέρουν τίποτε σε οποιοδήποτε γραμμικό συνδυασμό. Επιπλέον, οι r μη μηδενικές γραμμές είναι γραμμικά ανεξάρτητες. Έτσι καταλήγουμε ότι αυτές οι r γραμμές συνιστούν μία βάση για τον χώρο των γραμμών και ότι di R ( A ) = r Συνεπώς μπορούμε να πούμε: Η τάξη του πίνακα A είναι ίση με τον μέγιστο αριθμό των στηλών ή γραμμών του πίνακα που είναι γραμμικά ανεξάρτητες

Παράδειγμα: 4 Έστω πέντε διανύσματα στον δ = ( 0 ), δ = ( 4), δ = ( ), δ = ( ), δ = ( 6 ) 4 Ο γραμμικός συνδυασμός xδ+ xδ + aδ+ x4δ4 + aδ, οδηγεί στην επίλυση του ομογενούς συστήματος: x+ x + x+ x4 + x x+ x + x+ x4 x x + x+ x4+ 6x x + 4x + x + x x 4 Εύκολα μπορούμε να ελέγξουμε ότι το σύστημα έχει μη τετριμμένες λύσεις με γενική μορφή: x = ( u+ u+ u, u u 6 u, u, u, u) και συνεπώς τα διανύσματα δ, δ, δ, δ4, δ είναι γραμμικά εξαρτημένα. Η λύση γράφεται με τη βοήθεια -= μεταβλητών, διότι η τάξη του πίνακα είναι. Συνεπώς: u + u + u u u 6u 6 u u 0u 0u u 0 0 x = = + +. u 0 0 Επιπλέον, τα διανύσματα {( 0 0), ( 0 0) ( 0 0) } είναι γραμμικά ανεξάρτητα και αποτελούν βάση του και μηδενόχωρου του Α που είναι υπόχωρος του di N ( A) =.. Συμπεραίνουμε ότι Εάν πάρουμε οποιαδήποτε τρία ή τέσσερα από τα διανύσματα δ, δ,, δ παρατηρούμε ότι κι αυτά είναι γραμμικά εξαρτημένα. Για παράδειγμα, ας εξετάσουμε το υποσύνολο {,, } δ δ δ. Σχηματίζουμε το σύστημα: y + y + y y + y y y + 4y y y + 6y Ακολουθώντας την απαλοιφή Gauss ο πίνακας των συντελεστών μετασχηματίζεται

0 6 0 6 0 6 0 6 0 0 0 4 0 0 0 0 και η γενική λύση του συστήματος είναι της μορφής: y = ( u, 6 u, u). Παρατηρούμε δηλαδή ότι 6 + = γραμμικά εξαρτημένα. δ δ δ 0 και τα διανύσματα {,, } δ δ δ είναι Αντίθετα, από το υποσύνολο {, } δ δ προκύπτει το σύστημα: y+ y y+ y y y + 4y που έχει μία και μοναδική λύση την y y 0 = =. Έτσι τα διανύσματα {, } δ δ είναι γραμμικά ανεξάρτητα και συνιστούν μία βάση για το χώρο των στηλών R ( A) δηλαδή di R ( A) =.. Μη ομογενή Συστήματα Στα μη ομογενή συστήματα, το διάνυσμα b είναι διάφορο του μηδενός και μας ενδιαφέρει να βρούμε το σύνολο των b για τα οποία υπάρχει λύση του συστήματος A x= b. Όταν υπάρχει λύση τότε το b γράφεται σαν γραμμικός συνδυασμός των στηλών του A και από αυτό συνεπάγεται ότι ο χώρος των δυνατών τιμών του b που δίνουν λύση στο σύστημα παράγεται από τις στήλες του Α, δηλαδή συμπίπτει με το χώρο των στηλών, και έχει διάσταση r. Αντίθετα από τα ομογενή συστήματα, ο χώρος των λύσεων ενός μη ομογενούς συστήματος δεν αποτελεί διανυσματικό χώρο. Παράδειγμα: Το μη ομογενές σύστημα: 4

x + x + x + x + x = 7 4 x + x + x + x x = 4 x + x + x + 6x = 4 x + 4x + x + x x = 4 έχει τη γενική λύση u+ u + u 6 6 u u 6u + 6 x = u = u+ 0u + 0u+ 0 u 0 0 0 u 0 0 0 Ο χώρος των λύσεων προφανώς δεν είναι διανυσματικός χώρος (λόγω της μερικής του λύσης). Τέλος, το διάνυσμα στηλών, π.χ. b = (7 ), μπορεί να γραφεί σαν συνδυασμός των 7 = 6 + + 0 + 0 + 0 0 6 4 δηλαδή ανήκει στο χώρο των στηλών και γι αυτό το σύστημα έχει λύση. Αντίθετα, εάν το διάνυσμα b στο δεύτερο μέλος ήταν b = (7 0), τότε δεν θα ανήκε στο χώρο των στηλών, δεν θα ήταν δυνατόν να γραφεί σαν γραμμικός συνδυασμός των στηλών και συνεπώς το σύστημα θα ήταν αδύνατο.