1 Χώροι πηλίκα { } x = y x y Y. Με τις πράξεις της πρόσθεσης και του βαθμωτού πολλαπλασιασμού που ορίζονται με τον
|
|
- Θήρα Ζαΐμης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Χώροι πηλίκα Έστω διανυσματικός χώρος και Y διανυσματικός υπόχωρος του. Για κάθε θεωρούμε το σύμπλοκο σχετικά με τον Y, = + y y Y = + Y ορ { : } δηλαδή το είναι η παράλληλη μεταφορά του Y κατά το διάνυσμα. Παρατηρούμε ότι = y y Y. Ο χώρος / Y ( χώρος πηλίκο του πάνω από τον Y ) είναι ο χώρος όλων των συμπλόκων ( όλων των παραλλήλων μεταφορών του Y ), δηλαδή { } / Y = : Με τις πράξεις της πρόσθεσης και του βαθμωτού πολλαπλασιασμού που ορίζονται με τον ακόλουθο τρόπο + y = + y και λ = λ,, y, λ K ( K = Rή C), ο / Y ορ γίνεται όπως εύκολα εξακριβώνεται ένας διανυσματικός χώρος πάνω από το σώμα K με μηδέν το σύμπλοκο = Y. Ας υποθέσουμε ότι ο είναι επί πλέον ένας ( διανυσματικός ) χώρος με νόρμα, ας την συμβολίσουμε με, και ότι ο Y είναι κλειστός ( διανυσματικός ) υπόχωρος του. Μπορούμε τότε να ορίσουμε μια νόρμα στον χώρο πηλίκο / Y ως εξής: Έστω = + Y / Y, = + = =. Θέτομε () if { y : y Y} if { y : y Y} d (, Y) ορ Όπως παρατηρούμε από τις ισότητες στην () η νόρμα του συμπλόκου ορίζεται να είναι η απόσταση του από τον υποχώρο Y ή ακόμη η απόσταση του από το σύνολο 4 +Y Y - -5 (,)
2 { } ( ) + Y,( αφού = if ( + y) : y Y = d, + Y ). Η νόρμα που ορίζεται από τις ισότητες στην () ονομάζεται νόρμα πηλίκο. Στο εξής οποτεδήποτε θεωρούμε έναν χώρο πηλίκο / νόρμα πηλίκο. Y ενός χώρου με νόρμα (, ), θα θεωρούμε τον / Y εφοδιασμένο με την Στο παράδειγμα του σχήματος ο είναι το Ευκλείδειο επίπεδο R, ο Y ένας γνήσιος μη τετριμμένος διανυσματικός υπόχωρος του ( δηλαδή μία ευθεία που διέρχεται από το ( ), ) και ο χώρος πηλίκο / Y είναι το σύνολο όλων των ευθειών του επιπέδου που είναι παράλληλες με την ευθεία Y. Η νόρμα κάθε τέτοιας ευθείας είναι η απόστασή της από το σημείο (, ) του R. Πρόταση. Έστω χώρος με νόρμα και Y κλειστός υποχώρος του, τότε η νόρμα πηλίκο του / Y είναι ( πράγματι ) μία νόρμα στον διανυσματικό χώρο / Y. Απόδειξη. Αν τότε = d (, Y) και ακόμη ότι αν = d(, Y ) = Y = Y = = Y. Έστωλ K με λ και. Τότε έχουμε, λ = d ( λ, Y) = { λ y y Y} if : = λ if { y : y Y} λ d (, Y) προφανής. = if λ y : y Y = λ if y : y Y λ λ = =. Αν λ = η αποδεικτέα σχέση είναι λ Αποδεικνύουμε τώρα την τριγωνική ανισότητα. Έστω, y. Παρατηρούμε ότι για κάθε ζεύγος z, z Y ισχύει ότι: ( + y) ( z + z ) z + y z, συνεπώς, (, ) ( ) ( ) d + y Y + y z + z z + y z, z, z Y. Έπεται ότι, d ( + y, Y) if { z + y z : z, z Y} = if { z : z Y} + if { y z : z Y} d (, Y) d ( y, Y) Ισοδύναμα, + y + y. = +.
3 3 Ορισμός. Έστω Y διανυσματικός υποχώρος του διανυσματικού χώρου. Τότε η απεικόνιση πηλίκο η κανονική απεικόνιση του επί του / Y είναι η απεικόνιση π που ορίζεται από τον τύπο π ( ) = = + Y. Παρατηρούμε ότι η π είναι μια γραμμική απεικόνιση, με Kerπ = Y και βέβαια π ( ) = / Y Λήμμα.3 Έστω χώρος με νόρμα, Y κλειστός υποχώρος του και π : / Y η κανονική απεικόνιση. Τότε η εικόνα μέσω της π της ανοικτής μοναδιαίας σφαίρας του είναι η ανοικτή μοναδιαία σφαίρα του / Απόδειξη Έστω με π Β = Β. Y. Δηλαδή ( ) / Y < τότε, ( ) { } αφού Y. Έπεται ότι π ( Β ) Β / Y. Έστω τώρα με ( ) Y { y y Y} π = + Y = if + y : y Y <, π = + = if + : <. Θεωρούμε y Y ώστε + y < και θέτομε = + y. Τότε έχουμε ότι, = ή π ( ) = π ( ) με απόδειξη του Λήμματος είναι πλήρης. < και ( ) + Y = + y + Y = + Y. Επομένως <. Έτσι συμπεραίνουμε ότι π ( ) Β Β και η Παρατήρηση.4 Σημειώνουμε ότι για τις κλειστές μοναδιαίες σφαίρες ισχύει ότι, Β π Β υπάρχει / Y / Y και ότι εν γένει δεν ισχύει ισότητα. Αυτό σημαίνει ότι ενδέχεται να ώστε d (, Y) = π ( ) = και y >, y Y. Από αυτό συμπεραίνουμε ότι δεν υπάρχει με ώστε π ( ) π ( ) τέτοιο τότε Y, άρα = + y για κάποιο y Y. Έπεται ότι = + y, άτοπο. Πρβλ επίσης τις ασκήσεις.) =. ( Αν υπήρχε ένα Σημειώνουμε ότι σε κάποιες ενδιαφέρουσες περιπτώσεις ισχύει ισότητα στην παραπάνω σχέση, όπως θα διαπιστώσουμε αργότερα. ( Πρβλ την παρατήρηση.6 ). Θεώρημα.5 Έστω χώρος με νόρμα και Y κλειστός υπόχωρος του. Τότε η κανονική απεικόνιση π : / Y είναι συνεχής ( με π ) γραμμική και επί του Y, η οποία είναι επιπλέον και ανοικτή. Αν Y, τότε π =. Απόδειξη Η γραμμικότητα της π και το γεγονός ότι είναι επί του Y με k erπ = Y είναι προφανείς. Η συνέχεια της π έπεται αμέσως από το Λήμμα.3 ή και απευθείας αφού αν τότε + Y, άρα π.
4 4 Η π είναι ανοικτή από το Λήμμα αφού αν και ε > τότε, ( Β (, )) = ( + Β ) ( ) ( ) / Y / Y, π ε π ε = π + επ Β = + εβ = Β ε. Επομένως η π απεικονίζει τις περιοχές του τυχόντος σημείου σε περιοχές του π ( ) και είναι άρα ανοικτή απεικόνιση. Αν ο υποχώρος Y του είναι διαφορετικός του, δηλαδή ο χώρος πηλίκο / Y είναι μη τετριμμένος ( y Β / Y με y τότε υπάρχει.3 ότι π =. Β ώστε π ( ) ). Επομένως { } Y τότε ( και μόνο τότε ) Β, και αν / Y = y. Έπεται αμέσως από το Λήμμα Εύκολη συνέπεια του προηγουμένου θεωρήματος είναι και το γνωστό αποτέλεσμα του Riesz: Λήμμα (Riesz). Έστω χώρος με νόρμα και Y γνήσιος κλειστός υποχώρος του. θ > υπάρχει θ S { : } ( θ, ) = if { θ y : y Y} θ Τότε : (α) Για κάθε d Y = = ώστε (β) Αν ο Y έχει πεπερασμένη διάσταση, τότε υπάρχει τον Y είναι η μέγιστη δυνατή, δηλαδή d (, Y ) =. S του οποίου η απόσταση από Απόδειξη (α) Υποθέτουμε χωρίς να περιορίζεται η γενικότητα ότι θ (,). Θεωρούμε την κανονική απεικόνιση π : / Y. Επειδή ο Y είναι γνήσιος κλειστός υποχώρος του έπεται ότι π =. Έτσι έχουμε, { π ( ) } = π = sup : = = sup : = = sup { d (, Y ) : = }. Αν < θ <, έπεται από τον χαρακτηρισμό του supreu ( ενός φραγμένου συνόλου πραγματικών ) ότι υπάρχει (β) Έστω z Β / Y με z =, υπάρχει τότε θ S ώστε θ = d ( θ, Y) θ. με π ( ) = z. Έπεται ότι, (, ) = π ( ) = =. Θεωρούμε μια ακολουθία ( y ) d Y z Y ώστε y, είναι σαφές ότι η ( y ) είναι φραγμένη. Έτσι συμπεραίνουμε από την συμπάγεια των κλειστών σφαιρών του Y αφού ο Y είναι πεπερασμένης διάστασης ότι η ( y ) έχει υπακολουθία συγκλίνουσα μέσα στον Y. Έστω y y Y. Συνεπώς, k
5 5 y y =. Θέτομε = y και παρατηρούμε ότι, εφόσον y k έχουμε ότι π ( ) = π ( ) και = = d (, Y) = d (, Y) Y, θα Παρατήρηση.6 Παρατηρούμε ότι αυτό που στην πραγματικότητα αποδείξαμε στο δεύτερο μέρος του προηγούμενου Λήμματος είναι το ακόλουθο αποτέλεσμα: Αν ο Y είναι πεπερασμένης διάστασης υποχώρος του χώρου με νόρμα και π : / Y είναι η κανονική απεικόνιση, τότε π Β = Β / Y, ( πρβλ και την παρατήρηση.4). Υπενθυμίζουμε ακόμα ότι αν Η είναι χώρος Hilbert και F γνήσιος κλειστός υπόχωρος του Η τότε για κάθε Ηµε F υπάρχει ακριβώς ένα y F Έτσι αν d (, F) π ( ) = =, τότε θέτοντας y ώστε y d (, F) =. = και = έχουμε ότι π ( ) π ( ) =. Συνεπώς και στην περίπτωση αυτή έχουμε ότι π Β Η = ΒΗ/F αποτελέσματα της παραγράφου 4. και την παρατήρηση 4..3.) Πόρισμα.7 Έστω (, ) χώρος με νόρμα άπειρης διάστασης και. ( Πρβλ. τα......, ακολουθία υποχώρων του πεπερασμένης διάστασης. Τότε :(α) Υπάρχει μία ακολουθία ( ) έτσι ώστε, = = d (, ),. (β) Ιδιαίτερα έχουμε ότι σε κάθε απειροδιάστατο χώρο με νόρμα υπάρχει ακολουθία ( ) S ώστε, Απόδειξη. (α) Έστω με =. Προχωρώντας με επαγωγή και με την βοήθεια του ισχυρισμού (β) του Λήμματος Riesz για το ζεύγος, επιλέγομε την ακολουθία ( ) με τις ζητούμενες ιδιότητες. Από αυτό που μόλις αποδείξαμε έπεται εύκολα και η ύπαρξη μιας ακολουθίας ( ) S ώστε,, N με. Παρόλα αυτά θα δώσουμε και μια απευθείας απόδειξη αυτού του ισχυρισμού. (β) Έστω λοιπόν S, θέτομε =. Από το Λήμμα του Riesz υπάρχει S d ( ) :, =. Θέτομε =, και συνεχίζουμε με επαγωγή. Αν τα,..., S έχουν ορισθεί θέτομε,..., = και επειδή di < και di = υπάρχει + S ώστε d (, ) + =. Από την κατασκευή μας είναι φανερό ότι =, και,. Παρατηρήσεις ) Έστω χώρος με νόρμα άπειρης διάστασης
6 6 (α) Είναι δυνατό να αποδειχθεί με χρήση του θεωρήματος Hah-Baach ότι υπάρχει ( ) ώστε =, και >,. (δες το [D] σελίδα7). (β) Επίσης αποδεικνύεται ( Θεώρημα των Odell-Elto, δες το [D] σελίδα 4) ότι υπάρχει δ > ώστε, =, και + δ, Από το προηγούμενο αποτέλεσμα έπεται ένας σημαντικός χαρακτηρισμός των χώρων με νόρμα πεπερασμένης διάστασης. Θεώρημα.8 Έστω (, ) (ι) Ο είναι πεπερασμένης διάστασης χώρος με νόρμα. Τα ακόλουθα είναι ισοδύναμα: (ιι) Η κλειστή μοναδιαία σφαίρα Β του είναι συμπαγές σύνολο Απόδειξη (ι) (ιι) Είναι γνωστό ότι αν ο έχει πεπερασμένη διάσταση τότε η Β είναι συμπαγές σύνολο. (ιι) (ι) Αν ο είχε άπειρη διάσταση τότε από το προηγούμενο αποτέλεσμα θα υπήρχε μία ακολουθία ( ) S ώστε,, N με Είναι σαφές ότι η ( ) δεν έχει συγκλίνουσα υπακολουθία και αυτό αντιφάσκει με το γεγονός ότι η ( ) περιέχεται στο συμπαγές σύνολο Β. Παρατήρηση.9 Έστω (, ) χώρος με νόρμα και Y κλειστός υποχώρος του. Θεωρούμε την κανονική απεικόνιση π : / Y (α) Αν και ε >, τότε υπάρχει ' ώστε π ( ' ) π ( ) Πράγματι, έστω y Y : y d (, Y ) ( ) ' y Y = και ' π ( ) < + ε. < + ε = π + ε θέτομε ' = y, τότε = και άρα π ( ) = π ( ' ), επίσης ' y π ( ) (β) Αν, και z π ( ) Y Πράγματι, αν z + Y τότε, = < + ε. = + τότε, d ( z, π ( ) ) π ( ) π ( ) { } (, π ( ) ) = if ( + ) : ( ) d z z y y Y =. { z y y Y} = = π ( ) π ( ), εφόσον z + Y z =. = if : = z = z Θεώρημα. Έστω χώρος Baach και Y κλειστός υποχώρος του, τότε ο χώρος πηλίκο / Y είναι χώρος Baach.
7 7 Απόδειξη. Έστω υπακολουθία k ακολουθία Cauchy στον χώρο / Y. Επιλέγομε με επαγωγή μια της ώστε να ισχύει, () k < k k, k = +,,... ( Για ε = υπάρχει N : > τότε <. Κατόπιν για ε =, επιλέγουμε > : > τότε <. Συνεχίζουμε με επαγωγή και έτσι εντοπίζουμε μία υπακολουθία ( k ) των φυσικών αριθμών ώστε να ισχύει η ()). Ακολούθως επιλέγομε με επαγωγή μία ακολουθία z, k =,,..., ώστε z z k < k k, k = +,,... Έστω z, από την προηγούμενη παρατήρηση, d z = < Έπεται ότι υπάρχει z ώστε z z <. Επειδή z έπεται ότι d z, 3 = 3 < άρα υπάρχει z 3 ώστε z 3 z <. Προχωρούμε 3 με επαγωγή στην επιλογή της ( ) ε > τότε υπάρχει z. Η ( ) k k z είναι μια ακολουθία Cauchy. Πράγματι, αν k N : < ε. Aν λ > µ k k + τότε, z z z z z z λ µ µ µ + λ λ < <. Επειδή ο είναι ε µ λ k χώρος Baach υπάρχει : z. Από τη συνέχεια της κανονικής απεικόνισης k k π, έπεται ότι π ( z ) = π k ( ) = στον χώρο / Y. Επειδή η k είναι ακολουθία Cauchy στον / Y και έχει υπακολουθία συγκλίνουσα, έπεται ότι και η ίδια είναι συγκλίνουσα. Παράδειγμα. Θεωρούμε τον χώρο πηλίκο l / c τότε η νόρμα πηλίκο δίνεται από τον =, όπου = ( ) τύπο, lisup l.,
8 8 Πράγματι, αν c li Υποθέτουμε ότι ( ) = d c = = = τότε, ( ) = l κα c, li ι, ισοδύναμα ότι ( ) ακολουθία πραγματικών η οποία δεν είναι μηδενική, δηλαδή ότι li sup a Παρατηρούμε ότι: ) Έστω ( ) = > και ( ) y = y c τότε = είναι μια φραγμένη φραγμένη. li sup y = li sup = a (Αν, y,, είναι συγκλίνουσα υπακολουθία k της y, τότε y, άρα li y = li a. Επειδή υπάρχει υπακολουθία ( ) k της ( ) έχουμε το συμπέρασμα ). : li ) (, ) k a d c = k k k = a έπεται ότι li y = li = a, άρα Πράγματι, αν ( ) y = y c τότε από την () a = lisup y (, ) = y a d c. sup y Υποθέτουμε για να καταλήξουμε σε άτοπο ότ ι a d (, c ) =,,...,,,... c,. Θέτομε ( ) <. a < d, c = sup : k +,. Έπεται ότι, ( ) { k } Συνεπώς, a < d (, c ) li sup { k : k + } καταλήξει σε αντίφαση. = lisup = a, έτσι έχουμε Πρόταση. Έστω, Z χώροι Baach και T : Z φραγμένος γραμμικός τελεστής επί του Z. Τότε ο χώρος πηλίκο / KerT είναι ισόμορφος του Z. Απόδειξη Ορίζουμε F : / KerT Z με F( KerT ) T ( ) + =. Θα αποδείξουμε ότι ο T είναι ένας ( καλά ορισμένος ) γραμμικός τελεστής ο οποίος είναι φραγμένος, και επί του Z. Από το θεώρημα ανοικτής απεικόνισης θα έχουμε το συμπέρασμα. Παρατηρούμε ακόμη ότι T = Foπ
9 9 (Ι) Ο T είναι καλά ορισμένος γραμμικός τελεστής. Έστω, ' ώστε, + = ' + ' ( ') = T ( ) T ( ') KerT KerT KerT T T είναι καλά ορισμένος. Ο T είναι επίσης γραμμικός αφού, =. Άρα ο ( λ ( + ) + µ ( + )) = F ( λ + µ y+ KerT ) = T ( λ µ y) ( ) + T ( y) = λ F ( + KerT ) + µ ( y+ KerT ). F KerT y KerT λ T µ (ΙΙ) Ο T είναι και επί του Z. Έστω F ( + KerT ) = F ( y + KerT ) T ( ) T ( y) = ( ) + = T y = y KerT + KerT = y + KerT. Ο T είναι επί, αφού αν z Z τότε ( ο T είναι επί ) υπάρχει = T ( ) = z, άρα ( ) (ΙΙΙ) Ο T είναι φραγμένος, με F F + KerT = z. = T. Έστω + KerT / KerT. Για κάθε ε > μπορούμε να επιλέξουμε y + KerT με y < + KerT + ε ( παρατήρηση.9). Συνεπώς F ( + KerT) = F ( y + KerT ) ( ) Εφόσον η ανισότητα ισχύει για κάθε θετικό ε, έπεται ότι, Συνεπώς F F ( + KerT) T + KerT. T και ο F είναι φραγμένος. Επειδή δε, ( ) ( ) ( ) + KerT = T y T y < T ( + KerT + ε ). T = sup T = sup F + KerT sup F + KerT = F, συμπεραίνουμε ότι, F = T Πόρισμα.3 Για κάθε διαχωρίσιμο χώρο Baach υπάρχει ένας κλειστός γραμμικός υπόχωρος Y του l ( N) ώστε ο χώρος πηλίκο ( N) l Y να είναι ισόμορφος με τον. / Απόδειξη Ως γνωστό επειδή ο είναι διαχωρίσιμος υπάρχει ένας φραγμένος γραμμικός τελεστής : ( ) T l N ο οποίος είναι επί του. Θέτομε Y = KerT. Από την προηγούμενη πρόταση έχουμε το συμπέρασμα. Παρατήρηση.4 Υπενθυμίζουμε εν συντομία το αποτέλεσμα που χρησιμοποιήσαμε στο προηγούμενο Πόρισμα, δηλαδή ότι κάθε διαχωρίσιμος χώρος Baach είναι συνεχής γραμμική εικόνα του l. Έστω D { } =, ένα αριθμήσιμο πυκνό υποσύνολο τηςβ.
10 Ορίζουμε T : l με T (( λ )) = λ, επειδή η σειρά λ = = είναι απόλυτα συγκλίνουσα ο T είναι ένας καλά ορισμένος γραμμικός τελεστής ο οποίος είναι φραγμένος με T. Αποδεικνύεται ακόμη ότι ο T είναι και επί του Y. Έστω Β <, εφόσον το D είναι πυκνό υπάρχει στην Β ( η Β δεν έχει μεμονωμένα σημεία ) υπακολουθία ( ) της ( ) με η συνήθης βάση του l ), τότε αποδείξαμε ότι Β T ( ). Θέτομε z = e,, άρα T ( Β l ). Έτσι z Β l και T ( z ) ( όπου ( e ) Β l. Από ένα γνωστό Λήμμα που χρησιμοποιείται στην απόδειξη του θεωρήματος ανοικτής απεικόνισης έπεται ότι Β T ( ) Β l από όπου συμπεραίνουμε ότι ο T είναι επί του. Αξίζει να σημειωθεί ότι ισχύει προφανώς και η σχέση ( l ) Β, και συνεπώς Β = T ( Β l ). Έπεται ότι αν F : l / Y = KerT, είναι ο τελεστής του θεωρήματος., τότε F ( ) T ( ) T Β Y, όπου Β l = Β l = Β. Από /Y όπου έπεται ότι ο F είναι μια ισομετρία ( γιατί; ) και άρα ο είναι ισομετρικά ισόμορφος με ένα πηλίκο του χώρου l. Μια ακόμη ενδιαφέρουσα εφαρμογή των χώρων πηλίκων είναι και η ακόλουθη. Πρόταση.5 Έστω χώρος με νόρμα, Z κλειστός υποχώρος του και Y υπόχωρος του πεπερασμένης διάστασης. Τότε ο Y + Z είναι κλειστός υποχώρος του. Απόδειξη. Έστω : / Z π η κανονική απεικόνιση. Ο ( Y) π είναι πεπερασμένης διάστασης υποχώρος του / Z και άρα κλειστός υποχώρος του / Z. Αφού η π είναι ( ) ( ) ( ) ( ) συνεχής ο π π ( Y) π π ( Y) π π Y y Y : π ( ) π ( y) Έπεται ότι Y Z π π ( Y) είναι κλειστός υποχώρος του. Παρατηρούμε ότι, ( ) = y Z Y + Z. + = και ο Y + Z είναι κλειστός υποχώρος του.
4 Ασθενείς τοπολογίες σε χώρους με νόρμα. 4.1 θεωρήματα Mazur, Alaoglou, Goldstine.
8 Έστω (, ) 4 Ασθενείς τοπολογίες σε χώρους με νόρμα 4. θεωρήματα Mazur, Alaoglou, Goldste. χώρος με νόρμα. Υπενθυμίζουμε ότι η ασθενής τοπολογία T του έχει ως βάση ( ανοικτών ) περιοχών του όλα τα σύνολα
Διαβάστε περισσότεραΑσκήσεις. και. για κάποιο k n. ( ) BdΚ και επί πλέον το BdΚ είναι ακραίο. [Υπόδειξη Πρβλ. την άσκηση 11 της παραγράφου 3.1 για το (α)].
3 Ασκήσεις ) Έστω διανυσματικός χώρος, C κυρτό και C. (α) Αποδείξτε ότι τα ακόλουθα είναι ισοδύναμα: (ι) e( C) = +,(ιι), = = και (ιιι) Το σύνολο C \{ } είναι κυρτό. (β) Επίσης αποδείξτε ότι αν e( C) και
Διαβάστε περισσότερα4.2 Αυτοπάθεια και ασθενής συμπάγεια * * X, x X, είναι επί του. X. Σημειώνουμε ότι υπάρχουν παραδείγματα μη
94 Ένας χώρος με νόρμα (, ( ( ( ϕ : : ϕ =, ( 4.2 Αυτοπάθεια και ασθενής συμπάγεια λέγεται αυτοπαθής ( refleive, αν η κανονική εμφύτευση,, είναι επί του, δηλαδή ϕ =. Παρατηρούμε ότι ένας αυτοπαθής χώρος
Διαβάστε περισσότερα2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y.
2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. Έστω (, ) και (, ) {( x, ) : x και } χώροι με νόρμα. Τότε ο διανυσματικός χώρος = ( με τις συνήθεις κατά σημείο πράξεις ) γίνεται χώρος με
Διαβάστε περισσότεραπ B = B και άρα η π είναι ανοικτή απεικόνιση.
3 Παράρτημα 2 Παρατηρήσεις, ασκήσεις και Διορθώσεις Παράγραφος ) Σελίδα, : Παρατηρούμε τα ακόλουθα για το χώρο πηλίκο / Y : Y = / Y και (α) { } (β) = Y / Y { } Επίσης από τον τύπο () έπεται ιδιαίτερα ότι
Διαβάστε περισσότεραι3.4 Παραδείγματα T ) έχει την ιδιότητα Heine-Borel, αν κάθε κλειστό και φραγμένο υποσύνολό του είναι συμπαγές.
6 ι3.4 Παραδείγματα Στην παράγραφο αυτή θα μελετήσουμε κάποια σημαντικά παραδείγματα, για τις εφαρμογές, χώρων συναρτήσεων οι οποίοι είναι τοπικά κυρτοί και μετρικοποιήσιμοι αλλά η τοπολογία τους δεν επάγεται
Διαβάστε περισσότερα4.2 Αυτοπάθεια και ασθενής συμπάγεια * * X, x X, είναι επί του. X. Σημειώνουμε ότι υπάρχουν παραδείγματα μη
94 Ένας χώρος με νόρμα (, ( ( ( ϕ : : ϕ =, ( 4. Αυτοπάθεια και ασθενής συμπάγεια λέγεται αυτοπαθής ( refleive, αν η κανονική εμφύτευση,, είναι επί του, δηλαδή ϕ =. Παρατηρούμε ότι ένας αυτοπαθής χώρος
Διαβάστε περισσότεραΚ X κυρτό σύνολο. Ένα σημείο x Κ
8 5 Το θεώρημα Kre-Mlm Βασικές ιδιότητες συμπαγών και κυρτών συνόλων. Ορισμός 5. Έστω X διανυσματικός χώρος και Κ X κυρτό σύνολο. Ένα σημείο x Κ λέγεται ακραίο ( extreme ) σημείο του Κ, αν δεν είναι γνήσιος
Διαβάστε περισσότερα3.5 Το θεώρημα Hahn-Banach σε τοπολογικούς διανυσματικούς χώρους.
7 3.5 Το θεώρημα Hah-Baach σε τοπολογικούς διανυσματικούς χώρους. Εξετάζουμε καταρχήν τη σχέση μεταξύ ενός μιγαδικού διανυσματικού χώρου E και του υποκείμενου πραγματικού χώρου E R. Έστω E μιγαδικός διανυσματικός
Διαβάστε περισσότερα2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y.
2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. Έστω ( X, ) και (, ) X Y {( x, ) : x X και Y} Y χώροι με νόρμα. Τότε ο διανυσματικός χώρος = ( με τις συνήθεις κατά σημείο πράξεις ) γίνεται
Διαβάστε περισσότεραΤο φασματικό Θεώρημα
Το φασματικό Θεώρημα 1 Το φάσμα ενός τελεστή Λήμμα 1.1 Έστω A B(H) φυσιολογικός τελεστής. Αν x H είναι ιδιοδιάνυσμα του A με ιδιοτιμή λ, τότε A x = λx. Έπεται ότι οι ιδιόχωροι ενός φυσιολογικού τελεστή
Διαβάστε περισσότεραΤο φασματικό Θεώρημα
Το φασματικό Θεώρημα 1 Το φάσμα ενός τελεστή Λήμμα 1.1 Έστω A B(H) φυσιολογικός τελεστής. Αν x H είναι ιδιοδιάνυσμα του A με ιδιοτιμή λ, τότε A x = λx. Έπεται ότι οι ιδιόχωροι ενός φυσιολογικού τελεστή
Διαβάστε περισσότεραΣυνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )
Συνεχείς συναρτήσεις πολλών µεταβλητών 7 Η Ευκλείδεια απόσταση που ορίσαµε στον R επιτρέπει ( εκτός από τον ορισµό των ορίων συναρτήσεων και ακολουθιών και τον ορισµό της συνέχειας συναρτήσεων της µορφής
Διαβάστε περισσότεραή κανονικός ( regular ), αν για κάθε x και κάθε κλειστό αντιπαραδείγματα με τα οποία αποδεικνύεται ότι οι αντίστροφες συνεπαγωγές δεν ισχύουν.
93 4 Διαχωριστικά αξιώματα Στο κεφάλαιο αυτό εισάγουμε τα λεγόμενα διαχωριστικά αξιώματα και εξετάζουμε τις βασικές ιδιότητές τους. Ένα από αυτά το έχουμε ήδη εισαγάγει δηλαδή το αξίωμα Husdorff ( ορισμός
Διαβάστε περισσότερα6 Συνεκτικοί τοπολογικοί χώροι
36 6 Συνεκτικοί τοπολογικοί χώροι Έστω R διάστημα και f : R συνεχής συνάρτηση τότε, όπως γνωρίζουμε από τον Απειροστικό Λογισμό, η f έχει την ιδιότητα της ενδιάμεσου τιμής. Η ιδιότητα αυτή δεν εξαρτάται
Διαβάστε περισσότερα3Τοπολογικοί διανυσματικοί χώροι. y A, για κάθε λ [ 0,1]
0 3Τοποογικοί διανυσματικοί χώροι 3. Βασικές έννοιες και ορισμοί. Έστω E διανυσματικός χώρος υπεράνω του σώματος K ( K Rή C) = και A E. (α) Το A έγεται κυρτό αν, για κάθε x, y A, για κάθε [ 0,] ισχύει
Διαβάστε περισσότερα3Τοπολογικοί διανυσματικοί χώροι. y A, για κάθε λ [ 0,1]
20 3Τοποογικοί διανυσματικοί χώροι 3. Βασικές έννοιες και ορισμοί. Έστω διανυσματικός χώρος υπεράνω του σώματος K ( K Rή C) = και A. (α) Το A έγεται κυρτό αν, για κάθε x, y A, για κάθε [ 0,] ισχύει ότι
Διαβάστε περισσότεραf x 0 για κάθε x και f 1
06 4.2 Το Λήμμα του Uysoh το Λήμμα της εμφύτευσης και το θεώρημα μετρικοποίησης του Uysoh. Ο κύριος στόχος αυτής της παραγράφου είναι η απόδειξη ενός θεμελιώδους αποτελέσματος γνωστού ως το Λήμμα του Uysoh.
Διαβάστε περισσότεραB = F i. (X \ F i ) = i I
Κεφάλαιο 3 Τοπολογία μετρικών χώρων Ομάδα Α 3.1. Εστω (X, ρ) μετρικός χώρος και F, G υποσύνολα του X. Αν το F είναι κλειστό και το G είναι ανοικτό, δείξτε ότι το F \ G είναι κλειστό και το G \ F είναι
Διαβάστε περισσότεραV x, y W x, y, y συνιστούν προφανώς ένα ανοικτό
81 3.2 Το θεώρημα Tychooff. Στην παράγραφο αυτή θα ασχοληθούμε με το θεώρημα Tychooff, δηλαδή ότι ένα αυθαίρετο καρτεσιανό γινόμενο συμπαγών χώρων είναι, με την τοπολογία γινόμενο, συμπαγής χώρος. Το θεώρημα
Διαβάστε περισσότεραR ισούται με το μήκος του. ( πρβλ. την ιστορική σημείωση 3.27 στο τέλος
73 3. Συμπαγείς χώροι 3. Συμπαγείς χώροι και βασικές ιδιότητες Οι συμπαγείς χώροι είναι μια από τις πιο σημαντικές κλάσεις τοπολογικών χώρων. Η κλάση των συμπαγών χώρων περιλαμβάνει τα κλειστά διαστήματα,b
Διαβάστε περισσότεραΈχοντας υπόψιν το Λήμμα του Urysohn, είναι φυσικό να θέσουμε το ακόλουθο ερώτημα: Αν
3 4.3 Τελείως κανονικοί χώροι ( ). 3 2 Έχοντας υπόψιν το Λήμμα του Urysoh, είναι φυσικό να θέσουμε το ακόλουθο ερώτημα: Αν κανονικός χώρος, x και κλειστό ώστε x. Υπάρχει τότε συνεχής συνάρτηση f :, ώστε
Διαβάστε περισσότεραf(f 1 (B)) f(f 1 (B)) B. X \ (f 1 (C)) = X \ f 1 (C) = f 1 (Y \ C) X \ (f 1 (C)) f 1 (Y \ C). f 1 (Y \ C) = f 1 (Y \ C ) = X \ f 1 (C ).
Κεφάλαιο 4 Συναρτήσεις μεταξύ μετρικών χώρων 4.1 Συνεχείς συναρτήσεις Εστω (X, ρ) και (Y, σ) δύο μετρικοί χώροι. Στην 2.2 δώσαμε τον ορισμό της συνέχειας μιας συνάρτησης f : X Y σε κάποιο σημείο x 0 X:
Διαβάστε περισσότεραΌταν δεν υπάρχει κίνδυνος σύγχυσης γράφουμε συνήθως ο τοπολογικός χώρος X και χρησιμοποιούμε την σύντμηση τ.χ. (= τοπολογικός χώρος).
4 Τοπολογικοί χώροι. Στοιχειώδεις έννοιες της τοπολογίας Στην παράγραφο αυτή εισάγουμε τις βασικές έννοιες της τοπολογίας, δηλαδή αυτές του ανοικτού και κλειστού συνόλου, της κλειστότητας και του εσωτερικού
Διαβάστε περισσότεραi=1 i=1 i=1 (x i 1, x i +1) (x 1 1, x k +1),
Κεφάλαιο 6 Συμπάγεια 6.1 Ορισμός της συμπάγειας Οπως θα φανεί στην αμέσως επόμενη παράγραφο, υπάρχουν διάφοροι τρόποι με τους οποίους μπορεί κανείς να εισάγει την έννοια του συμπαγούς μετρικού χώρου. Ο
Διαβάστε περισσότεραΠαράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( )
Παράρτηµα Β Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης Β1 Χώροι Baach Βάσεις Schauder Στο εξής συµβολίζουµε µε Z,, γραµµικούς (διανυσµατικούς) χώρους πάνω απ το ίδιο σώµα K = ή και γράφουµε απλά
Διαβάστε περισσότεραΑρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών
Ενότητα: L -σύγκλιση σειρών Fourier Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Διαβάστε περισσότεραh(x, y) = card ({ 1 i n : x i y i
Κεφάλαιο 1 Μετρικοί χώροι 1.1 Ορισμός και παραδείγματα Ορισμός 1.1.1 μετρική). Εστω X ένα μη κενό σύνολο. Μετρική στο X λέγεται κάθε συνάρτηση ρ : X X R με τις παρακάτω ιδιότητες: i) ρx, y) για κάθε x,
Διαβάστε περισσότεραΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014
ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 Περιεχόμενα 1 Εισαγωγή 2 2 Μεγιστικός τελέστης στην μπάλα 2 2.1 Βασικό θεώρημα........................ 2 2.2 Γενική περίπτωση μπάλας.................. 6 2.2.1 Στο
Διαβάστε περισσότεραΑκρότατα πραγματικών συναρτήσεων
Ακρότατα πραγματικών συναρτήσεων Ορισμός Έστω U R, U και f : U R R συνάρτηση τότε: )Το λέγεται τοπικό ελάχιστο της f αν υπάρχει περιοχή V του ώστε f f για κάθε V U Το λέγεται τοπικό μέγιστο της f αν υπάρχει
Διαβάστε περισσότεραΑς ξεκινήσουμε υπενθυμίζοντας τον ορισμό της συνέχειας σε μετρικούς χώρους. διατυπώνεται και με τον ακόλουθο τρόπο: για κάθε σφαίρα
33.4.Συνεχείς συναρτήσεις Η έννοια της συνεχούς συνάρτησης είναι θεμελιώδης και μελετάται κατ αρχήν για συναρτήσεις μιας και κατόπιν δύο ή περισσότερων μεταβλητών στα μαθήματα του Απειροστικού Λογισμού.
Διαβάστε περισσότερα5 Σύγκλιση σε τοπολογικούς χώρους
121 5 Σύγκλιση σε τοπολογικούς χώρους Στο κεφάλαιο αυτό πρόκειται να μελετήσουμε την έννοια της σύγκλισης σε γενικούς τοπολογικούς χώρους, πέραν των μετρικών χώρων. Όπως έχουμε ήδη διαπιστώσει ( πρβλ.
Διαβάστε περισσότεραΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ. και την ΟΙΚΟΝΟΜΙΑ»
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ «ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ σε ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΟΛΟΓΙΕΣ και την ΟΙΚΟΝΟΜΙΑ» Εφαρμογές
Διαβάστε περισσότερα1.2 Βάσεις και υποβάσεις.
. Βάσεις και υποβάσεις. Το «καθήκον» του ορισμού μιας τοπολογίας διευκολύνεται αν είμαστε σε θέση να περιγράψουμε αρκετά ανοικτά σύνολα τα οποία να παραγάγουν όλα τα ανοικτά σύνολα. Ορισμός.9. Έστω X,
Διαβάστε περισσότεραΑνοικτά και κλειστά σύνολα
5 Ανοικτά και κλειστά σύνολα Στην παράγραφο αυτή αναπτύσσεται ο µηχανισµός που θα µας επιτρέψει να µελετήσουµε τις αναλυτικές ιδιότητες των συναρτήσεων πολλών µεταβλητών. Θα χρειαστούµε τις έννοιες της
Διαβάστε περισσότερα= lim. (P QP ) n x, x. E(Ex) = lim. (P QP ) m P x = Ex, EP x = lim
Άσκηση: Η προβολή στην τομή δύο υποχώρων Αν P, Q είναι δύο ορθές προβολές σε έναν χώρο Hilbert H και R = P Q είναι η προβολή στην τομή im P im Q, δείξτε ότι, για κάθε x H, Rx = lim (P QP ) x = lim (P Q)
Διαβάστε περισσότεραY είναι τοπολογία. Αυτή περιέχει το και
8.3 Σχετική τοπολογία και υπόχωροι. Ορισμός.37. Έστω X, τ.χ. Αν U : U X, τότε η οικογένεια είναι μια τοπολογία στο σύνολο, η οποία ονομάζεται η σχετική ( ή επαγόμενη ) τοπολογία του. Ο χώρος, ονομάζεται
Διαβάστε περισσότεραΛύσεις στην Συναρτησιακή Ανάλυση Κανονική εξεταστική 2009 (μπορεί να περιέχουν λάθη)
Λύσεις στην Συναρτησιακή Ανάλυση Κανονική εξεταστική 009 (μπορεί να περιέχουν λάθη) (L) Θέμα 1 α) i Ένα σύνολο A X λέγεται γραμμικά ανεξάρτητο αν κάθε πεπερασμένο υποσύνολό του είναι γραμμικά ανεξάρτητο.
Διαβάστε περισσότεραΣυναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα
Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα Περίληψη του μαθήματος Μιχάλης Παπαδημητράκης Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης 1η εβδομάδα. Στα πρώτα δύο μαθήματα είπαμε κάποια πολύ βασικά πράγματα για
Διαβάστε περισσότεραJe rhma John L mma Dvoretzky-Rogers
Kefˆlaio 2 Je rhma Joh L mma Dvoretzky-Rogers 2.1 Elleiyoeidèc mègistou ìgkou eìc kurtoô s matoc Ορισμός 2.1.1. Ελλειψοειδές στον R είναι ένα κυρτό σώμα της μορφής { } (2.1.1) E = x R x, v i 2 : 1, όπου
Διαβάστε περισσότεραa n = sup γ n. lim inf n n n lim sup a n = lim lim inf a n = lim γ n. lim sup a n = lim β n = 0 = lim γ n = lim inf a n. 2. a n = ( 1) n, n = 1, 2...
ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΗ Β.ΒΛΑΧΟΥ, Α. ΣΟΥΡΜΕΛΙΔΗΣ Τμήμα Μαθηματικών, Πανεπιστήμιο Πατρών Φθινόπωρο 2013 1 Θα θέλαμε να αναφέρουμε ότι για την συγγραφή αυτών των σημειώσεων χρησιμοποιήσαμε ιδιαίτερα α)το βιβλίο
Διαβάστε περισσότεραf I X i I f i X, για κάθεi I.
47 2 Πράξεις σε τοπολογικούς χώρους 2. Η τοπολογία γινόμενο Σε προηγούμενη παράγραφο ορίσαμε την τοπολογία γινόμενο στο καρτεσιανό γινόμενο Y δύο τοπολογικών χώρων Y, ( παράδειγμα.33 () ). Στην παρούσα
Διαβάστε περισσότεραj=1 x n (i) x s (i) < ε.
Κεφάλαιο 5 Πληρότητα 5.1 Πλήρεις μετρικοί χώροι Ορισμός 5.1.1 (πλήρης μετρικός χώρος). Ενας μετρικός χώρος (X, ρ) λέγεται πλήρης (complete) αν κάθε ρ βασική ακολουθία (x n ) στον X είναι ρ συγκλίνουσα.
Διαβάστε περισσότεραL 2 -σύγκλιση σειρών Fourier
Κεφάλαιο 7 L -σύγκλιση σειρών Fourier 7.1 Χώροι Hilbert 7.1.1 Χώροι µε εσωτερικό γινόµενο και χώροι Hilbert Ορισµός 7.1.1. Εστω X γραµµικός χώρος πάνω από το K. Μια συνάρτηση, : X X K λέγεται εσωτερικό
Διαβάστε περισσότεραΣυνεκτικά σύνολα. R είναι συνεκτικά σύνολα.
4 Συνεκτικά σύνολα Έστω, Ι διάστηµα και f : Ι συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f ( Ι )
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z)
ΚΕΦΑΛΑΙΟ 1: Πρότυπα Στο κεφάλαιο αυτό θα υπενθυμίσουμε τις βασικές έννοιες που αφορούν πρότυπα πάνω από ένα δακτύλιο Θα περιοριστούμε στα πλέον απαραίτητα για αυτά που ακολουθούν στα άλλα κεφάλαια Η κατευθυντήρια
Διαβάστε περισσότεραX = {(x 1, x 2 ) x 1 + 2x 2 = 0}.
Γραμμική Άλγεβρα ΙΙ Διάλεξη 4 Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης 26/2/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 4 26/2/2014 1 / 12 Υποσύνολα ενός διανυσματικού χώρου. Πότε είναι ένα υποσύνολο X ενός
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων
ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάμε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων Αυτές συνδέονται μεταξύ τους με την έννοια της συνθετικής σειράς
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι
ΚΕΦΑΛΑΙΟ : Ημιαπλοί Δακτύλιοι Είδαμε στο κύριο θεώρημα του προηγούμενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισμα απλών προτύπων Εδώ θα χαρακτηρίσουμε όλους
Διαβάστε περισσότεραx, y = x 1 y 1 + x 2 y 2 + x 3 y 3. x k y k. k=1 k=1
Σημειώσεις για τους χώρους Hilbert και άλλα Αριστείδης Κατάβολος Από το βιβλίο «Εισαγωγή στη Θεωρία Τελεστών», εκδ. «Συμμετρία», 2008. Περιεχόμενα I Χώροι Hilbert 1 1 Εσωτερικά γινόμενα 1 1.0.1 Παραδείγματα.........................
Διαβάστε περισσότεραΚανόνες παραγώγισης ( )
66 Κανόνες παραγώγισης Οι κανόνες παραγώγισης που ισχύουν για συναρτήσεις µιας µεταβλητής, ( παραγώγιση, αθροίσµατος, γινοµένου, πηλίκου και σύνθετων συναρτήσεων ) γενικεύονται και για συναρτήσεις πολλών
Διαβάστε περισσότεραΘεωρία Τελεστών. Ενότητα: Χώροι µε νόρµα - Χώροι Hilbert. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών
Ενότητα: Χώροι µε νόρµα - Χώροι Hilbert Αριστείδης Κατάβολος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Διαβάστε περισσότεραΘεωρία Τελεστών. Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών
Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές Αριστείδης Κατάβολος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creatve Commons. Για εκπαιδευτικό υλικό,
Διαβάστε περισσότεραΤίτλος Μαθήματος: Απειροστικός Λογισμός ΙΙΙ. Ενότητα: Ο Ευκλείδειος Χώρος. Διδάσκων: Ιωάννης Γιαννούλης. Τμήμα: Μαθηματικών
Τίτλος Μαθήματος: Απειροστικός Λογισμός ΙΙΙ Ενότητα: Ο Ευκλείδειος Χώρος Διδάσκων: Ιωάννης Γιαννούλης Τμήμα: Μαθηματικών Κεφάλαιο 1 Ο Ευκλείδειος χώρος R n 1.1 Αλγεβρική δοµή Ο Ευκλείδειος χώρος R n είναι
Διαβάστε περισσότεραΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, 6-12-13 Μ. Παπαδημητράκης. 1 Τώρα θα δούμε την απόδειξη του Θεωρήματος που διατυπώσαμε στο τέλος του προηγούμενου μαθήματος. Απόδειξη. [α] Θεωρούμε συνάρτηση f : A R και
Διαβάστε περισσότεραΣυνεκτικά σύνολα. R είναι συνεκτικά σύνολα.
4 Συνεκτικά σύνολα Έστω, Ι R διάστηµα και f : Ι R συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f (
Διαβάστε περισσότεραΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ Μ. Παπαδημητράκης. 1 ΤΡΙΑΚΟΣΤΟ ΠΕΜΠΤΟ ΜΑΘΗΜΑ Ας θυμηθούμε από την περασμένη φορά ότι ένα σύνολο M σε έναν μετρικό χώρο (X, d είναι συμπαγές όταν: αν έχουμε οποιαδήποτε ανοικτά σύνολα που καλύπτουν
Διαβάστε περισσότεραΠραγµατική Ανάλυση ( ) Ασκήσεις - Κεφάλαιο 3
Πραγµατική Ανάλυση (2015-16) Ασκήσεις - Κεφάλαιο 3 Οµάδα Α 1. Εστω (X, ρ) µετρικός χώρος και F, G υποσύνολα του X. Αν το F είναι κλειστό και το G είναι ανοικτό, δείξτε ότι το F \ G είναι κλειστό και το
Διαβάστε περισσότερα2. d(x, y) = 0 x = y. 3. d(x, y) = d(y, x)
Τελεστές σε χώρους Hilbert Γεωργάτος Σπυρίδων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μαθηματικών Επιτροπή Επιβλέπων: Φελουζής Ευάγγελος - Αναπληρωτής Καθηγητής Μέλη : Τσολομύτης Αντώνιος - Καθηγητής Νικολόπουλος Χρήστος
Διαβάστε περισσότεραΣτοιχειώδεις τελεστές στην άλγεβρα των adjointable τελεστών σε Hilbert πρότυπα
Στοιχειώδεις τελεστές στην άλγεβρα των adjointable τελεστών σε Hilbert πρότυπα Χαράλαμπος Μαγιάτης Ανάλυση & Κβαντική Θεωρία Πληροφορίας Σεμινάριο Τμήματος Μαθηματικών ΕΚΠΑ 17/05/2019 1 / 56 Hilbert C
Διαβάστε περισσότερα2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ
.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Έστω διανύσματα που ανήκουν στο χώρο δ i = ( a i, ai,, ai) i =,,, και έστω γραμμικός συνδυασμός των i : xδ + x δ + + x δ = b που ισούται με το διάνυσμα b,
Διαβάστε περισσότεραΜΕΜ251 Αριθμητική Ανάλυση
ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 14, 30 Απριλίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Χώροι με εσωτερικό γινόμενο (Ευκλείδειοι χώροι) 2. Βέλτιστες προσεγγίσεις
Διαβάστε περισσότεραΠαναγιώτης Ψαρράκος Αν. Καθηγητής
Ανάλυση Πινάκων Κεφάλαιο 1: Νόρμες Διανυσμάτων και Πινάκων Παναγιώτης Ψαρράκος Αν. Καθηγητής Δ.Π.Μ.Σ. Εφαρμοσμένες Μαθηματικές Επιστήμες Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών
Διαβάστε περισσότεραΌρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0)
Όρια συναρτήσεων 5 Ορισµός Έστω, : Α συνάρτηση συσσώρευσης του Α και b σηµείο Λέµε ότι η έχει ως όριο το διάνυσµα b καθώς το τείνει προς το και συµβολίζουµε li ή b b αν και µόνο αν, για κάθε ε > υπάρχει
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες
ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες Χρησιμοποιώντας τανυστικά γινόμενα και εφαρμόζοντας το θεώρημα των Wedderbur-Art ( 33) θα αποδείξουμε δύο θεμελιώδη θεωρήματα που αφορούν κεντρικές απλές άλγεβρες *
Διαβάστε περισσότεραii
Σημειώσεις Γενικής Τοπολογίας Σημειώσεις Μ. Γεραπετρίτη από τις παραδόσεις (διορθώσεις, 2016) Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα, 2013 ii Περιεχόμενα 1 Τοπολογικοί Χώροι 3 1.1 Ανοικτά σύνολα,
Διαβάστε περισσότεραf(t) = (1 t)a + tb. f(n) =
Παράρτημα Αʹ Αριθμήσιμα και υπεραριθμήσιμα σύνολα Αʹ1 Ισοπληθικά σύνολα Ορισμός Αʹ11 (ισοπληθικότητα) Εστω A, B δύο μη κενά σύνολα Τα A, B λέγονται ισοπληθικά αν υπάρχει μια συνάρτηση f : A B, η οποία
Διαβάστε περισσότεραΣυναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα
Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα Περίληψη του μαθήματος Μιχάλης Παπαδημητράκης Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης 1η εβδομάδα. Στα πρώτα δύο μαθήματα είπαμε κάποια πολύ βασικά πράγματα για
Διαβάστε περισσότεραΠραγματική Ανάλυση Πέτρος Βαλέττας Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών
Πραγματική Ανάλυση Πέτρος Βαλέττας Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών 2010-11 Περιεχόμενα I Μετρικοί χώροι 1 1 Μετρικοί χώροι 3 1.1 Ορισμός και παραδείγματα........................... 3 1.2 Χώροι με
Διαβάστε περισσότεραΌρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0)
Όρια συναρτήσεων.5. Ορισµός. Έστω, f : Α συνάρτηση συσσώρευσης του Α και b σηµείο. Λέµε ότι η f έχει ως όριο το διάνυσµα b καθώς το τείνει προς το και συµβολίζουµε li = ή f b f b αν και µόνο αν, για κάθε
Διαβάστε περισσότερα,..., v n. W πεπερασμένα παραγόμενοι και dimv. Τα ακόλουθα είναι ισοδύναμα f είναι ισομορφιμός. f είναι 1-1. f είναι επί.
Γραμμική Άλγεβρα Ι, 07-8 Ασκήσεις7: Γραμμικές Απεικονίσεις Βασικά σημεία Ορισμός και παραδείγματα γραμμικών απεικονίσεων Σύνθεση γραμμικών απεικονίσεων, ισομορφισμοί Κάθε γραμμική απεικόνιση f : V W, όπου
Διαβάστε περισσότεραb. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0.
Ασκήσεις4 46 Ασκήσεις 4 Τριγωνίσιμες γραμμικές απεικονίσεις, Θεώρημα των Cayley-Hamilton Βασικά σημεία Ορισμός τριγωνίσιμου πίνακα, ορισμός τριγωνίσιμης γραμμικής απεικόνισης Κριτήριο τριγωνισιμότητας
Διαβάστε περισσότεραΚυρτή Ανάλυση. Ενότητα: Υπερεπίπεδα στήριξης και διαχωριστικά ϑεωρήµατα. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών
Ενότητα: Υπερεπίπεδα στήριξης και διαχωριστικά ϑεωρήµατα Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 1/ Στον Ευκλείδειο χώρο ορίζουμε τις νόρμες: 0 2 xx, που ισχύει.
ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /0 Στον Ευκλείδειο χώρο ορίζουμε τις νόρμες: Ν : = + + + Ν : = + + + Ν : = ma 3 για κάθε = ( ) Να αποδείξετε ότι για κάθε = ( ) ισχύει: Ν ( ) Ν ( ) Ν ( ) Ν (
Διαβάστε περισσότεραΔιακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Διαβάστε περισσότεραΜιχάλης Παπαδημητράκης. Αρμονική Ανάλυση. Τμήμα Μαθηματικών. Πανεπιστήμιο Κρήτης
Μιχάλης Παπαδημητράκης Αρμονική Ανάλυση Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Περιεχόμενα 1 Το ολοκλήρωμα Lebesgue. 1 1.1 Σύνολα μηδενικού μέτρου..................................... 1 1.2 Η συλλογή C
Διαβάστε περισσότεραΕισαγωγή στην Τοπολογία
Ενότητα: Σύγκλιση και Συνέχεια Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραf(x) f(c) x 1 c x 2 c
Μαθηματικός Λογισμός Ι Φθινόπωρο 2014 Σημειώσεις 1-12-14 Μ. Ζαζάνης 1 Πραγματικές Συναρτήσεις και Ορια Εστω S R ένα υποσύνολο του R και f : S R μια συνάρτηση με πεδίο ορισμού το S και τιμές στους πραγματικούς
Διαβάστε περισσότερα(which is named Tsirelson s space and is denoted with T ) and the space T [(A n, log 2 (n+1) ) n=1 ]
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ ΜΠΑΚΟΓΙΑΝΝΗ ΧΑΡΙΚΛΕΙΑ ΜΕΙΚΤΟΙ ΧΩΡΟΙ ΤΥΠΟΥ TSIRELSON ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΧΩΡΩΝ BANACH ΙΩΑΝΝΙΝΑ, 203 2 3 ΠΕΡΙΛΗΨΗ Σε
Διαβάστε περισσότεραΚεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο.
Κεφάλαιο Πρότυπα Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο Ορισμοί και Παραδείγματα Παραδοχές Στo βιβλίο αυτό θα κάνουμε τις εξής παραδοχές Χρησιμοποιούμε προσθετικό συμβολισμό
Διαβάστε περισσότεραn = r J n,r J n,s = J
Ανάλυση Fourer και Ολοκλήρωμα Lebesgue (2011 12) 4ο Φυλλάδιο Ασκήσεων Υποδείξεις 1. Εστω E [a, b] με µ (E) = 0. Δείξτε ότι το [a, b] \ E είναι πυκνό υποσύνολο του [a, b]. Υπόδειξη. Θεωρήστε ένα μη κενό
Διαβάστε περισσότερα8. Πολλαπλές μερικές παράγωγοι
94 8 Πολλαπλές μερικές παράγωγοι Οι μερικές παράγωγοι,,, αν υπάρχουν, μιας συνάρτησης : U R R ( U ανοικτό ) είναι αυτές συναρτήσεις από το U στο R, επομένως μπορεί να ορισθεί για αυτές η έννοια της μερικής
Διαβάστε περισσότεραΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών
54 ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών ιαφόριση συναρτήσεων πολλών µεταβλητών Ένας στέρεος ορισµός της παραγώγισης για συναρτήσεις πολλών µεταβλητών ανάλογος µε τον ορισµό για συναρτήσεις µιας µεταβλητής
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 1/2012
ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /0 Στον Ευκλείδειο χώρο ορίζουμε τις νόρμες: : : : ma 3 για κάθε Να αποδείξετε ότι για κάθε ισχύει: 3 3 Τι συμπεραίνετε για τις παραπάνω νόρμες του Αν θεωρήσουμε
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ
ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ 6. Βέλτιστες προσεγγίσεις σε ευκλείδειους χώρους Στο κεφάλαιο αυτό θα ασχοληθούµε µε προσεγγίσεις που ελαχιστοποιούν αποστάσεις σε διανυσµατικούς χώρους, µε νόρµα που προέρχεται
Διαβάστε περισσότεραΤα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C
Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson
ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobso Στο κεφάλαιο αυτό μελετάμε δακτυλίους του Art χρησιμοποιώντας το ριζικό του Jacobso. Ως εφαρμογή αποδεικνύουμε ότι κάθε δακτύλιος του Art είναι και της Noether. 4.1. Δακτύλιοι
Διαβάστε περισσότεραΑΝΑΛΥΣΗ 1 ΠΕΜΠΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 1 ΠΕΜΠΤΟ ΜΑΘΗΜΑ, 17-10-13 Μ. Παπαδημητράκης. 1 Την προηγούμενη φορά αναφέραμε (και αποδείξαμε στην περίπτωση n = 2) το θεώρημα που λέει ότι, αν n N, n 2, τότε για κάθε y 0 υπάρχει μοναδική μηαρνητική
Διαβάστε περισσότεραΔιανυσματική Ανάλυση. Γιάννης Γιαννούλης
Διανυσματική Ανάλυση Γιάννης Γιαννούλης Ιωάννινα, 30 Απριλίου 2014 Σημείωση: Οι παρούσες σημειώσεις δημιουργήθηκαν κατά την διάρκεια της διδασκαλίας του μαθήματος Απειροστικός Λογισμός ΙΙΙ και IV σε φοιτητές
Διαβάστε περισσότεραΑσκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις
Ασκήσεις 5 Βασικά σημεία Ιδιότητες ιδιόχωρων: Έστω,, Ισχύουν τα εξής Ασκήσεις Διαγωνίσιμες Γραμμικές Απεικονίσεις κάποιες διακεκριμένες ιδιοτιμές της γραμμικής απεικόνισης : V V, όπου o Αν v v 0, όπου
Διαβάστε περισσότεραΑκολουθίες πραγματικών αριθμών
ΚΕΦΑΛΑΙΟ Ακολουθίες πραγματικών αριθμών Όταν διαδοχικές τιµές που παίρνει µία μεταβλητή προσεγγίζουν απεριόριστα µία συγκεκριµένη τιµή έτσι ώστε τελικά να διαφέρουν από αυτήν λιγότερο από όσο επιθυµεί
Διαβάστε περισσότεραΤο Θεώρημα Stone - Weierstrass
Το Θεώρημα Stone - Weierstrass Θεώρημα 1 Έστω ¹ X συμπαγής χώρος Hausdorff και έστω C R (X η πραγματική άλγεβρα όλων των συνεχών συναρτήσεων f : X R. Έστω ότι ένα υποσύνολο A C R (X (1 το A είναι υπάλγεβρα
Διαβάστε περισσότεραΣυµπαγείς τελεστές. Κεφάλαιο Τελεστές πεπερασµένης τάξης. n. Γράφουµε rank(t ) = n. Αν οι E, F είναι χώροι µε νόρµα, συµβολίζουµε
Κεφάλαιο 3 Συµπαγείς τελεστές 3.1 Τελεστές πεπερασµένης τάξης Ορισµός 3.1.1 Μια γραµµική απεικόνιση T : E F µεταξύ δύο γραµµικών χώρων E, F λέγεται τάξης n (n N) αν ο υπόχωρος T (E) = im T έχει διάσταση
Διαβάστε περισσότεραB = {x A : f(x) = 1}.
Θεωρία Συνόλων Χειμερινό Εξάμηνο 016 017 Λύσεις 1. Χρησιμοποιώντας την Αρχή του Περιστερώνα για τους φυσικούς αριθμούς, δείξτε ότι για κάθε πεπερασμένο σύνολο A και για κάθε f : A A, αν η f είναι 1-1 τότε
Διαβάστε περισσότεραΓραμμική Αλγεβρα ΙΙ Διάλεξη 7 Βάσεις Διάσταση Χρήστος Κουρουνιώτης Πανεπισ τήμιο Κρήτης 7/3/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 7 7/3/ / 1
Γραμμική Άλγεβρα ΙΙ Διάλεξη 7 Διάσταση Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης 7/3/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 7 7/3/2014 1 / 1 Εάν ένα υποσύνολο S του διανυσματικού χώρου V παράγει το V,
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii018/laii018html ευτέρα 3 Απριλίου 018 Αν C = x
Διαβάστε περισσότεραΘεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή )
Θεωρία Galos Πρόχειρες σημειώσεις 0- (εκδοχή -7-0) Περιεχόμενα 0 Υπενθυμίσεις και συμπληρώματα Ανάγωγα πολυώνυμα Ανάγωγα πολυώνυμα και σώματα Χαρακτηριστική σώματος Απλές ρίζες πολυωνύμων Ασκήσεις 0 Επεκτάσεις
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Burnside
ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Bursde a b Θα αποδείξουμε εδώ ότι κάθε ομάδα τάξης pq ( p, q πρώτοι) είναι επιλύσιμη Το θεώρημα αυτό αποδείχτηκε από τον Bursde το 904 ο οποίος χρησιμοποίησε τη νέα
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες
ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες Χρησιμοποιώντας τανυστικά γινόμενα και εφαρμόζοντας το θεώρημα των Wedderbur-rt ( 33) θα αποδείξουμε δύο θεμελιώδη θεωρήματα που αφορούν κεντρικές απλές άλγεβρες θεώρημα
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 5
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 5 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii2018/laii2018.html ευτέρα 23
Διαβάστε περισσότερα