2. ΟΡΙΟ & ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

Σχετικά έγγραφα
Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ

ΜΑΘΗΜΑ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΜΑΘΗΜΑ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ xo

ιατυπώστε την ιδιότητα αυτή µε τη βοήθεια µεταβλητών.

Ορισμός: Μια συνάρτηση f/α ονομάζεται συνεχής στο σημείο x ο

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. Απλές περιπτώσεις Εφαρµόζουµε τις ιδιότητες των ορίων. Ουσιαστικά κάνουµε αντικατάσταση. lim 3x 4x+ 8 = = =

ΜΕΘΟ ΟΣ ΡΕΥΜΑΤΩΝ ΒΡΟΧΩΝ

ΘΕΜΑΤΑ ΠΡΟΗΓΟΥΜΕΝΩΝ ΕΤΩΝ - ΕΠΑΝΑΛΗΨΗ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ 22/06/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

] ) = ([f(x) ] 2 ) + (g (x) 2 = 2f(x) f (x) + 2 g (x) g (x) = 2f(x) g (x) + 2 g (x) [ f(x)] = 2f(x) g (x) 2 g (x) f(x) = 0. Άρα φ(x) = c.

V=αβγ (1) µ το πλάτος της δεξαµενής, β= 1

απεναντι καθετη πλευρα υποτεινουσα

1.1 Η ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ

Ανισότητες - Ανισώσεις µε έναν άγνωστο

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑÏΟΥ ΙΟΥΝΙΟΥ 2013 ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ : 29/05/2013 ΤΑΞΗ: Α ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΙΑΡΚΕΙΑ : 2:30

Σεµινάριο Αυτοµάτου Ελέγχου

ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 13/02/2014

1.0 Βασικές Έννοιες στην Τριγωνομετρία

ροή ιόντων και µορίων

Θέματα πανελληνίων διαγωνισμών Ε.Μ.Ε. Β γυμνασίου Θαλής

Ελαχιστοποίηση του Μέσου Τετραγωνικού Σφάλµατος για διαφορετικές τιµές των Παραµέτρων του Κλασσικού Γραµµικού Υποδείγµατος.

ΙΑΓΩΝΙΣΜΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

Exουμε βρεί την εξίσωση κύματος: λν = υ, όπου υ = Τ /μ στη περίπτωση της χορδής. Οπότε. υ ν = = λ

ΤΕΙ ΠΕΙΡΑΙΑ. Συστήµατα Αυτοµάτου Ελέγχου ΙΙ. Ασκήσεις Πράξης. . Καλλιγερόπουλος Σ. Βασιλειάδου. Χειµερινό εξάµηνο 2008/09

ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 02/02/2017 ΜΟΝΟ ΓΙΑ ΤΟΥΣ ΕΠΙ ΠΤΥΧΙΩ ΦΟΙΤΗΤΕΣ , (1) R1 R 2.0 V IN R 1 R 2 B R L 1 L

(Ανάλογα εργαζόµαστε και για να αποδείξουµε ότι δύο γωνίες έχουν κοινή διχοτόµο ή δύο τόξα κοινό µέσο).

ΒΑΣΙΚΗ ΑΣΚΗΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑΣ Ι.

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 1. Αν οι αριθμοί x και ψ είναι αντίστροφοι να βρεθεί η τιμή της παράστασης

γραπτή εξέταση στο µάθηµα ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης

ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ

1. Να υπολογίσεις το εμβαδόν κυκλικού δίσκου που είναι περιγεγραμμένος. Στο διπλανό σχήμα, να υπολογίσεις το μήκος και το. εμβαδόν του κύκλου.

ΕΦΑΡΜΟΓΗ 3.2. (Η/Ν Υπερεντάσεως Κατευθύνσεως)

Τετάρτη 5 Νοεμβρίου 2014 ΕΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ web:

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ [Κεφ. 2.4: Ρυθμός Μεταβολής του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

2.1. Ασκήσεις σχολικού βιβλίου σελίδας A Oµάδας. 1.i) 1.ii) 1.iii) = 0. f x = x + 1 στο x ο. Να βρείτε την παράγωγο της συνάρτησης ( ) Λύση

ΜΕΘΟΔΟΣ ΕΙΔΩΛΩΝ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΕΞΙΣΩΣΕΙΣ MAXWELL ΘΕΩΡΙΑ

ΗΜΙΤΟΝΙΚΗ ΜΟΝΙΜΗ ΚΑΤΑΣΤΑΣΗ (Η.Μ.Κ.)

ΟΡΙΑ ΣΥΝΑΡΤΗΣΕΩΝ ( ) Στο σχήμα 1, έχουμε τη γραφική παράσταση της συνάρτησης (1) και παρατηρούμε ότι όσο το x πλησιάζει στο xο = 2 από τα μικρά ( x

ΜΙΑ ΚΡΟΥΣΗ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ

Τιµή και απόδοση µετοχής. Ανάλυση χαρτοφυλακίου. Απόδοση µετοχής. Μεταβλητότητα τιµών και αποδόσεων

Θεώρηµα ( ) x x. f (x)

ΤΡΙΓΡΑΜΜΑ ΚΑΙ ΔΙΑΤΑΞΕΙΣ

Ατομικάενεργειακάδιαγράμματα: Θεώρημα μεταβολών: Προσέγγιση Born- Openheimer: Θεωρία μοριακών τροχιακών:

ΚΕΦΑΛΑΙΟ 1 Αόριστο & Ορισμένο Ολοκλήρωμα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Αθήνα 6 Μαρτίου ΘΕΜΑ: Κοινοποίηση του άρθρου 12 του Ν.2579/1998 και της /384/1998 απόφασης του Υπουργού Οικονομικών.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. Απλές περιπτώσεις Εφαρμόζουμε τις ιδιότητες των ορίων. Ουσιαστικά κάνουμε αντικατάσταση. lim 3x 4x + 8 = = = 9

Σκοπός της ενότητας αυτής είναι να παρουσιάσει σύντομα αλλά περιεκτικά τους τρόπους με τους οποίους παρουσιάζονται τα στατιστικά δεδομένα.

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ web:

Εάν η εξωτερική περιοδική δύναμη είναι της μορφής F δ =F max ημω δ t, τότε η εφαρμογή του 2 ου Νόμου του Νεύτωνα δίνει: dx b dt

ΑΝΙΣΟΤΗΤΕΣ. Αν α-β>0 τότε α>β «Αν η διαφορά είναι θετικός αριθμός τότε ο πρώτος αριθμός δηλαδή το α είναι μεγαλύτερος από τον δεύτερο δηλαδή το β»

ΜΑΓΝΗΤΙΚΗ ΔΥΝΑΜΗ ΠΑΝΩ ΣΕ ΑΓΩΓΟ ΠΟΥ ΔΙΑΡΡΕΕΤΑΙ ΑΠΟ ΡΕΥΜΑ

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. ΚΕΦΑΛΑΙΟ 1 1. Αν οι αριθμοί x και ψ είναι αντίστροφοι να βρεθεί η τιμή της παράστασης

Θεωρούμε ένα σύστημα με N βαθμούς ελευθερίας, το οποίο θα περιγράφεται από N συντεταγμένες ψ 1 (t), ψ 2 (t),..., ψ N (t).

Ο σκοπός μας είναι να μάθουμε αν η γενεθλιακή Αφροδίτη σε Αντίθεση με Πλούτωνα είναι όψη

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

Dimitris Balios 18/12/2012

Αλγεβρικές Παραστάσεις

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΠΟΛΩΤΙΚΑ ΦΙΛΤΡΑ (Polaroids)

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

ΜΑΘΗΜΑ ΘΕΩΡΗΜΑ ROLLE ΚΑΙ Θ.Μ.Τ ΑΣΚΗΣΕΙΣ. Ασκήσεις ύο θέσεις x, x Ρίζες εξίσωσης Ανισότητες

1. Πότε µία γωνία λέγεται εγγεγραµµένη; Απάντηση Όταν η κορυφή της είναι σηµείο του κύκλου και οι πλευρές της είναι τέµνουσες του κύκλου

ΑΝΑΡΤΗΤΕΟ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΠΕΙΓΟΝ-ΠΡΟΘΕΣΜΙΑ

τα βιβλία των επιτυχιών

Κυκλική κίνηση. Ονομάζεται η κίνηση η οποία πραγματοποιείται σε κυκλική τροχιά. Μελέτη της κυκλικής κίνησης. R θ S R

Α. ΝΟΜΟΣ ΗΜΙΤΟΝΩΝ ΟΡΙΣΜΟΙ. α β γ ΜΑΘΗΜΑ 10. Κεφάλαιο 2o : Τριγωνοµετρία. Υποενότητα 2.4: Νόµος των Ηµιτόνων Νόµος των Συνηµιτόνων. Θεµατικές Ενότητες:

Στα παρακάτω σχήµατα δίνονται οι γραφικές παραστάσεις δύο συναρτήσεων. Να βρείτε τα σηµεία στα οποία αυτές δεν είναι συνεχείς. 2 3,5 1 O. x 2.

Περιεχόμενα μεθόδευση του μαθήματος

Διάταξη Πραγματικών Αριθμών. Έστω α, β πραγματικοί αριθμοί. Τι σχέση μπορεί να έχουν αυτοί οι αριθμοί; Μπορεί, να είναι ίσοι: Να είναι άνισοι, δηλαδή:

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

Πέµπτη, 3 Ιουνίου 2004 Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ

Σχεδιασμός και Τεχνολογία Γ Λυκείου - Λύσεις Ασκήσεων

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 13

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

1 ΘΕΩΡΙΑΣ...με απάντηση

Oδεύοντα κύματα είναι διαταραχές (που μεταφέρουν ενέργεια και ορμή) που διαδίδονται στον ανοικτό χώρο με ορισμένη ταχύτητα διάδοσης.

1o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΑ ΟΡΙΣΜΟΣ ( ) Αριθµητική τιµή του πολυώνυµου ( ) Το πολυώνυµο ( ) = = =.

ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ Α - Β ΛΥΚΕΙΟΥ 1. ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ

2.5 ΑΝΙΣΟΤΗΤΕΣ ΑΝΙΣΩΣΕΙΣ

ΑΠΑΝΤΉΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤAΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2009 Επιμέλεια: Νεκτάριος Πρωτοπαπάς.

Δύο λόγια από τη συγγραφέα

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα,

3.2 ΑΘΡΟΙΣΜΑ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ

Σειρά 1 η : Άσκηση 1.2

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου;

ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ

Βασικά-Ορισμοί Ιδιότητες Ανισοταυτότητες Διαστήματα. Ανισότητες. Κώστας Κυρίτσης. 1ο ΓΕΛ Ν.Ηρακλείου. 17 Νοεμβρίου

Κ. Μέτρηση Κύκλου. Παράρτημα. Ι13. Αν σε ένα τρίγωνο ΑΒΓ ισχύει η σχέση:

Ρητοί αριθμοί είναι αυτοί που έχουν (ή μπορεί να πάρουν) κλασματική μορφή,

Transcript:

2. ΟΡΙΟ & ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 2.1. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 5 Ο ΜΑΘΗΜΑ 2.1.1. Τ σύνλ των πραγματικών αριθμών Τ σύνλ των πραγματικών αριθμών, είναι γνωστό και με τα στιχεία τυ δυλέψαμε όλες τις πρηγύμενες τάζεις. Στ σημεί όμως αυτό, είναι σκόπιμ να ανακεφαλαιώσυμε τις γνώσεις μας και να τις βάλυμε σε τάξη. Οι πραγματικί αριθμί, απτελύνται από: Τυς ρητύς αριθμύς πυ συμβλίζνται με και είναι τ σύνλ: α = / ακέ ραιι με β 0 β Βλέπετε αμέσως δημιυργείται η ανάγκη να θυμηθύμε τυς ακέραιυς αριθμύς, ι πίι συμβλίζνται με και είναι τ σύνλ: = {..., 3, 2, 1,0,1, 2,3,... } Μέσα στ σύνλ των ακέραιων αριθμών, δηλαδή υπσύνλ τυ συνόλυ των ακεραίων, είναι ι φυσικί αριθμί, πυ συμβλίζυμε με και είναι τ σύνλ: = { 1,2,3,... } Έχει καθιερωθεί όταν αναφερόμαστε στ σύνλ των φυσικών αριθμών, να εννύμε τ σύνλ: = { 0,1, 2,3,... } Τυς άρρητυς αριθμύς. Άρρητι είναι όλι ι πραγματικί αριθμί πυ δεν είναι ρητί. Δηλαδή είναι όλι ι πραγματικί αριθμί πυ δεν μπρύν να γραφύν με τη μρφή: α, με β 0 β Τ σύνλ των άρρητων αριθμών συμβλίζυμε με και είναι συμπληρωματικό σύνλ τυ ως πρς τ. Δηλαδή σ αυτό περιέχνται όλι ι πραγματικί αριθμί πυ δεν είναι ρητί. 63

Για τα σύνλα,,, και, ισχύυν:, αλ ά =, εν ώ = (1) Οι παραπάνω συνθήκες, απεικνίζνται στ διάγραμμα τυ Venn πυ ακλυθεί: Πρσχή: Τ δεν είναι υπσύνλ τυ, όπως θα μπρύσε να συμπεράνει κάπις από τ διάγραμμα τυ Venn. Είναι δυ ξένα μεταξύ τυς σύνλα, όπως σημειώνεται και στις συνθήκες (1). Για τν λόγ άλλωστε αυτό η διαγράμμιση τυ είναι διαφρετική. Στα σύνλα,,, περιέχεται τ μηδέν. Όταν συμβλίζυμε: τότε τ μηδέν δεν περιέχεται.,,, Άξνας των πραγματικών αριθμών Αν σε ευθεία ρίσυμε σημεί στ πί αντιστιχύμε τ 0 και δεξιά αυτύ άλλ σημεί στ πί αντιστιχύμε τ 1, τότε έχυμε την ευθεία των πραγματικών αριθμών, όπως εμφανίζεται στ παρακάτω σχήμα. Η ευθεία αυτή, νμάζεται και άξνας των πραγματικών αριθμών. Σε κάθε σημεί τυ άξνα αντιστιχεί ένας πραγματικός αριθμός και αντίστρφα 64

κάθε πραγματικός αριθμός αντιστιχεί σε ένα σημεί τυ άξνα. Όπως παρατηρείτε και στ σχήμα, ι θετικί αριθμί είναι δεξιά τυ μηδενός, ενώ ι αρνητικί αριθμί είναι δεξιά αυτύ. 2.1.2. Πράξεις και διάταξη στ Στ σύνλ των πραγματικών αριθμών, έχυμε ρίσει την πρόσθεση και τν πλλαπλασιασμό και μέσω αυτών την αφαίρεση και διαίρεση. Οι ιδιότητες των πράξεων είναι γνωστές και δεν είναι σκόπιμ να αναφερθύμε σ αυτές. Είναι σκόπιμ όμως να αναφερθύμε διεξδικότερα στη διάταξη πυ υπάρχει στ σύνλ των πραγματικών αριθμών. Ο πραγματικός αριθμός α είναι μεγαλύτερς ή ίσς τυ β και συμβλίζυμε α β, αν και μόν αν η διαφρά α β είναι αριθμός θετικός ή μηδέν. Η παραπάνω πρόταση εκφράζεται από την ισδυναμία: α β α β 0 Στην περίπτωση πυ δεν μπρεί να έχυμε ισότητα μεταξύ των αριθμών α, β τότε συμβλίζυμε α>β και ισχύει ι ισδυναμία: α >β α β> 0 Πρσέξτε στ σχήμα. Ένας πραγματικός θετικός αριθμός είναι μεγαλύτερς από ένα άλλ θετικό, αν είναι πι μακριά από την αρχή 0 τυ άξνα. Αντίθετα για τυς αρνητικύς αριθμύς, μεγαλύτερς είναι πι κντά στην αρχή 0. Η διάταξη στ σύνλ των πραγματικών αριθμών, χαρακτηρίζεται από τις ιδιότητες: 1. Αν α β και β γ α γ Είναι η μεταβατική ιδιότητα 2. α β α+γ β+γ Αν και στα δυ μέλη μιας ανισότητας πρσθέσυμε τν ίδι αριθμό, τότε έχυμε μόστρφη ανισότητα. 3. α β αγ βγ όταν γ > 0 και α β αγ βγ ό ταν γ < 0 65

Όταν πλλαπλασιάσυμε και τα δυ μέλη μιας ανισότητας με θετικό αριθμό, πρκύπτει μόστρφη ανισότητα, ενώ αν πλλαπλασιάσυμε με αρνητικό αριθμό, η ανισότητα αλλάζει φρά. 4. Αν α β και γ δ α+γ β+δ Μπρύμε να πρσθέσυμε κατά μέλη δυ μόστρφες ανισότητες και πρκύπτει μόστρφη μ αυτές ανισότητα. 5. Αν α β και γ δ με αγ βδ αβγδ>,,, 0 Μπρύμε να πλλαπλασιάσυμε κατά μέλη δυ μόστρφες ανισότητες, εφ όσν τα μέλη τυς είναι θετικί αριθμί. α 6. Αν 0 αβ 0 και β 0 β 7. Αν αβ, 0 και ν τότε ισχύει η ισδυναμία: α β α β ν ν Δηλαδή μπρύμε να υψώσυμε στην ίδια δύναμη και τα δυ μέρη μια ανισότητας, όταν αυτά είναι θετικί αριθμί και πρκύπτει μόστρφη ανισότητα. 8. Αν αβ> 0, τότε ισχύει η ισδυναμία: 1 1 α β α β Αν και τα δυ μέρη μιας ανισότητας είναι θετικί αριθμί, ι αντίστρφι αυτών, δίνυν ετερόστρφη ανισότητα και αντίστρφα. 66

2.1.3. Διαστήματα πραγματικών αριθμών Αν αβ, με α<β, νμάζυμε διαστήματα με άκρα τα α, β καθένα από τα παρακάτω σύνλα: ( α, β ) = { x / α<x <β} [ αβ, ] = { x / α x β} [ α, β ) = { x / α x <β} ( α, β ] = { x / α<x β} : ανικτό διάστημα : κλειστό διάστημα : κλειστό αριστερά ανικτό δεξιά : ανικτό αριστερά κλειστό δεξιά Αν α, τότε νμάζυμε μη φραγμένα διαστήματα με άκρ τ α καθένα από τα παρακάτω σύνλα: ( α+, ) = { x / x >α} [ α+, ) = { x / x α} (, α ) = { x / x< α} (, α ] = { x / x α} Τ σύνλ των πραγματικών αριθμών υπό μρφή διαστήματς, είναι: = (, + ) Τα σημεία ενός διαστήματς Δ πυ είναι διαφρετικά από τα άκρα τυ, είναι εσωτερικά σημεία τυ Δ. 2.1.4. Απόλυτη τιμή πραγματικών αριθμών Η απόλυτη τιμή ενός πραγματικύ αριθμύ α, συμβλίζεται με α και ρίζεται από τη συνθήκη: 67

α, αν α 0 α= α, αν α< 0 Η απόλυτη τιμή κάθε πραγματικύ αριθμύ α, εκφράζει την απόσταση τυ σημείυ πυ αντιστιχεί στν αριθμό, από τ μηδέν πυ είναι η αρχή τυ άξνα, όπως φαίνεται στ σχήμα: Η απόλυτη τιμή της διαφράς α β, εκφράζει την απόσταση των σημείων πυ αντιστιχύν στυς αριθμύς α, β όπως φαίνεται στ σχήμα: Η απόλυτη τιμή των πραγματικών αριθμών, χαρακτηρίζεται από τις ιδιότητες: 2 α =α 2, για κάθε α 2 α = α, για κάθε α αβ =α β, για κάθε α,β α α =, για καθε α και β β β α β α±β α+β, γιακάθε α,β x x <δ δ< x x <δ x δ< x < x +δ, δ> 0 68