Τιµή και απόδοση µετοχής. Ανάλυση χαρτοφυλακίου. Απόδοση µετοχής. Μεταβλητότητα τιµών και αποδόσεων
|
|
- Τιμοθέα Γιαννόπουλος
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Τιµή και απόδση µετχής Ανάλυση χαρτφυλακίυ Τιµές Απδόσεις και Κίνδυνς µετχών ιαφρπίηση κινδύνυ Χαρτφυλάκια µετχών Η απόδση µιας µετχής είναι ίση πρς τη πσστιαία διαφρά µεταξύ της αρχικής και της τελικής περιυσίας τυ κατόχυ r t : απόδση περιόδυ P t : τελική τιµή µετχής P t-1 : αρχική τιµή µετχής D t : µέρισµα περιόδυ Η απόδση της µετχής διακρίνεται σε απόδση υπεραξίας και µερισµατική απόδση Απόδση µετχής Μεταβλητότητα τιµών και απδόσεων Η απόδση είναι πραγµατπιηθείσα, αν υπλγίζεται µεταξύ τιµής αγράς και τιµής πώλησης της µετχής Η απόδση είναι λγιστική, αν τυλάχιστ µια από τις δύ τιµές δεν είναι τιµή συναλλαγής (αγράς ή πώλησης) Αν η περίδς δεν περιλαµβάνει διανµή µερίσµατς, τότε η απόδση είναι µόνν απόδση υπεραξίας Συνεδρίαση Παρασκευής 7 Μαϊυ 1999 Γενικός είκτης Τιµών Ιύνις Μάις
2 Τυχαίες τιµές και απδόσεις Οι ιστρικές απδόσεις των µετχών έχυν µεγάλη διασπρά Οι µελλντικές απδόσεις των µετχών µπρύν να πρβλεφθύν µόνν µε κάπια πιθανότητα σφάλµατς Μεταβλητότητα και ατελής πρβλεψιµότητα σηµαίνυν ότι ι τιµές και ι απδόσεις ενσωµατώνυν έναν τυχαί παράγντα δηλαδή είναι τυχαίες µεταβλητές Κατανµή πιθανότητας απδόσεων πιθανότητα µέση τιµή Οι απδόσεις έχυν µικρή διασπρά απδόσεις Η κατανµή έχει µικρή διακύµανση Η µετχή έχει χαµηλό κίνδυν Οι απδόσεις έχυν µεγάλη διασπρά Η κατανµή έχει µεγάλη διακύµανση Η µετχή έχει υψηλό κίνδυν Παράµετρι κατανµής απδόσεων Πρσδκώµενη απόδση ιακύµανση απδόσεων Τυπική απόκλιση απδόσεων Συνδιακύµανσηαπδόσεων δύ µετχών Συσχέτιση απδόσεων δύ µετχών / Κίνδυνς και διαφρπίηση Όσ µεγαλύτερς είναι κίνδυνς µιας µετχής, τόσ µεγαλύτερη πρέπει να είναι η πρσδκώµενη απόδση της µετχής, πρκειµένυ να την αγράσυµε Όµως, ένα µέρς τυ κινδύνυ µιας µεµνωµένης µετχής µπρεί να εξαλειφθεί µέσω τυ σχηµατισµύ χαρτφυλακίυπερισσότερων µετχών, δηλαδή µέσω της διαφρπίησης ΆΡΑ, διαφρπιήσιµςκίνδυνς δεν ανταµείβεται στην αγρά 2
3 Κίνδυνς και διαφρπίηση διακύµανση χαρτφυλακίυ ιαφρπιήσιµς κίνδυνς Κίνδυνς χαρτφυλακίυ Ένα ακραί παράδειγµα: ύ µετχές µε έντνες διακυµάνσεις... µπρεί να κάνυν ένα σταθερό χαρτφυλάκι! Συστηµατικός κίνδυνς αριθµός µετχών Αν µας πλήρωναν για τν συνλικό κίνδυν της κάθε µετχής, τότε θα κερδίζαµε δωρεάν απόδση συνδυάζντάς-τις σε ένα χαρτφυλάκι Η διακύµανση τυ χαρτφυλακίυ εξαρτάται λιγότερ από τη διακύµανση της απόδσης των µετχών και περισσότερ από τη συσχέτιση των απδόσεών τυς Απόδση χαρτφυλακίυ Χαρτφυλάκι (portfolio) είναι τ σύνλ των διάφρων τπθετήσεων τυ επενδυτή Απόδση ενός χαρτφυλακίυ µετχών: r pt : απόδση χαρτφυλακίυ την περίδ t x i : πσστό µετχής i στ χαρτφυλάκι r it : απόδση µετχής iτην περίδ t Η απόδση τυ χαρτφυλακίυ είναι και αυτή τυχαία µεταβλητή ως γραµµικός συνδυασµός τυχαίων µεταβλητών Παράµετρι της κατανµής απδόσεων χαρτφυλακίυ Ν µετχών Πρσδκώµενη απόδση χαρτφυλακίυ ιακύµανση απδόσεων Τυπική απόκλιση απδόσεων Συνδιακύµανση απδόσεων i και j και αν αν 3
4 Παράµετρι της κατανµής απδόσεων χαρτφυλακίυ Ν µετχών Χαρτφυλάκια µετχών N όρι N(Ν-1)/2 όρι σ 2 p : διακύµανση απόδσης χαρτφυλακίυ x i : πσστό µετχής iστ χαρτφυλάκι σ 2 i : διακύµανση απόδσης µετχής i σ ij : συνδιακύµανσηαπoδόσεων µετχής i και j Τα χαρτφυλάκια πυ µπρύν να σχηµατισθύν µε βάση τις µεµνωµένες µετχές νµάζνται εφικτά χαρτφυλάκια (feasible portfolios) Τα χαρτφυλάκια πυ έχυν αξία ίση µε την περιυσία τυ επενδυτή και ελαχιστπιύν τν κίνδυν για κάθε επίπεδ πρσδκώµενης απόδσης νµάζνται χαρτφυλάκια ελάχιστης δυνατής διακύµανσης (minimum variance portfolios MVP) µ 2 Εφικτά και MVP χαρτφυλάκια 2 µετχών µ MVP χαρτφυλάκια Α (x Α =1) όταν ι απδόσεις των µ 1 µετχών Α και Β έχυν ατελή συσχέτιση Εφικτά χαρτφυλάκια σ 1 σ 2 Β (x Β =1) σ Επιλγή χαρτφυλακίυ µετχών Τα χαρτφυλάκια MVP πυ µεγιστπιύν την πρσδκώµενη απόδση σε κάθε επίπεδ διακύµανσης νµάζνται απτελεσµατικά χαρτφυλάκια (efficient portfolios) Τoάριστ χαρτφυλάκιγια τν επενδυτή είναι εκείν τ απτελεσµατικό χαρτφυλάκι πυ τυ πρσφέρει τν πρτιµότερ συνδυασµό απόδσης κινδύνυ βρίσκεται στ σηµεί επαφής της καµπύλης των απτελεσµατικών χαρτφυλακίων µε µια καµπύλη αδιαφρίας στν χώρ (σ,µ) 4
5 Επιλγή χαρτφυλακίυ µετχών Ο ρθλγικός επενδυτής επιλέγει τ απτελεσµατικό χαρτφυλάκι πυ πρσφέρει την πρτιµότερη σχέση απόδσης πρς κίνδυν µ 1 Α Ε µ 2 Καµπύλη αδιαφρίας Απτελεσµατικά χαρτφυλάκια Άριστ χαρτφυλάκι Β Ανάλυση χαρτφυλακίυ Θετική ανάλυση Υπόδειγµα Απτίµησης Κεφαλαιακών Στιχείων (Capital Assets Pricing Model-ΚΑΠΕΜ ή ΥΑΚΣ) Θεωρία απτίµησης µέσω arbitrage (Arbitrage Pricing Theory - APT) εντλγική ανάλυση Κατασκευή χαρτφυλακίων Υπλγιστικές δυσκλίες και περιρισµί σ 1 σ 2 5
Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.
Α ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκπός Σκπός τυ κεφαλαίυ είναι η κατανόηση των βασικών στιχείων μιας στατιστικής έρευνας. Πρσδκώμενα απτελέσματα Όταν θα έχετε λκληρώσει τη μελέτη αυτύ τυ κεφαλαίυ θα πρέπει να μπρείτε:
Διαβάστε περισσότεραΑρχές Οικονομικής Θεωρίας
Αρχές Οικνμικής Θεωρίας 12:00 Σελίδα 2 από 7 ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΗΜΕΡΟΜΗΝΙΑ ΕΞΕΤΑΣΗΣ: 15 / 06 / 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: Αρχές Οικνμικής Θεωρίας ΠΡΟΤΕΙΝΟΜΕΝΕΣ
Διαβάστε περισσότεραΒΑΣΙΚΗ ΑΣΚΗΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑΣ Ι.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΣΚΗΣΕΙΣ - ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΒΑΣΙΚΗ ΑΣΚΗΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑΣ Ι. ΙΚΑΙΟΣ ΤΣΕΡΚΕΖΟΣ ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ . ΒΑΣΙΚΗ ΑΣΚΗΣΗ. Έχετε στην διάθεση σας ( Πίνακας ) στιχεία από
Διαβάστε περισσότεραΑγορές Χρήματος και Κεφαλαίου. Ενότητα # 3: Θεωρία Χαρτοφυλακίου Διδάσκων: Σπύρος Σπύρου Τμήμα: Λογιστικής και Χρηματοοικονομικής
Αγορές Χρήματος και Κεφαλαίου Ενότητα # 3: Θεωρία Χαρτοφυλακίου Διδάσκων: Σπύρος Σπύρου Τμήμα: Λογιστικής και Χρηματοοικονομικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του
Διαβάστε περισσότερα2. ΟΡΙΟ & ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ
2. ΟΡΙΟ & ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 2.1. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 5 Ο ΜΑΘΗΜΑ 2.1.1. Τ σύνλ των πραγματικών αριθμών Τ σύνλ των πραγματικών αριθμών, είναι γνωστό και με τα στιχεία τυ δυλέψαμε όλες τις πρηγύμενες τάζεις.
Διαβάστε περισσότεραΠρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 41 Αγορές Χρήματος & Κεφαλαίου. Ακαδημαϊκό έτος:
Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 41 Αγορές Χρήματος & Κεφαλαίου Ακαδημαϊκό έτος: 2017 2018 Ασκήσεις 3 ης ΟΣΣ Άσκηση 1 η. Έστω οι προσδοκώμενες αποδόσεις και ο
Διαβάστε περισσότεραΑΝΑΡΤΗΤΕΟ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΠΕΙΓΟΝ-ΠΡΟΘΕΣΜΙΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΣΩΤΕΡΙΚΩΝ ΚΑΙ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΣΥΓΚΡΟΤΗΣΗΣ ΓΕΝ. Δ/ΝΣΗ ΔΙΟΙΚΗΣΗΣ ΑΝΘΡΩΠΙΝΟΥ ΔΥΝΑΜΙΚΟΥ ΑΝΑΡΤΗΤΕΟ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΠΕΙΓΟΝ-ΠΡΟΘΕΣΜΙΑ Αθήνα, 7 Μαΐυ 2015 Α.Π:ΔΙΠΑΑΔ/ΕΠ/Φ.3/62/11867
Διαβάστε περισσότεραKEΦΑΛΑΙΟ 2 Θεωρία Χαρτοφυλακίου
KEΦΑΛΑΙΟ Θεωρία Χαρτοφυλακίου.1 Απόδοση και κίνδυνος Σε αυτή την ενότητα θα μάθουμε να υπολογίζουμε την απόδοση και τον κίνδυνο κάθε αξιόγραφου. Ειδικότερα θα διαχωρίσουμε τον υπολογισμό ανάλογα με το
Διαβάστε περισσότερα0,40 0, ,35 0,40 0,010 = 0,0253 1
ΔΕΟ3 1ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΧΑΡΤΟΦΥΛΑΚΙΑ CAPM ΕΡΩΤΗΣΗ 1 Έστω ότι το χαρτοφυλάκιο της αγοράς αποτελείται από τρεις μετοχές οι οποίες συμμετέχουν με τα εξής ποσοστά:: W1 = 0,25, W2 = 0,35, W3 = 0,40. Ο παρακάτω
Διαβάστε περισσότεραEC-ASE: Ευρωπαϊκό Πιστοποιητικό για τους Συμβούλους / Εκπαιδευτές Κοινωνικής Οικονομίας
ΣΥΣΤΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΟΙΟΤΗΤΑΣ EC-ASE: Ευρωπαϊκό Πιστπιητικό για τυς Συμβύλυς / Εκπαιδευτές Κινωνικής Οικνμίας 2 «Ευρωπαϊκό Πιστπιητικό για τυς Συμβύλυς / Εκπαιδευτές Κινωνικής Οικνμίας» Επικεφαλής Εταίρς:
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Αθήνα 6 Μαρτίου ΘΕΜΑ: Κοινοποίηση του άρθρου 12 του Ν.2579/1998 και της /384/1998 απόφασης του Υπουργού Οικονομικών.
-- 275 -- * ΛΟΙΠΕΣ ΦΟΡΟΛΟΓΙΕΣ * Ν. 23 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Αθήνα 6 Μαρτίυ 1998 ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ Αριθ.Πρωτ.: 1031131/389/Δ.Τ. & Ε.Φ. ΓΕΝ.Δ/ΝΣΗ ΦΟΡΟΛΟΓΙΑΣ ΠΟΛ.: 1076 ΔΙΕΥΘΥΝΣΗ ΤΕΛΩΝ ΚΑΙ Ε.Φ. ΔΙΕΥΘΥΝΣΗ
Διαβάστε περισσότεραΕΓΧΕΙΡΙΔΙΟ ΕΓΚΑΤΑΣΤΑΣΗΣ AST COMPACT 110 & 150
http://www.a-s-t.gr I OLAR NDUTRY ΕΓΧΕΙΡΙΔΙΟ ΕΓΚΑΤΑΣΤΑΣΗΣ AT COMPACT 110 & 150 1. Περιγραφή Τ σύστημα Compact με τα μντέλα πυδιαθέτυν δεξαμενή των 100 και 150 λίτρων, παράγεται από την A..T. solar industry
Διαβάστε περισσότεραE.E. Παρ. ΙΙΙ(Ι) Αρ. 3570,
E.E. Παρ. ΙΙΙ(Ι) Αρ. 3570, 25.1.2002 120 Κ.Δ.Π. 33/2002 Αριθμός 33 ΠΕΡΙ ΦΡΥ ΠΡΣΤΙΘΕΜΕΝΗΣ ΑΞΙΑΣ ΝΜΣ (ΝΜΣ 95(1) ΤΥ 2000) Ι ΠΕΡΙ ΦΡΥ ΠΡΣΤΙΘΕΜΕΝΗΣ ΑΞΙΑΣ (ΓΕΝΙΚΙ) ΚΑΝΝΙΣΜΙ ΤΥ 2001.7 ' :: ΐ:;ί ; ί "-'- [ Επίσημη
Διαβάστε περισσότεραΠΟΛΩΤΙΚΑ ΦΙΛΤΡΑ (Polaroids)
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 94677 ΠΟΛΩΤΙΚΑ ΦΙΛΤΡΑ (Plarids) Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 94677 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 94677 4. Πόλωση
Διαβάστε περισσότεραDimitris Balios 18/12/2012
18/12/2012 Κστλόγηση εξατμικευμένης και συνεχύς Δρ. Δημήτρης Μπάλις Συστήματα κστλόγησης ανάλγα με τη μρφή της παραγωγικής διαδικασίας Κστλόγηση συνεχύς Κστλόγηση εξατμικευμένης ή κστλόγηση κατά φάση ή
Διαβάστε περισσότεραΑΓΟΡΕΣ ΧΡΗΜΑΤΟΣ ΚΑΙ ΚΕΦΑΛΑΙΟΥ Ι
ΑΓΟΡΕΣ ΧΡΗΜΑΤΟΣ ΚΑΙ ΚΕΦΑΛΑΙΟΥ Ι ΑΓΟΡΕΣ ΧΡΗΜΑΤΟΣ ΚΑΙ ΚΕΦΑΛΑΙΟΥ 1 Σ. ΘΩΜΑΔΑΚΗΣ Α. ΒΑΣΙΛΑ ΕΞΕΤΑΣΤΙΚΗ ΙΑΝΟΥΑΡΙΟΥ 2010 19 ΙΑΝΟΥΑΡΙΟΥ 2010 ΘΕΜΑ 1 Σε μία κεφαλαιαγρά τ επιτόκι ακίνδυνυ δανεισμύ είναι 3% σε ετήσια
Διαβάστε περισσότεραΜΕΘΟΔΟΣ ΕΙΔΩΛΩΝ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΜΕΘΟΔΟΣ ΕΙΔΩΛΩΝ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693
Διαβάστε περισσότεραΑξιολόγηση Επενδύσεων
Αξιολόγηση Επενδύσεων Διάλεξη για το CAPM Δράκος και Καραθανάσης Κεφάλαιο 18 Εαρινό Εξάμηνο 2018 1 Οι Κύριες Υποθέσεις του Υποδείγματος CAPM Το CAPM (Capital Asset Pricing Model-Υπόδειγμα Αποτίμησης Κεφαλαιακών(Περιουσιακών)
Διαβάστε περισσότεραΓεώργιος Παστιάδης* ΑΣΤΙΚΑ ΚΑΙ ΑΓΡΟΤΙΚΑ ΚΕΝΤΡΑ: ΔΙΕΡΕΥΝΩΝΤΑΙ ΜΕ ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΤΗ ΝΕΑ ΚΟΙΝΩΝΙΚΗ ΑΤΖΕΝΤΑ, ΥΠΟ ΤΗΝ ΕΠΙΔΡΑΣΗ ΤΟΥ ΕΠΙΠΕΔΟΥ ΕΚΠΑΙΔΕΥΣΗΣ
Επιθεώρηση Κινωνικών Ερευνών, 131 Α', 2010, 33-70 Γεώργις Παστιάδης* ΑΣΤΙΚΑ ΚΑΙ ΑΓΡΤΙΚΑ ΚΕΝΤΡΑ: ΔΙΕΡΕΥΝΩΝΤΑΙ ΜΕ ΠΣΤΙΚΕΣ ΜΕΘΔΥΣ ΤΗ ΝΕΑ ΚΙΝΩΝΙΚΗ ΑΤΖΕΝΤΑ, ΥΠ ΤΗΝ ΕΠΙΔΡΑΣΗ ΤΥ ΕΠΙΠΕΔΥ ΕΚΠΑΙΔΕΥΣΗΣ ΠΕΡΙΛΗΨΗ Τ
Διαβάστε περισσότεραΟδηγίες λειτουργίας AMAZONE
Οδηγίες λειτυργίας AMAZONE Υπλγιστής χήματς AMABUS για ψεκαστικά Χειριστήρι πλλαπλών λειτυργιών AMAPILOT Χειριστήρι πλλαπλών λειτυργιών AMATRON 3 Κυτί χειρισμύ υπδιαιρέσεων πλάτυς AMACLICK MG4531 BAG0117.1
Διαβάστε περισσότεραΘέματα πανελληνίων διαγωνισμών Ε.Μ.Ε. Β γυμνασίου Θαλής
Θέματα πανελληνίων διαγωνισμών Ε.Μ.Ε. Β γυμνασίυ Θαλής 1995-1996 Κ, 3cm. Με κέντρ τ σημεί Λ τυ κύκλυ να χαράξετε δεύτερ κύκλ Λ, 3cm. Η διάκεντρς ΚΛ τέμνει τν Κ στ Α και τν Λ στ Β, αν πρεκταθεί. Να κατασκευάσετε
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΕΠΕΝΔΥΣΕΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ
ΑΝΑΛΥΣΗ ΕΠΕΝΔΥΣΕΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ Δημήτριος Βασιλείου Καθηγητής Ελληνικού Ανοικτού Πανεπιστημίου Νικόλαος Ηρειώτης Αναπληρωτής Καθηγητής Πανεπιστημίου Αθηνών 1 Ανάλυση Επενδύσεων και Διαχείριση
Διαβάστε περισσότεραΣκοπός της ενότητας αυτής είναι να παρουσιάσει σύντομα αλλά περιεκτικά τους τρόπους με τους οποίους παρουσιάζονται τα στατιστικά δεδομένα.
2.2. ΕΝΟΤΗΤΑ ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ 8 ΜΑΘΗΜΑ ΔΕΔΟΜΕΝΩΝ Σπός Σπός της ενότητας αυτής είναι να παρυσιάσει σύντμα αλλά περιετιά τυς τρόπυς με τυς πίυς παρυσιάζνται τα στατιστιά δεδμένα. Πρσδώμενα απτελέσματα
Διαβάστε περισσότεραΕιδικές εφαρμογές: Χρήση ειδικού τύπου τάπας στις ανατινάξεις σε λατομεία
Ειδικές εφαρμγές: Χρήση ειδικύ τύπυ τάπας στις ανατινάξεις σε λατμεία Στ 4 Διεθνές Συνέδρι Explosives and Blasting της EFEE τ 2007 παρυσιάστηκαν, από τυς P. Moser, Ι. Vargek, τα απτελέσματα ενός ερευνητικύ
Διαβάστε περισσότεραΆσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:
Άσκηση 1: Δύο τυχαίες μεταβλητές Χ και Υ έχουν στατιστικές μέσες τιμές 0 και διασπορές 25 και 36 αντίστοιχα. Ο συντελεστής συσχέτισης των 2 τυχαίων μεταβλητών είναι 0.4. Να υπολογισθούν η διασπορά του
Διαβάστε περισσότεραΠΑΡΑΡΤΗΜΑ ΤΡΙΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ της 25ης ΙΑΝΟΥΑΡΙΟΥ 2002 ΔΙΟΙΚΗΤΙΚΕΣ ΠΡΑΞΕΙΣ
Κ.Δ.Π. 2/2002 ΠΑΡΑΡΤΗΜΑ ΤΡΙΤ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΚΡΑΤΙΑΣ Αρ. 570 της 25ης ΙΑΝΥΑΡΙΥ 2002 ΔΙΙΚΗΤΙΚΕΣ ΠΡΑΞΕΙΣ ΜΕΡΣ Ι Καννιστικές Διικητικές Πράξεις Αριθμός 2 ΠΕΡΙ ΦΡΥ ΠΡΣΤΙΘΕΜΕΝΗΣ ΑΞΙΑΣ ΝΜΣ (ΝΜΣ
Διαβάστε περισσότεραΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 02/02/2017 ΜΟΝΟ ΓΙΑ ΤΟΥΣ ΕΠΙ ΠΤΥΧΙΩ ΦΟΙΤΗΤΕΣ , (1) R1 R 2.0 V IN R 1 R 2 B R L 1 L
ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΔΙΔΑΣΚΩΝ: Λ ΜΠΙΣΔΟΥΝΗΣ ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: //7 ΘΕΜΑ ( μνάδες) Οι τιμές των αντιστάσεων και τυ κυκλώματς τυ
Διαβάστε περισσότεραΘεωρία Χαρτοφυλακίου ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ
Θεωρία Χαρτοφυλακίου ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ by Dr. Stergios Athianos 1- ΟΡΙΣΜΟΣ ΤΗΣ ΕΠΕΝΔΥΣΗΣ Τοποθέτηση συγκεκριμένου ποσού με στόχο να αποκομίσει ο επενδυτής μελλοντικές αποδόσεις οι οποίες θα τον αποζημιώσουν
Διαβάστε περισσότερα220 Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών (Βόλος)
220 Ηλεκτρλόγων ηχανικών και ηχανικών Υπλγιστών (Βόλς) http://www.inf.uth.gr/ Γενικά Τ Πρπτυχιακό Πρόγραμμα Σπυδών (Π.Π.Σ.) τυ Τμήματς έχει σχεδιαστεί, έτσι ώστε να παρέχει γνώσεις σε όλ τ φάσμα των τεχνλγιών
Διαβάστε περισσότεραγια το Τμήμα Πληροφορικής με Εφαρμογές στη Βιοιατρική, του Πανεπιστημίου Στερεάς Ελλάδας ίϊρμίϊμιη
Μελέτη Σκπιμότητας «Δημιυργίας βάσης δεδμένων για την παρακλύθηση της σταδιδρμίας των απφίτων τυ τμήματς και τη συνεχή χαρτγράφηση της αγράς εργασίας» για τ Τμήμα Πληρφρικής με Εφαρμγές στη Βιιατρική,
Διαβάστε περισσότεραΘΕΜΑΤΑ ΠΡΟΗΓΟΥΜΕΝΩΝ ΕΤΩΝ - ΕΠΑΝΑΛΗΨΗ
Α ΤΑΞΗ ΘΕΜΑΤΑ ΠΡΟΗΓΟΥΜΕΝΩΝ ΕΤΩΝ - ΕΠΑΝΑΛΗΨΗ Α. α) Πιι αριθμί λέγνται μόσημι. Να γράψετε δύ παραδείγματα μόσημων αριθμών. β) Πιι αριθμί λέγνται ετερόσημι. Δώστε ένα παράδειγμα. Β. Να μεταφέρετε στην κόλλα
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ... 8. 1.1 Πρόλογος...8. 1.2 Η έννοια και η σημασία της χρηματοοικονομικής ανάλυσης... 9
Περιεχόμενα ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ... 8 1.1 Πρόλγς...8 1.2 Η έννια και η σημασία της χρηματικνμικής ανάλυσης... 9 1.2.1 Ο ρόλς τυ Χρηματικνμικύ Υπεύθυνυ... 11 ΚΕΦΑΛΑΙΟ 2: ΤΟ ΕΛΛΗΝΙΚΟ ΣΥΣΤΗΜΑ ΥΓΕΙΑΣ ΚΑΙ Ο
Διαβάστε περισσότεραΣύγχρονες Μορφές Χρηματοδότησης
Σύγχρονες Μορφές Χρηματοδότησης Ενότητα 13: ΘΕΩΡΙΑ ΧΑΡΤΟΦΥΛΑΚΙΩΝ ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. Απλές περιπτώσεις Εφαρµόζουµε τις ιδιότητες των ορίων. Ουσιαστικά κάνουµε αντικατάσταση. lim 3x 4x+ 8 = = =
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ Να βρείτε τα παρακάτω όρια: α ( 4 8) + 6 + 8 Απλές περιπτώσεις Εφαρµόζυµε τις ιδιότητες των ρίων Ουσιαστικά κάνυµε αντικατάσταση α 4+ 8 = 4 + 8= + 4+ 8= 9 8 8 = = 4 + 6 = + 6= Αν f( )
Διαβάστε περισσότεραΜΙΑ ΚΡΟΥΣΗ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ
ΜΙΑ ΚΡΟΥΣΗ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ Σωµάτι α (πυρήνας 4 He ) µε µάζα m a και φρτί q a =e και πυρήνας ασβεστίυ 40 Ca 0 µε µάζα mπυρ = 10m a και φρτί Q = 0 e πυρ, βρίσκνται αρχικά σε πλύ µεγάλη απόσταση µεταξύ
Διαβάστε περισσότεραExουμε βρεί την εξίσωση κύματος: λν = υ, όπου υ = Τ /μ στη περίπτωση της χορδής. Οπότε. υ ν = = λ
Kεφ. (part, pages - Σχέση διασπράς Exυμε βρεί την εξίσωση κύματς: λν = υ, όπυ υ = Τ /μ στη περίπτωση της χρδς. Οπότε υ ν = = λ ω = Τ /μ Τ /μ λ k H σχέση αυτ πυ συνδέει την γωνιακ συχνότητα ω με τν κυματαριθμό
Διαβάστε περισσότεραΗράκλειο 5 / 03 / 2018
Ηράκλει 5 / 03 / 2018 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΗΡΑΚΛΕΙΟΥ ΔΗΜΟΣ ΗΡΑΚΛΕΙΟΥ ΔΙΕΥΘΥΝΣΗ ΚΑΘΑΡΙΟΤΗΤΑΣ ΤΜΗΜΑ : ΔΙΑΧΕΙΡΙΣΗΣ & ΣΥΝΤΗΡΗΣΗΣ ΟΧΗΜΑΤΩΝ «ΠΡΟΜΗΘΕΙΑ ΥΛΙΚΩΝ ΑΝΑΓΟΜΩΣΗΣ ΦΙΑΛΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΑΕΡΙΩΝ & ΥΛΙΚΩΝ
Διαβάστε περισσότεραΧρηματοοικονομικά Παράγωγα και Χρηματιστήριο
Χρηματοοικονομικά Παράγωγα και Χρηματιστήριο Ενότητα 3: ΑΣΚΗΣΕΙΣ ΠΡΑΞΕΙΣ ΜΕ ΤΟ ΣΥΝΕΤΛΕΣΤΗ BETA Κυριαζόπουλος Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ
θ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ &ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤ/ΝΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΜΕΛΕΤΗ ΤΗΣ ΕΞΑΝΑΓΚΑΣΜΕΝΗΣ ΤΑΛΑΝΤΩΣΗΣ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΟΣ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΣΤΑΘΕΡΑΣ
Διαβάστε περισσότεραΑΠΑΝΤΉΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤAΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2009 Επιμέλεια: Νεκτάριος Πρωτοπαπάς.
ΑΑΝΤΉΣΕΙΣ ΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤAΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 009 Επιμέλεια: Νεκτάρις ρωτπαπάς 1. Σωστή απάντηση είναι η γ. ΘΕΜΑ 1. Σωστή απάντηση είναι η α. Σχόλι: Σε μια απλή αρμνική
Διαβάστε περισσότεραΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ: ΘΕΩΡΙΑ ΧΑΡΤΟΦΥΛΑΚΙΟΥ
ΜΑΘΗΜΑ: ΑΝΑΛΥΣΗ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΔΙΔΑΣΚΩΝ: ΓΕΩΡΓΙΟΣ ΛΕΛΕΔΑΚΗΣ Άσκηση : ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ: ΘΕΩΡΙΑ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΜΕΤΟΧΗ Α ΜΕΤΟΧΗ Β Απόδοση Πιθανότητα Απόδοση Πιθανότητα -0,0 0,50-0,0 0,50 0,50
Διαβάστε περισσότεραΤεχνικό εγχειρίδιο. Χαλύβδινος λέβητας βιομάζας σειρά BMT
THERM LEV Τεχνικό εγχειρίδι Χαλύβδινς λέβητας βιμάζας σειρά BMT ΨΣας ευχαριστύμε για την επιστσύνη πυ δείχνετε στα πριόντα μας. ΨΓια την απτελεσματική χρήση τυ λέβητα βιμάζας σειράς ΒΜΤ σας συνιστύμε να
Διαβάστε περισσότεραΠΑΡΑΡΤΗΜΑ ΤΡΙΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ της 23ης ΙΟΥΝΙΟΥ 2000 ΑΙΟΙΚΗΤΙΚΕΣ ΠΡΑΞΕΙΣ. ΜΕΡΟΣ Ι Κανονιστικές Διοικητικές Πράξεις
Κ.Δ.Π. 164/2000 ΠΑΡΑΡΤΗΜΑ ΤΡΙΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ. 3414 της 23ης ΙΟΥΝΙΟΥ 2000 ΑΙΟΙΚΗΤΙΚΕΣ ΠΡΑΞΕΙΣ ΜΕΡΟΣ Ι Καννιστικές Διικητικές Πράξεις Αριθμός 164 Οι περί Εξωδίκυ Ρυθμίσεως Αδικημάτων
Διαβάστε περισσότεραP6_TA-PROV(2007)0010 Ολοκληρωμένη προσέγγιση της ισότητας γυναικών και ανδρών στο πλαίσιο των εργασιών των επιτροπών
P6_TA-PROV(2007)0010 Ολκληρωμένη πρσέγγιση της ισότητας γυναικών και ανδρών στ πλαίσι των εργασιών των επιτρπών Ψήφισμα τυ Ευρωπαϊκύ Κινβυλίυ σχετικά με την λκληρωμένη πρσέγγιση της ισότητας γυναικών και
Διαβάστε περισσότερα1.1 Η ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ
1 1.1 Η ΕΝΝΟΙ ΤΟΥ ΙΝΥΣΜΤΟΣ ΘΕΩΡΙ 1. ιάνυσµα Λέγεται κάθε πρσανατλισµέν ευθύγραµµ τµήµα. (έχει αρχή και πέρας) A B 2. Μηδενικό διάνυσµα 0 Λέγεται τ διάνυσµα τυ πίυ η αρχή και τ πέρας συµπίπτυν. AA= 0 3.
Διαβάστε περισσότεραΗ ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ
Παγκόσμι χωριό γνώσης ΕΝΟΤΗΤΑ 3 Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ 3 ΜΑΘΗΜΑ Σκπός Σκπός της ενότητας είναι ρισμός της παραγώγυ και τυ ρυθμύ μεταβλής καθώς και
Διαβάστε περισσότεραΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΓΙΑ ΣΤΕΛΕΧΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΓΙΑ ΣΤΕΛΕΧΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΑΜΟΙΒΑΙΩΝ ΚΕΦΑΛΑΙΩΝ ΜΕ ΤΟΝ ΔΙΑΦΟΡΟΠΟΙΟΥΜΕΝΟ ΔΕΙΚΤΗ ΤΟΥ SHARPE» ΕΠΙΜΕΛΕΙΑ: Καπέλλα
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ 22/06/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ
ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ /6/ ΘΕΜΑ (3 μνάδες) (α) Η αντίσταση ενός D λευκόχρυσυ μετρήθηκε στη θερμκρασία πήξης τυ νερύ και βρέθηκε 8 Ω, ενώ στη συνέχεια μετρήθηκε σε θερμκρασία θ και βρέθηκε 448 Ω Να
Διαβάστε περισσότεραΕΦΑΡΜΟΓΗ 3.2. (Η/Ν Υπερεντάσεως Κατευθύνσεως)
ΕΦΑΡΜΟΓΗ.. (Η/Ν Υπερεντάσεως Κτευθύνσεως) Γι τν Υ/Σ ζεύξεως (Β) της εφρµγής.1 πυ τρφδτείτι πό τν Υ/Σ 15/k (Α) µέσω δύ όµιων ενέριων γρµµών ώστε σε περίπτωση σφάλµτς σε µί πό τις δύ ν µην δικόπτετι η τρφδότηση
Διαβάστε περισσότεραγραπτή εξέταση στο µάθηµα ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
η εξεταστική περίδς από 6/0/ έως 06// γραπτή εξέταση στ µάθηµα ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ Λυκείυ Τµήµα: Βαθµός: Ονµατεπώνυµ: Καθηγητές: ΑΤΡΕΙ ΗΣ ΓΙΩΡΓΟΣ ΘΕΜΑ Στις παρακάτω ερωτήσεις να γράψετε
Διαβάστε περισσότεραΗ ΚΑΘΗΜΕΡΙΝΗ ΑΕ ΕΤΗΣΙΑ ΤΑΚΤΙΚΗ ΓΕΝΙΚΗ ΣΥΝΕΛΕΥΣΗ ΤΗΣ 9 ης ΙΟΥΝΙΟΥ 2015
Η ΚΑΘΗΜΕΡΙΝΗ ΑΕ ΕΤΗΣΙΑ ΤΑΚΤΙΚΗ ΓΕΝΙΚΗ ΣΥΝΕΛΕΥΣΗ ΤΗΣ 9 ης ΙΟΥΝΙΟΥ 2015 Σχέδια Απφάσεων επί θεμάτων της ημερήσιας διάταξης της Ετήσιας Τακτικής Γενικής Συνέλευσης για τ 2015 ΘΕΜΑ 1 : Υπβλή πρς έγκριση των
Διαβάστε περισσότεραΕίναι φ =180 ο 120 ο = 60 ο άρα ω = 50 ο + 60 ο = 110 ο. ˆ ΑΓ, να υπολογίσετε την γωνία φ. ˆ ΑΓ = 110 ο άρα ω =70 ο, οπότε. Είναι
4.6 4.8 σκήσεις σχλικύ βιβλίυ σελίδας 87 88 ρωτήσεις Κατανόησης. Να υπλγίσετε την γωνία ω στ παρακάτω σχήµα πάντηση ω ίναι φ =8 = 6 άρα ω = 5 + 6 = 5 φ. ν = και x διχτόµς της γωνίας πάντηση ω φ ω 55 x
Διαβάστε περισσότεραΚΑΤΑΤΑΚΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΑΚΑΔ. ΕΤΟΥΣ
ΚΑΤΑΤΑΚΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΑΚΑΔ. ΕΤΟΥΣ 2018-2019 Μετά από απόφαση της υπ' αριθ:72ης/16-01-2019 ΓΣ της ΣΕΦΑΑ τυ Π.Θ., εισάγνται στ ΤΕΦΑΑ με τ σύστημα των κατατακτηρίων εξετάσεων για τ ακαδημαϊκό έτς 2018-2019
Διαβάστε περισσότεραΑκολουθούν ενδεικτικές ασκήσεις που αφορούν τη δεύτερη εργασία της ενότητας ΔΕΟ31
Άσκηση η 2 η Εργασία ΔEO3 Ακολουθούν ενδεικτικές ασκήσεις που αφορούν τη δεύτερη εργασία της ενότητας ΔΕΟ3 Η επιχείρηση Α εκδίδει σήμερα ομολογία ονομαστικής αξίας.000 με ετήσιο επιτόκιο έκδοσης 7%. Το
Διαβάστε περισσότερα] ) = ([f(x) ] 2 ) + (g (x) 2 = 2f(x) f (x) + 2 g (x) g (x) = 2f(x) g (x) + 2 g (x) [ f(x)] = 2f(x) g (x) 2 g (x) f(x) = 0. Άρα φ(x) = c.
1.6 Ασκήσεις σχλικύ βιβλίυ σελίδας 56 58 A Οµάδας 1. Αν για τις συναρτήσεις f, g ισχύυν : f () = g() και g () = f() για κάθε R, να αδείξετε ότι η συνάρτηση φ() = [f() ] + [g () ] είναι σταθερή. Στ διάστηµα
Διαβάστε περισσότερα(Ανάλογα εργαζόµαστε και για να αποδείξουµε ότι δύο γωνίες έχουν κοινή διχοτόµο ή δύο τόξα κοινό µέσο).
1 ΑΣΚΗΣΕΙΣ ΑΠΟ ΕΙΞΗΣ ΣΤΗ ΓΕΩΜΕΤΡΙΑ (η τεχνική τυ αρκεί να απδείξυµε ότι... ) Παναγιώτης Λ. Θεδωρόπυλς Σχλικός Σύµβυλς κλάδυ ΠΕ03 ΠΡΟΛΟΓΟΣ Οι σηµειώσεις αυτές γράφτηκαν µε σκπό να βηθήσυν τυς µαθητές της
Διαβάστε περισσότεραΠίνακας περιεχομένων
Πίνακας περιεχμένων Εισαγωγή... 2 Ερώτημα 1... 2 Ερώτημα 2... 4 Ερώτημα 3... 5 Ερώτημα 4... 6 Ερώτημα 5... 7 Ερώτημα 6... 8 Ερώτημα 7... 8 Ερώτημα 8... 9 Ερώτημα 9... 10 Ερώτημα 10... 10 Επίλγς... 12 Βιβλιγραφία...
Διαβάστε περισσότεραΗ σειρά Polaris σας προσφέρει ένα ζεστό σπίτι ακόμη και στις πιο ακραίες κλιματολογικές συνθήκες
Η σειρά Polaris σας πρσφέρει ένα ζεστό σπίτι ακόμη και στις πι ακραίες κλιματλγικές συνθήκες Οι αντλίες θερμότητας αέρα νερύ της σειράς Polaris απτελεί σημεί αναφράς στην παγκόσμια αγρά αντλιών θερμότητας.
Διαβάστε περισσότερα3 η ΕΡΓΑΣΙΑ , , , , , , , , , , , ,189
3 η ΕΡΓΑΣΙΑ Παραδειγμα για το ΘΕΜΑ 1 Ο Οι μετρήσεις της μέγιστης ημερήσιας τιμής ενός συγκεκριμένου αέριου ρύπου (σε μικρογραμμάρια ανά κυβικό εκατοστό αέρα) σε 57 πόλεις μιας χώρας δίνονται στον Πίνακα
Διαβάστε περισσότερα( ) 11.4 11.7. Μέτρηση κύκλου. α 180. Μήκος τόξου µ ο : Μήκος τόξου α rad : l = αr. Σχέση µοιρών ακτινίων : Εµβαδόν κυκλικού δίσκου : Ε = πr 2
1 11. 11.7 Μέτρηση κύκλυ ΘΩΡΙ Μήκς τόξυ µ : µ 180 Μήκς τόξυ α rad : αr Σχέση µιρών ακτινίων : α π µ 180 µβαδόν κυκλικύ δίσκυ : ( ) µβαδόν κυκλικύ τµέα µ : µ µβαδόν κυκλικύ τµέα α rad : ( ) 1 αr µβαδόν
Διαβάστε περισσότεραΧΡΟΝΙΚΑ ΜΕΤΑΒΑΛΛΟΜΕΝΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΚΙΝ ΥΝΟΥ β ΚΑΙ ΥΝΑΜΙΚΕΣ «NEGLECTED» ΜΗ ΓΡΑΜΜΙΚΟΤΗΤΑΣ
ΠΜΣ ΣΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΣΤΗΜΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΧΡΟΝΙΚΑ ΜΕΤΑΒΑΛΛΟΜΕΝΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΚΙΝ ΥΝΟΥ β ΚΑΙ ΥΝΑΜΙΚΕΣ «NEGLECTED» ΜΗ ΓΡΑΜΜΙΚΟΤΗΤΑΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΚΥΡΤΣΟΥ ΑΙΚΑΤΕΡΙΝΗ ΕΠΙΜΕΛΕΙΑ: ΑΠΟΣΤΟΛΙ ΗΣ ΓΕΩΡΓΙΟΣ
Διαβάστε περισσότεραΜΕΘΟ ΟΣ ΡΕΥΜΑΤΩΝ ΒΡΟΧΩΝ
Εισαγωγή Ρεύµατα βρόχων ΜΕΘΟ ΟΣ ΡΕΥΜΑΤΩΝ ΒΡΟΧΩΝ Η µέθδς ρευµάτων βρόχων για την επίλυση κυκλωµάτων (ή δικτύων) είναι υσιαστικά εφαρµγή τυ νόµυ τάσεων τυ Kirchhff µε κατάλληλη εκλγή κλειστών βρόχων ρεύµατς.
Διαβάστε περισσότεραΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ & ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΤΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΓΙΑ ΣΤΕΛΕΧΗ
ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ & ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΤΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΓΙΑ ΣΤΕΛΕΧΗ ΔΙΕΘΝΗΣ ΔΙΑΦΟΡΟΠΟΙΗΣΗ ΜΕ ΕΤΑΙΡΙΕΣ ΜΕΓΑΛΗΣ ΚΑΙ ΜΙΚΡΗΣ ΧΡΗΜΑΤΙΣΤΗΡΙΑΚΗΣ ΑΞΙΑΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:
Διαβάστε περισσότεραΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
Π E Ρ IEXOMENA Πρόλογος... xiii ΜΕΡΟΣ ΠΡΩΤΟ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΣΤΑΤΙΣΤΙΚΩΝ Ε ΟΜΕΝΩΝ 1.1 Εισαγωγή... 3 1.2 Ορισµός και αντικείµενο της στατιστικής... 3
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΓΙΑ ΣΤΕΛΕΧΗ (E MBA)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΓΙΑ ΣΤΕΛΕΧΗ (E MBA) ΠΑΡΑΓΟΝΤΕΣ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΙΣ ΤΙΜΕΣ ΤΩΝ ΧΡΗΜΑΤΙΣΤΗΡΙΑΚΩΝ ΕΠΕΝΔΥΣΕΩΝ
Διαβάστε περισσότεραΣτατιστική ΙΙ-Διαστήματα Εμπιστοσύνης Ι (εκδ. 1.1)
Στατιστική ΙΙ- Ι (εκδ. 1.1) Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 17 Ιουλίου 2013 Περιγραφή 1 Δ.Ε.γιατονμέσο µ Δ.Ε. για την αναλογία Τί είναι τα
Διαβάστε περισσότεραΣτατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες
Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού
Διαβάστε περισσότεραΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 13/02/2014
ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: // ΘΕΜΑ ( μνάδες) T κύκλωμα τυ παρακάτω σχήματς λαμβάνει ως εισόδυς τις εξόδυς των αισθητήρων Α και Β. Η έξδς τυ αισθητήρα Α είναι ημιτνικό
Διαβάστε περισσότεραΓενικές κατευθυντήριες γραμμές για τον προϋπολογισμό Τμήμα ΙΙΙ
P7_TA-PROV(2014)0247 Γενικές κατευθυντήριες γραμμές για τν πρϋπλγισμό 2015 - Τμήμα ΙΙΙ Ψήφισμα τυ Ευρωπαϊκύ Κινβυλίυ της 13ης Μαρτίυ 2014 σχετικά με τις γενικές κατευθυντήριες γραμμές για την κατάρτιση
Διαβάστε περισσότεραΠΕΡΙΛΗΠΤΙΚΗ ΕΝΗΜΕΡΩΣΗ
ΠΕΡΙΛΗΠΤΙΚΗ ΕΝΗΜΕΡΩΣΗ ΠΡΟΣ ΤΕΕ ΑΠΟ ΣΩΤ. ΜΠΑΡΣΑΚΗ Κατόπιν εγκρίσεως της Δ.Ε. τυ ΤΕΕ και ως εκπρόσωπς τυ Πανελλήνιυ Συλλόγυ Διπλωματύχων Μηχ/γων - Ηλ/γων μετέβη στην Ιταλία και συγκεκριμένα στη πόλη V Αςιιΐΐα
Διαβάστε περισσότεραΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής Υποθέσεις του Απλού γραμμικού υποδείγματος της Παλινδρόμησης Η μεταβλητή ε t (διαταρακτικός όρος) είναι τυχαία μεταβλητή με μέσο όρο
Διαβάστε περισσότεραΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΛΟΓΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ. Διπλωματική Εργασία
ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΛΟΓΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Διπλωματική Εργασία ΣΥΓΚΡΙΣΗ ΜΕΤΑΞΥ ΤΟΥ CAPM ΚΑΙ ΤΟΥ ΠΟΛΥΜΕΤΑΒΛΗΤΟΥ ΥΠΟΔΕΙΓΜΑΤΟΣ: Η ΠΕΡΙΠΤΩΣΗ
Διαβάστε περισσότεραΕΣΩΤΕΡΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ ΛΕΙΤΟΥΡΓΙΑΣ. Προγράμματος Μεταπτυχιακών Σπουδών Ειδίκευσης (Π.Μ.Σ.) στην «Ψυχολογία της Υγείας» και στη «Σχολική Ψυχολογία»
ΕΣΩΤΕΡΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ ΛΕΙΤΟΥΡΓΙΑΣ Πργράμματς Μεταπτυχιακών Σπυδών Ειδίκευσης (Π.Μ.Σ.) στην «Ψυχλγία της Υγείας» και στη «Σχλική Ψυχλγία» Α. ΓΕΝΙΚΑ ΑΡΘΡΑ Άρθρ 1 Αντικείμεν-Σκπί 1. Αντικείμεν τυ Πργράμματς
Διαβάστε περισσότεραTηλερυθΒιστης 1000 W 036 71
TηλερυθΒιστης 1000 W 036 71 Xαρακτηριστικά Τάση 100-240 V~ Συντητα 50-60 Hz 2 x 1,5 mm 2 ή 1 x 2,5 mm 2 (*) γκς 6 Βνάδες ΣυΒΒρωση IEC 60669-2-1 0 C έως + 45 C Απαγρεύεται η ανάβειη ρτίων τύπυ έως. 110
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΑΝΑΛΟΓΙΣΤΙΚΗ ΕΠΙΣΤΗΜΗ ΚΑΙ ΔΙΟΙΚΗΤΙΚΗ ΚΙΝΔΥΝΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΜΕΡΙΣΜΑΤΙΚΗ ΑΠΟΔΟΣΗ ΚΑΙ ΑΠΟΔΟΣΕΙΣ
Διαβάστε περισσότεραΑ ΜΕΡΟΣ: ΤΟ ΔΙΚΤΥΟ ΠΡΑΞΗ
7 ΠΡΟΓΡΑΜΜΑ Πρόγραμμα Ο ΠΛAΙΣΙΟ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΝΑΠΤΥΞΗΣ (2007-2013) ΣΩΤΗΡΗΣ ΞΥΔΗΣ: Σύμβυλς μεταφράς τεχνλγίας, ΔIKTYOY ΠΡΑΞΗ Α ΜΕΡΟΣ: ΤΟ ΔΙΚΤΥΟ ΠΡΑΞΗ Τ Δίκτυ ΠΡΑΞΗ απτελεί μια στρατηγική συμμαχία τυ Συνδέσμυ
Διαβάστε περισσότεραH τιμολόγηση των δικαιωμάτων με το υπόδειγμα Black Scholes
TΟΜΟΣ Γ - ΔΙΚΑΙΩΜΑΤΑ Μάθημα 19 H τιμολόγηση των δικαιωμάτων με το υπόδειγμα Black Scholes Στην προηγούμενη ενότητα είδαμε ορισμένα από τα χαρακτηριστικά των δικαιωμάτων χρησιμοποιώντας τις τιμές των δικαιωμάτων
Διαβάστε περισσότεραροή ιόντων και µορίων
ρή ιόντων και µρίων Θεωρύµε ένα διάλυµα µίας υσίας Α. Αν εξαιτίας της ύπαρξης διαφρών συγκέντρωσης ή ηλεκτρικύ πεδίυ όλες ι ντότητες (µόρια ή ιόντα) της υσίας Α κινύνται µέσα σ αυτό µε την ίδια ριακή ταχύτητα
Διαβάστε περισσότεραΣυμβολή των φυσικοχημικών μεθόδων ανάλυσης στη μελέτη 13 εικόνων του Βυζαντινού Μουσείου
Συμβλή των φυσικχημικών μεθόδων ανάλυσης στη μελέτη 13 εικόνων τυ Βυζαντινύ Μυσείυ Νανώ ΧΑΤΖΔΑΚ, J. PHILLIPON, P. AUSSET, ωάννης ΧΡΥΣΥΛΑΚΣ, Αθηνά ΑΛΕΞΠΥΛΥ Δελτίν XAE 13 (1985-1986), Περίδς Δ'. Στη μνήμη
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι (f() + g ()) f () + g (),. Μονάδες 7 Α. Σε ένα πείραµα µε ισοπίθανα
Διαβάστε περισσότεραΥπόθεση της Αποτελεσματικής Αγοράς
Υπόθεση της Αποτελεσματικής Αγοράς Η Υπόθεση της Αποτελεσματικής Αγοράς (Efficient Market Hypothesis- EMH) Μια αγορά λέγεται αποτελεσματική όταν στην εμφάνιση μιας νέας πληροφορίας οι τιμές των αξιογράφων
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 Ο ΕΙΣΑΓΩΓΗ
ΚΕΦΑΛΑΙΟ 1 Ο ΕΙΣΑΓΩΓΗ ΕΙΣΑΓΩΓΗ Είναι γνωστό ότι κατά τα αρχικά στάδια της επενδυτικής δραστηριότητας και πολύ πριν από την ανάπτυξη της χρηματοοικονομικής επιστήμης και διαχείρισης, το επενδυτικό κοινό
Διαβάστε περισσότεραΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΚΤΙΚΗ
Δημήτριος Βασιλείου Καθηγητής Ελληνικού Ανοικτού Πανεπιστημίου Νικόλαος Ηρειώτης Αναπληρωτής Καθηγητής Εθνικού & Καποδιστριακού Πανεπιστημίου Αθηνών 1 Χρηματοοικονομική Διοίκηση Θεωρία και Πρακτική Δημήτριος
Διαβάστε περισσότερα«ΤΟ ΦΑΙΝΟΜΕΝΟ ΤΟΥ ΙΑΝΟΥΑΡΙΟΥ ΣΤΟ ΕΛΛΗΝΙΚΟ ΧΡΗΜΑΤΙΣΤΗΡΙΟ.»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΣΠΟΥΔΩΝ ΑΙΑ ΤΜΗΜΑ ΤΙΚΟ ΠΕΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΣΤΗΜΗ «ΤΟ ΦΑΙΝΟΜΕΝΟ ΤΟΥ ΙΑΝΟΥΑΡΙΟΥ ΣΤΟ ΕΛΛΗΝΙΚΟ ΧΡΗΜΑΤΙΣΤΗΡΙΟ.» ΕΓΠΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ:
Διαβάστε περισσότερασ = και σ = 4 αντιστοίχως. Τότε θα ισχύει
Θέματα ομάδας A 1. Σε κάποιο πείραμα τύχης μία τυχαία μεταβλητή λαμβάνει τις τιμές = 10 και = 10. Τότε η μέση τιμή x της θα είναι α. 10 β. 10 γ.,5 10 δ. 19,5 10 1= 10, = 10,. Δυο τυχαίες μεταβλητές, ακολουθούν
Διαβάστε περισσότερακαι τον καθορισµό των όρων διενέργειας του πρόχειρου διαγωνισµού.
Α Α: Β4Θ0ΩΕΤ-ΥΨΞ Α Π Ο Σ Π Α Σ Μ Α από τ πρακτικό της αριθ. 20/2012 τακτικής συνεδρίασης της Οικνµικής Επιτρπής ήµυ Κατερίνης. Αριθµός απόφασης 280/2012 ΠΕΡΙΛΗΨΗ: Έγκριση τεχνικών πρδιαγραφών και καθρισµός
Διαβάστε περισσότεραΑνισότητες - Ανισώσεις µε έναν άγνωστο
Ανισόττες - Ανισώσεις µε έναν άγνωστ Έναςαριθµςαλγεται ό έ µεγαλύτερςενςαριθµ ό ύβ όταν διαφράτυς α βεναι ί θετικός αριθµός. λαδήισχει ύ α> β α β> Έναςαριθµςαλγεται ό έ µικρότερςενόςαριθµύβ όταν διαφράτυς
Διαβάστε περισσότεραΔΙΕΘΝΕΙΣ ΕΠΕΝΔΥΣΕΙΣ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ
ΔΙΕΘΝΕΙΣ ΕΠΕΝΔΥΣΕΙΣ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ Ενότητα 9: Διεθνείς Επενδύσεις Χαρτοφυλακίου ΙΙ Μιχαλόπουλος Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Διαβάστε περισσότεραΜΑΘΗΜΑ 22 1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ
ΘΕΩΡΙΑ ΜΑΘΗΜΑ.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Ορισµός της συνέχειας Πράξεις µε συνεχείς συναρτήσεις Συνέχεια συνάρτησης σε διάστηµα Θεωρία Ασκήσεις. Ορισµός Συνάρτηση f λέγεται συνεχής σε σηµεί όταν f () = f ( ).
Διαβάστε περισσότερα1.4 Λύσεις αντιστρόφων προβλημάτων.
.4 Λύσεις αντιστρόφων προβλημάτων. Ο τρόπος παρουσίασης της λύσης ενός αντίστροφου προβλήµατος µπορεί να διαφέρει ανάλογα µε τη «φιλοσοφία» επίλυσης που ακολουθείται και τη δυνατότητα παροχής πρόσθετης
Διαβάστε περισσότεραΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΠΡΩΤΟ ΘΕΩΡΙΑΣ-ΕΙΣΑΓΩΓΙΚΟ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ρ. Κουνετάς Η Κωνσταντίνος Ακαδηµαϊκό Έτος 01-013 ΕΠΙΧ Οικονοµετρικά
Διαβάστε περισσότεραΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΉ ΕΡΓΑΣΙΑ. «Δημιουργία ολοκληρωμένων αρχείων. μετεωρολογικών δεδομένων από μετρήσεις
ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΉ ΕΡΓΑΣΙΑ «Δημιυργία λκληρωμένων αρχείων μετεωρλγικών δεδμένων από μετρήσεις Συνπτικών Μετεωρλγικών Σταθμών στν ελληνικό χώρ με τη χρήση Τεχνητών
Διαβάστε περισσότερα44.5kN (111.25kN) 14.6kN/m (36.5kN/m) 0.65m. Σχήµα Γεωµετρικά δεδοµένα, δεδοµένα φόρτισης και διακριτοποίησης της δοκού του παραδείγµατος 2γ.
ΕΦΑΛΑΙΟ 5: Αριθµητικές Εφαρµγές 293 5.3.2.3. Παράδειγµα 2γ: κός µε σύνθετη φόρτιση Πρόκειται για τ παράδειγµα των Harr et al. (1969), τ πί επιλύθηκε αρχικά µε τ πρσµίωµα τυ αλλά και µεταγενέστερα τόσ µε
Διαβάστε περισσότερα1. Να υπολογίσεις το εμβαδόν κυκλικού δίσκου που είναι περιγεγραμμένος. Στο διπλανό σχήμα, να υπολογίσεις το μήκος και το. εμβαδόν του κύκλου.
Δ 1. Να υπλγίσεις τ εμβαδόν κυκλικύ δίσκυ πυ είναι περιγεγραμμένς σε τετράγων πλευράς α = 6 cm Α Α 8cm. 6cm Στ διπλανό σχήμα, να υπλγίσεις τ μήκς και τ Β Γ εμβαδόν τυ κύκλυ. Ο Β Γ 3. Λυγίζυμε ένα σύρμα
Διαβάστε περισσότεραΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ονοματεπώνυμο φοιτητή. Γεώργιος Καπώλης (ΜΧΑΝ 1021)
ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Σχέση μεταξύ αναμενόμενης απόδοσης μετοχών, χρηματιστηριακής αξίας και δείκτη P/E Ονοματεπώνυμο φοιτητή (ΜΧΑΝ 1021) Επιβλέπων Καθηγητής: Γεώργιος Διακογιάννης Επιτροπή: Εμμανουήλ Τσιριτάκης
Διαβάστε περισσότερα1. Το Διάταγμα αυτό θα αναφέρεται ως το περί Ελέγχου της Ρύπανσης των Συνοπτικός
Ε.Ε. Παρ. III(I) 69 Κ.Δ.Π. 10/001 Αρ. 464,1.1.001 Αριθμός 10 ΠΕΙ ΕΛΕΓΧΥ ΤΗΣ ΥΠΑΝΣΗΣ ΤΩΝ ΝΕΩΝ ΝΜΣ (ΝΜΙ 69 ΤΥ 1991 ΚΑΙ 76(1) ΤΥ 199) Διάταγμα με βάση τ άρθρ Υπυργός Γεργίας, Φυσικών Πόρν και Περιβάλλντς,
Διαβάστε περισσότεραΟ ΤΑΜΕΙΑΚΟΣ ΚΥΚΛΟΣ ΣΑΝ ΜΕΓΕΘΟΣ ΜΕΤΡΗΣΗΣ ΤΗΣ ΡΕΥΣΤΟΤΗΤΑΣ: ΕΜΠΕΙΡΙΚΗ ΜΕΛΕΤΗ ΤΩΝ ΕΙΣΗΓΜΕΝΩΝ ΕΤΑΙΡΙΩΝ ΣΤΟ Χ.Α.Α.
ΠΑΝΕΠΙΣΤΗΜΙ ΜΑΚΕΔΝΙΑΣ ΙΚΝΜΙΚΩΝ ΚΑΙ ΚΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΑΤΜΗΜΑΤΙΚ ΠΡΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΥΔΩΝ ΣΤΗ ΔΙΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Διπλωματική Εργασία: ΤΑΜΕΙΑΚΣ ΚΥΚΛΣ ΣΑΝ ΜΕΓΕΘΣ ΜΕΤΡΗΣΗΣ ΤΗΣ ΡΕΥΣΤΤΗΤΑΣ: ΕΜΠΕΙΡΙΚΗ
Διαβάστε περισσότεραΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ της 23ης ΝΟΕΜΒΡΙΟΥ 2001 ΝΟΜΟΘΕΣΙΑ ΜΕΡΟΣ II
Ν. 41(ΙΙ)/ ΠΑΡΑΡΤΗΜΑ ΠΡΩΤ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΚΡΑΤΙΑΣ Αρ. 549 της 2ης ΝΕΜΒΡΙΥ ΝΜΘΕΣΙΑ ΜΕΡΣ II περί Συμπληρμτικύ Πρϋπλγισμύ της Αρχής Λιμένν Κύπρυ Νόμς τυ εκδίδετι με δημσίευση στην Επίσημη Εφημερίδ
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΣΥΧΝΟΤΗΤΑΣ ΥΔΡΟΛΟΓΙΚΩΝ ΦΑΙΝΟΜΕΝΩΝ
ΑΝΑΛΥΣΗ ΣΥΧΝΟΤΗΤΑΣ ΥΔΡΟΛΟΓΙΚΩΝ ΦΑΙΝΟΜΕΝΩΝ Ανάλυση συχνότητας ενός υδρολογικού μεγέθους: Είναι η εύρεση της σχέσεως μεταξύ του υδρολογικού φαινομένου και της πιθανότητας εμφανίσεως του μεγέθους αυτού. Μεταβλητή:
Διαβάστε περισσότερα