ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

Σχετικά έγγραφα
ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

ΟΙΚΟΝΟΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΙΣ ΟΙΚΟΝΟΜΙΚΕΣ ΚΑΙ ΔΙΟΙΚΗΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ

(a) = lim. f y (a, b) = lim. (b) = lim. f y (x, y) = lim. g g(a + h) g(a) h g(b + h) g(b)

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ Πότε μια συνάρτηση λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της?

Παράγωγος συνάρτησης. Έννοια παραγώγου Υπολογισμός Χρήση παραγώγου. ελαστικότητα Οριακές συναρτήσεις

Επιχειρησιακά Μαθηματικά (1)

Επιχειρησιακά Μαθηματικά

Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ και ΘΡΑΚΗΣ Σχολή Διοίκησης & Οικονομίας Τμήμα Λογιστικής και Χρηματοοικονομικής

Ολοκλήρωμα συνάρτησης

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY)

α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν β) γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.

Γενικά Μαθηματικά. , :: x, :: x. , :: x, :: x. , :: x, :: x

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου].

1 ης εργασίας ΕΟ Υποδειγματική λύση

ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΜΑΘΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΘΕΩΡΙΑ 1ΟΥ ΚΕΦΑΛΑΙΟΥ (χωρίς αποδείξεις) ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ- ΣΥΝΕΧΕΙΑ 1. Να δώσετε τον ορισμό της συνάρτησης

f f 2 0 B f f 0 1 B 10.3 Ακρότατα υπό συνθήκες Πολλαπλασιαστές του Lagrange

ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

lnx ln x ln l x 1. = (0,1) (1,7].

5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

Σημειώσεις Μαθηματικών 2

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )

Σχόλια στις Παραγώγους. Μια συνάρτηση θα λέγεται παραγωγίσιμη σε ένα σημείο x 0 του. f(x h) f(x )

Βελτιστοποίηση συναρτήσεων

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο 2.1: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

1.3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. 1. Ορισµός της παραγώγου συνάρτησης

( ) Ίσες συναρτήσεις. = g, Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f. όταν: Έχουν το ίδιο πεδία ορισμού Α

Μαθηματική Εισαγωγή Συναρτήσεις

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/2017. Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης. dy dx = 2y + x 2 y 2 2x

ΔΕΟ 13 1 η Γραπτή Εργασία Ενδεικτική απάντηση. Επιμέλεια: Γιάννης Πουλόπουλος

ΑΣΥΜΠΤΩΤΕΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ

2 ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΜΑΘΗΜΑΤΙΚΑ Ι Β ΜΕΡΟΣ

ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Α

g= x + y 1}. Να βρεθεί γραφικά και αναλυτικά η MR Π(Q) = R(Q) C(Q). Στο παραπλεύρως σχήμα

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

Κατηγορία 1 η. Σταθερή συνάρτηση Δίνεται παραγωγίσιμη συνάρτηση f : 0, f '( x) 0 για κάθε εσωτερικό σημείο x του Δ

2.2 ΠΑΡΑΓΩΓΙΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ-ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ - ΕΚΔΟΣΕΙΣ ΚΡΙΤΙΚΗ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

Μαθηματική Εισαγωγή Συναρτήσεις

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις

Μαθηματικά. Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

ΚΕΦΑΛΑΙΟ 4 Ο ΣΤΟΙΧΕΙΑ ΟΛΟΚΛΗΡΩΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

Μαθηματικά ΜΕΡΟΣ 3 ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

δίου ορισμού, μέσου του τύπου εξαρτημένης μεταβλητής του πεδίου τιμών που λέγεται εικόνα της f για x α f α.

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ( ) ( ) ( ) β. g( x) Όταν ο τύπος της συνάρτησης περιέχει παρονομαστές αυτοί πρέπει να είναι διάφοροι του Άρα: μηδενός ( ) ( )

1 η Εργασία ΕΟ Υποδειγματική λύση

ΘΕΜΑ Α ΘΕΜΑ Β. Β1. Η είναι συνεχής και παραγωγίσιμη στο R ως ρητή με πρώτη παράγωγο. x Μονοτονία της f oλικό ελάχιστο στο 0 το f(0)=0

ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ - ΟΡΙΣΜΟΣ

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Θεώρημα Bolzano. Γεωμετρική Ερμηνεία του θ.bolzano. Θ. Bolzano και ύπαρξη ρίζας

ΣΗΜΕΙΩΣΕΙΣ 4. bt (γιατί;).

. Όλες οι συναρτήσεις δεν μπορούν να παρασταθούν στο καρτεσιανό επίπεδο όπως για παράδειγμα η συνάρτηση του Dirichlet:

ΣΥΝΑΡΤΗΣΕΙΣ Γενικές έννοιες

ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 10 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

ΔΙΑΓΩΝΙΣΜΑ 14. Μέρος Α

Εμβαδά. 1) Με βάση το παρακάτω διάγραμμα όπου το εμβαδόν των περιοχών είναι Α1=8 και Α2=2, να. 2) Να εκφράσετε το εμβαδόν του γραμμοσκιασμένου

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α

ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΑΣΚΗΣΕΙΣ ΠΡΟΕΤΟΙΜΑΣΙΑΣ ΓΙΑ ΤΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

Πρώτη Γραπτή Εργασία. Εισαγωγή στους Η/Υ Μαθηματικά

1 Μερική παραγώγιση και μερική παράγωγος

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ

ΚΕΦΑΛΑΙΟ 3 Ο ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

Παράγωγοι ανώτερης τάξης

Εφαρμοσμένα Μαθηματικά

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου, θα πρέπει να μπορείτε: Να κάνετε πράξεις με συναρτήσεις.

Θεωρία παραγωγού. Μικροοικονομική Θεωρία Ι / Διάλεξη 11 / Φ. Κουραντή 1

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΚΕΦΑΛΑΙΟ 2 Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ»

f(x) = 2x+ 3 / Α f Α.

ΕΦΑΠΤΟΜΕΝΗ ΤΗΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΜΙΑΣ ΣΥΝΑΡΤΗΣΗΣ

Ολοκληρωτικός Λογισμός

Θέματα. Α1. Να δώσετε τον ορισμό της συχνότητας και της σχετικής συχνότητας μιας παρατήρησης x i. Σ Λ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Μαθηματικά για Οικονομολόγους 3 ο Μάθημα: Παράγωγος Συνάρτησης Διδάσκουσα: Κοντογιάννη

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

Ζ ΕΝΟΤΗΤΑ. Μελέτη βασικών συναρτήσεων. Ζ.1 (7.1 παρ/φος σχολικού βιβλίου) Ζ.2 (7.2 παρ/φος σχολικού βιβλίου) Ζ.3 (7.3 παρ/φος σχολικού βιβλίου) 2

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ Οι συντεταγμένες ενός σημείου Απόλυτη τιμή...14

4. Να βρείτε την εξίσωση της ευθείας που διέρχεται από την αρχή των αξόνων και το σημείο Α(,.

Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΠΑΡΑΓΩΓΟΣ ΚΑΙ ΣΥΝΕΧΕΙΑ

Κοιλότητα. Διαφορικός Λογισμός μιας μεταβλητής Ι

Transcript:

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ Έννοια συνάρτησης Παραγώγιση Ακρότατα Ασκήσεις

Βασικές έννοιες Στην Οικονομία, τα περισσότερα από τα μετρούμενα μεγέθη, εξαρτώνται από άλλα μεγέθη. Π.χ η ζήτηση από την τιμή, το κόστος από το κεφάλαιο και την εργασία, οι δαπάνες από τα διαθέσιμα και τις ανάγκες, κλπ. Την εξάρτηση αυτή μεταξύ δύο μεγεθών, στα μαθηματικά την ονομάζουμε συνάρτηση του ενός μεγέθους σε σχέση με το άλλο ή τα άλλα μεγέθη. Ονομάζουμε λοιπόν στα μαθηματικά συνάρτηση μιας μεταβλητής ή συνάρτηση πολλών μεταβλητών αντίστοιχα.

συμβολισμός Οι συναρτήσεις συμβολίζονται με ένα αγγλικό γράμμα, ακολουθούμενο από μια παρένθεση, μέσα στην οποία γράφονται τα μεγέθη που επηρεάζουν κάποιο άλλο μέγεθος. Το εξαρτώμενο μέγεθος (μόνο ένα!) εκφράζεται με το αποτέλεσμα της συνάρτησης. Π.χ. F(x), f(x,y), g(z,v), h(a,b,c) κλπ. η ζήτηση εξαρτώμενη από την τιμή, θα γραφεί σαν συνάρτηση Q(p) το κόστος εξαρτώμενο από το κεφάλαιο και την εργασία, θα γραφεί σαν συνάρτηση C(k,l)

Τύπος συνάρτησης Εκτός από τον συμβολισμό, σε μια συνάρτηση υπάρχει και η αναλυτική μαθηματική σχέση μεταξύ των μετρούμενων μεγεθών, η οποία λέγεται τύπος της συνάρτησης ή απλά επικράτησε να λέγεται «συνάρτηση». Ο μαθηματικός αυτός τύπος, μας βοηθάει να υπολογίσουμε την «τιμή» του εξαρτώμενου μεγέθους, αν γνωρίζουμε την τιμή των μεγεθών από τα οποία εξαρτάται. (αυτά ονομάζονται ανεξάρτητες μεταβλητές).

Πεδίο ορισμού Πεδίο ορισμού μιας συνάρτησης, ονομάζεται το αριθμητικό σύνολο που περιέχει όλες τις δυνατές τιμές των μεταβλητών της συνάρτησης, για τις οποίες μπορεί να γίνει υπολογισμός του «τύπου» της συνάρτησης, δηλαδή μπορεί να υπολογισθεί ή εξαρτημένη μεταβλητή της συνάρτησης. Συνήθως το πεδίο ορισμού κάθε μεταβλητής είναι το σύνολο R των πραγματικών αριθμών εκτός και αν οι μεταβλητές αφορούν οικονομικά μεγέθη που δεν μπορούν να πάρουν αρνητικές τιμές κάποιες μεταβλητές είναι στον παρανομαστή, δεν μπορούν να υπολογισθούν όταν ο παρανομαστής γίνει 0. κάποιες μεταβλητές είναι σε ρίζα ή σε λογάριθμο, δεν μπορούν να υπολογισθούν όταν η ποσότητα γίνει αρνητική

Παραδείγματα για πεδίο ορισμού α) Αν f (x, y)=1/(x-y) τότε το πεδίο ορισμού είναι D = {( x, y ) R 2, x y} β) Αν f ( x, y, z)= 1/(x+y+z) τότε το πεδίο ορισμού είναι D = {( x, y, z ) R 3, (x, y, z) (0,0,0 )} γ) Αν f ( x, y, z)= λογ(1-x 2 + y 2 + z 2 ) τότε το πεδίο ορισμού είναι D = {( x, y, z ) R 3, x 2 + y 2 + z 2 1}.

Γραφική παράσταση Η γραφική παράσταση μίας συνάρτησης δύο μεταβλητών γίνεται σε τρισορθογώνιο σύστημα συντεταγμένων (τρεις άξονες x,y,z κάθετοι ανά δύο που τέμνονται σε ένα σημείο). Σ αυτό παριστάνουμε τριάδες (x, y, z), όπου το z υπολογίζεται από z = f ( x, y), ( x, y ) D, και D είναι το πεδίο ορισμού της f. 1000 800 600 400 200 0 1 2 3 4 5 6

Ισοϋψείς καμπύλες Στις οικονομικές εφαρμογές, πολλές φορές μας ενδιαφέρουν οι συναρτήσεις δύο μεταβλητών, οι οποίες έχουν την ίδια σταθερή τιμή, αλλά με διαφορετικούς συνδυασμούς των δύο μεταβλητών. Π.χ. συνάρτηση παραγωγής σε σχέση με Κεφάλαιο και Εργασία Συνάρτηση χρησιμότητας καταναλωτή σε σχέση με τις ποσότητες αγαθού Α και αγαθού Β.

Γράφημα ισοϋψών καμπυλών 35 30 25 20 15 10 5 0 0 2 4 6 8 10 12 Στο παραπάνω γράφημα παρουσιάζεται η καμπύλη ln(x 1 *x 2 )=3,40 και οι καμπύλες που βρίσκονται δεξιά παρουσιάζουν τις ln(x 1 *x 2 )=5,60 και ln(x 1 *x 2 )=7 Αν πρόκειται για συνάρτηση χρησιμότητας, κάθε ισοϋψής καμπύλη ονομάζεται καμπύλη αδιαφορίας. Στην περίπτωση συνάρτησης παραγωγής, κάθε ισοϋψής καμπύλη ονομάζεται καμπύλη ίσου προϊόντος.

Παραγώγιση ισοϋψών Κάθε ισοϋψής καμπύλη μιας συνάρτησης δύο μεταβλητών, αντιστοιχεί σε μια εξίσωση μεταξύ των δύο μεταβλητών. Μπορεί να θεωρηθεί σαν συνάρτηση της μιας μεταβλητής σε σχέση με τη δεύτερη, και έτσι μπορούμε να βρούμε την παράγωγό της και το ρυθμό μεταβολής της. Η κλίση των ισοϋψών καμπυλών σε κάποιο σημείο, ονομάζεται οριακός λόγος υποκατάστασης

ασκήσεις Να βρείτε την κλίση των παρακάτω ισοϋψών καμπυλών: f(x,y)=x -2 y=3 στο σημείο (1,3) g(x,y)=x 2 +xy=18 στο σημείο (3,3) Ένα προϊόν Q παράγεται με εργασία L και κεφάλαιο Κ, με τη σχέση Q=L 1/2 K 1/4. Να υπολογίσετε τον οριακό λόγο υποκατάστασης πάνω στην καμπύλη ίσου προϊόντος Q=3, όταν χρησιμοποιείται 1 μονάδα κεφαλαίου και 9 μονάδες εργασίας.

μερική παράγωγος Στην περίπτωση συναρτήσεων με πολλές ανεξάρτητες μεταβλητές υπολογίζουμε μια παράγωγο συνάρτηση για κάθε μια από τις ανεξάρτητες μεταβλητές όταν οι άλλες θεωρούνται σταθερές. Κάθε τέτοια παράγωγος συνάρτηση ονομάζεται μερική παράγωγος. Συμβολίζεται με ειδικό σύμβολο ακολουθούμενο από το σύμβολο της συνάρτησης με μια κάθετη γραμμή ακολουθούμενη από και το όνομα της ανεξάρτητης μεταβλητής. (π.χ. f/ x, f/ y, f/ v). Άλλος τρόπος συμβολισμού είναι με ένα δείκτη στο σύμβολο της συνάρτησης. (π.χ. fx, fy, fv) Η μερική παράγωγος εκφράζει το στιγμιαίο ρυθμό μεταβολής της εξαρτημένης μεταβλητής, που οφείλεται σε μεταβολή μιας από τις ανεξάρτητες μεταβλητές, ενώ οι υπόλοιπες ανεξάρτητες μεταβλητές παραμένουν σταθερές. Σημείωση: Η μερική παράγωγος είναι και αυτή συνάρτηση, στην οποία μπορούμε να αντικαταστήσουμε διάφορες τιμές των ανεξάρτητων μεταβλητών, και να υπολογίσουμε την τιμή του ρυθμού μεταβολής για τις τιμές αυτές.

Μερική παράγωγος δευτέρου βαθμού Αν έχουμε υπολογίσει τη μερική παράγωγο, μπορούμε να ξαναυπολογίσουμε μερική παράγωγο για τη συνάρτηση της μερικής παραγώγου, οπότε προκύπτει η μερική παράγωγος δευτέρου βαθμού της αρχικής συνάρτησης. Συμβολίζεται με ειδικό σύμβολο 2 ακολουθούμενο από το σύμβολο της συνάρτησης με μια κάθετη γραμμή ακολουθούμενη από και το όνομα της ανεξάρτητης μεταβλητής ή των ανεξάρτητων μεταβλητών. (π.χ. 2 f/ x 2, 2 f/ y 2, 2 f/ x y, 2 f/ y x). Άλλος τρόπος συμβολισμού είναι με διπλό δείκτη στο σύμβολο της συνάρτησης. (π.χ. fxx, fyy, fxy, fyx)

Υπολογισμός μερικής παραγώγου Στην πράξη, για να βρούμε τη μερική παράγωγο μίας συνάρτησης ως προς μία ανεξάρτητη μεταβλητή, κρατάμε σταθερές όλες τις ανεξάρτητες μεταβλητές εκτός από αυτή για την οποία θέλουμε να βρούμε τη μερική παράγωγο και παραγωγίζουμε ως προς αυτή με βάση τους κανόνες παραγώγισης που ισχύουν για τις συναρτήσεις μιας μεταβλητής.

Ασκήσεις μερικών παραγώγων Να βρεθούν όλες οι μερικές παράγωγοι των συναρτήσεων: 1) f ( x, y )= x 2 x 2 y + 4xy y 2) f ( x, y )= xηµ y x+συνx +xy 3) f ( x, y )= ln x +συν y + 2xy 4) Να δείξετε ότι για τη συνάρτηση f(x, y)= ln (x 2 + 3xy + y 2 ) ισχύει x f/ x + y f/ y = 2.

Λύσεις ασκήσεων μερικών παραγώγων 1) f / x = 2x 2xy + 4y 2 f / x 2 = 2 2y f / y= x 2 + 4x 1 2 f / y 2 = 0 2 f / y x= -2x+4 2) f / x =ηµ y 1 ηµ x + y, f / y= xσυν y + x, 2 f / y x= συν y+1 2 f / x y= συν y+1 3) f / x =1/x + 2y, f / y = ηµ y + 2x, 4) f / x= (2x+3y) / ( x 2 + 3xy + y 2 ) f / y= (3x+2y) / ( x 2 + 3xy + y 2 ) Αντικαθιστώντας στη ζητούμενη σχέση έχουμε x f / x + y f / y= x (2x +3y) /(x 2 + 3xy + y 2 ) +y (3x+2y) / ( x + 3xy + y )= =(2x 2 +3xy+3xy+2y 2 ) / (x 2 + 3xy + y 2 )= 2(x 2 + 3xy + y 2 )/ (x 2 + 3xy + y 2 )=2

ακρότατα Για να βρούμε τα ακρότατα μίας συνάρτησης δύο μεταβλητών εργαζόμαστε ως εξής: Λύνουμε το σύστημα fx = 0 και fy = 0. Έστω το σημείο (x 0,y 0 ) είναι μία λύση του συστήματος. Υπολογίζουμε την ποσότητα D(x 0,y 0 ) D(x 0,y 0 ) = 2 f(x 0,y 0 )/ x 2 * 2 f(x 0,y 0 )/ y 2 - [ 2 f(x 0,y 0 )/ x y] 2 και διακρίνουμε τις παρακάτω περιπτώσεις: Πρόσημο D Πρόσημο δεύτερης μερικής παραγώγου D(x 0,y 0 ) >0 2 f (x 0,y 0 )/ x 2 <0, 2 f (x 0,y 0 )/ y 2 <0 Ακρότατο σημείο (x 0,y 0 ) Τοπικό μέγιστο D(x 0,y 0 ) <0 D(x 0,y 0 ) =0 2 f (x 0,y 0 )/ x 2 >0, 2 f (x 0,y 0 )/ y 2 >0 Τοπικό ελάχιστο Αυχενικό ή σαγματικό σημείο Κανένα συμπέρασμα

Παράδειγμα ακρότατα Έστω f(x, y )= x 2 +y 2 +1. Να βρεθούν τα τοπικά ακρότατα αυτής. Λύση: Είναι f x = 2x, f y = 2y, f xx = 2 =f yy και f yx = 0. Άρα 2x=0 και 2y=0 ( x 0, y 0 )=(0,0 ) είναι το πιθανό σημείο για ακρότατο Έχουμε D(0,0) = 2 f (0,0) / x 2 2 f(0,0)/ y 2 - [ 2 f (0,0)/ x y] 2 = 2 * 2-0=4 Και επειδή 2 f(0,0)/ x 2 =2>0, 2 f(0,0)/ y 2= 2>0 το σημείο (0,0) είναι σημείο τοπικού ελαχίστου με τιμή f (0,0)= 1.

Ασκήσεις ακρότατα (1) Έστω f ( x, y )=xe y. Να δείξετε ότι xf x f y = 0. Λύση: Είναι xf x f y = x e y x e y = 0. (2) Να βρεθούν τα τοπικά ακρότατα της f (x, y)= x 2 y 2 + xy x 1. Λύση: Είναι f x = 2x + y 1, f y = 2y + x, f xx = 2 f yy =-2, f yx = 1. Άρα: f x = 0 2x + y 1 = 0 και f y = 0 2y+x= 0 (-2/3, -1/3) η λύση και το πιθανό σημείο ακροτάτου Έχουμε D = 2 f(-2/3,-1/3)/ x 2 * 2 f(-2/3,-1/3)/ y 2 - [ 2 f (-2/3, -1/3)/ x y ] 2 = =(-2) (-2) 1 2 = 4-1=3 > 0 και 2 f(-2/3,-1/3)/ x 2 =-2<0, 2 f(-2/3,-1/3) / y 2 =-2 <0 Επομένως το (-2/3, -1/3) είναι σημείο τοπικού μεγίστου με τιμή f (-2/3, -1/3) = 2/3

ΑΣΚΗΣΕΙΣ 1. Για τις ακόλουθες συναρτήσεις 2 μεταβλητών: Να υπολογισθούν οι τιμές τους όταν x=1, y=0 και όταν x=1, y=1 Να υπολογισθούν οι μερικές παράγωγοι ως προς x και ως προς y. 1. f (x, y) = x 2 + xy + y 2 + 3x 3y + 4, 2. f (x, y) = x 2 + 3xy + 3y 2 6x + 3y 6, 3. f (x, y) = 5xy 7x 2 + 3x 6 y + 2, 4. f (x, y) = 2xy 5x 2 2 y 2 + 4x + 4y 4, 5. f (x, y) = x 2 + xy + 3x + 2y + 5, 6. f (x, y) = y 2 + xy 2x 2y + 2, 7. f (x, y) = 2xy 5x 2 2y 2 + 4x 4, 8. f (x, y) = 2xy x 2 2y 2 + 3x + 4, 9. f (x, y) = x 2 + xy + y 2 + 3y + 3, 10. f (x, y) = 3x 2 + 6xy + 7 y 2 2x + 4y, 11. f (x, y) = 2x 2 + 3xy + 4y 2 5x + 2y, 12. f (x, y) = 4x 2 6xy + 5y 2 20x + 26y, 13. f (x, y) = x 2 4xy + y 2 + 5x 2y, 14. f (x, y) = x 2 + y 2 2x + 4y + 6, 15. f (x, y) = x 2 y 2 2x + 4y + 6, 16. f (x, y) = x 2 2xy + 2 y 2 2x + 2y +1, 17. f (x, y) = x 2 + 2xy, 18. f (x, y) = 3 + 2x + 2 y 2x 2 2xy y 2, 19. f (x, y) = x 2 + xy + y 2 + x 4y + 5, 20. f (x, y) = x 2 xy + y 2 + 2x + 2y 4.