Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ211

Σχετικά έγγραφα
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση

Οικουμενικές Πύλες (ΝΑΝD NOR), Πύλη αποκλειστικού Η (XOR) και Χρήση KarnaughMaps

Γ2.1 Στοιχεία Αρχιτεκτονικής. Γ Λυκείου Κατεύθυνσης

Περίληψη ΗΜΥ-210: Λογικός Σχεδιασµός. Λογικές Πύλες. BUFFER, NAND και NOR. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2008

Ελίνα Μακρή

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο Σεπτέμβριος 09 Συνδιαστικά Λογικά Κυκλώματα. Διδάσκουσα: Μαρία Κ.

3. Απλοποίηση Συναρτήσεων Boole

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΗΜΥ211 Εργαστήριο Ψηφιακών Συστημάτων

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Συνδυαστική Λογική / Κυκλώματα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων Σεπτέμβριος 10. Συνδιαστικά Λογικά Κυκλώματα 1

Κεφάλαιο 4. Λογική Σχεδίαση

ΑΣΠΑΙΤΕ Εργαστήριο Ψηφιακών Συστημάτων & Μικροϋπολογιστών Εργαστηριακές Ασκήσεις για το μάθημα «Λογική Σχεδίαση» ΑΣΚΗΣΗ 3 ΠΙΝΑΚΕΣ KARNAUGH

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Απλοποίηση Συναρτήσεων Boole. Επιμέλεια Διαφανειών: Δ.

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ211

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ

Ενότητα 4 ΛΟΓΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΔΥΟ ΕΠΙΠΕΔΩΝ

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων

ΑΣΚΗΣΗ 3 ΣΥΝΔΥΑΣΤΙΚΑ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ: ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ

3 η Θεµατική Ενότητα : Απλοποίηση Συναρτήσεων Boole. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα

Διδάσκoντες: Γιώργος Ζάγγουλος και Λάζαρος Ζαχαρία. Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ΜΕΡΟΣ 1 ο : Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα

Σχεδιασμός Συνδυαστικού κυκλώματος και υλοποίηση στο Quartus και στο Logisim. Υλοποίηση κυκλώματος μόνο με πύλες Nand 2 εισόδων.

Επανάληψη Βασικών Στοιχείων Ψηφιακής Λογικής

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων

100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση

K24 Ψηφιακά Ηλεκτρονικά 4: Σχεδίαση Συνδυαστικών Κυκλωμάτων

Σχεδιασμός Συνδυαστικού κυκλώματος και υλοποίηση στο Quartus (a) με πύλες: and, or, xor και not (b) μόνο με πύλες nand2 και (c) με Vhdl (dataflow)

Διδάσκoντες: Δρ. Γιώργος Ζάγγουλος και Δρ. Παναγιώτα Μ. Δημοσθένους. Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ΗΜΥ211 Εργαστήριο Ψηφιακών Συστημάτων

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2008

Ενότητα 5 ΑΠΛΟΠΟΙΗΣΗ ΛΟΓΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΔΥΟ ΕΠΙΠΕΔΩΝ

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Άλγεβρα Boole και Λογικές Πύλες 2. Επιμέλεια Διαφανειών: Δ.

6.1 Θεωρητική εισαγωγή

Ψηφιακά Συστήματα. 4. Άλγεβρα Boole & Τεχνικές Σχεδίασης Λογικών Κυκλωμάτων

Διδάσκουσα: Μαρία Κ. Μιχαήλ. Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΛΟΓΙΚΕΣ ΠΥΛΕΣ OR, NOR, XOR

Συνδυαστικά Λογικά Κυκλώματα

ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Ι ΕΞΕΤΑΣΕΙΣ ΦΕΒΡΟΥΑΡΙΟΥ 2010

2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες. Βασικοί Ορισµοί

Συναρτήσεων Boole. Η Μέθοδος του Χάρτη

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τμήμα Εφαρμοσμένης Πληροφορικής & Πολυμέσων. Ψηφιακή Σχεδίαση. Κεφάλαιο 2: Συνδυαστικά Λογικά

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων Σεπτέμβριος 10. Κεφάλαιο 2: Συνδιαστικά Λογικά Κυκλώματα (Ελαχιστοποίηση με Κατάταξη σε Πίνακα) 1

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο ΔΙΑΛΕΞΗ 3: Αλγοριθµική Ελαχιστοποίηση (Quine-McCluskey, tabular method)

2 η Θεµατική Ενότητα : Σύνθετα Συνδυαστικά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 17: Αναδιατασσόµενη Λογική Προγραµµατιζόµενο Υλικό

ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ. ιδάσκων : ρ. Β. ΒΑΛΑΜΟΝΤΕΣ. Πύλες - Άλγεβρα Boole 1

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ. Κεφάλαιο 3

C D C D C D C D A B

ΣΧΟΛΗ ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ & ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΩΝ

Λογικές πύλες: Οι στοιχειώδεις δομικοί λίθοι των κυκλωμάτων

2. Άλγεβρα Boole και Λογικές Πύλες

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία

Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ.

Συστηµάτων ΗΜΥ211. Στόχοι Εργαστηρίου. Πανεπιστήμιο Κύπρου. Πανεπιστήμιο Κύπρου. Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ211 Χειµερινό 2013

6. ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο Βασικές Συνδυαστικές Συναρτήσεις και. Διδάσκουσα: Μαρία Κ. Μιχαήλ

σύνθεση και απλοποίησή τους θεωρήµατα της άλγεβρας Boole, αξιώµατα του Huntington, κλπ.

Ψηφιακά Συστήματα. 5. Απλοποίηση με χάρτες Karnaugh

Σχεδιασμός Αποκωδικοποιητή και υλοποίηση του στο Logisim και στο Quartus. Εισαγωγή στο Logisim

2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες

Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο Στοιχειώδης Λογικές Συναρτήσεις

5. ΤΕΧΝΙΚΕΣ ΑΠΛΟΠΟΙΗΣΗΣ

Κεφάλαιο 5. Λογικά κυκλώματα

επανενεργοποιηθεί Βιομηχανικά Ηλεκτρονικά - Κ.Ι.Κυριακόπουλος Control Systems Laboratory

Ψηφιακά Συστήματα. 6. Σχεδίαση Συνδυαστικών Κυκλωμάτων

5. ΤΕΧΝΙΚΕΣ ΑΠΛΟΠΟΙΗΣΗΣ

ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Κατ οίκον Εργασία ΚE5

ΗΜΥ211 Εργαστήριο Ψηφιακών Συστημάτων

2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ

4.1 Θεωρητική εισαγωγή

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ΙΟΥΝΙΟΥ 2014

Περιεχόµενα. Πρόλογος Εισαγωγή 21

( 1) R s S. R o. r D + -

Κυκλώµατα µε MSI. υαδικός Αθροιστής & Αφαιρέτης

Εισαγωγή στα Ψηφιακά Συστήματα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

Ψηφιακή Λογική και Σχεδίαση

6. Σχεδίαση Κυκλωμάτων Λογικής Κόμβων (ΚΑΙ), (Η)

ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Αρχιτεκτονικές Υπολογιστών BOOLEAN ALGEBRA

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ, ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ

ΣΠ. ΛΟΥΒΡΟΣ, Ν. ΣΚΛΑΒΟΣ

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Συνδυαστική Λογική. Επιμέλεια Διαφανειών: Δ.

Εισαγωγή στην Πληροφορική

Η κανονική μορφή της συνάρτησης που υλοποιείται με τον προηγούμενο πίνακα αληθείας σε μορφή ελαχιστόρων είναι η Q = [A].

Transcript:

Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χάρτες Karnaugh, Οικουµενικές Πύλες (NAND & NOR) και Αποκλειστικό Η (ΧΟR) Εβδοµάδα: 3 Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 Στόχοι Εργαστηρίου Με την ολοκλήρωση αυτού του εργαστηρίου, θα πρέπει να είστε σε θέση:. Να χρησιµοποιείτε τους πίνακες Karnaugh (K-Maps) για να απλοποιήσετε µια συνάρτηση. 2. Να σχεδιάζετε ψηφιακά κυκλώµατα µε πύλες (AND, OR, NOT και OR) και στη συνέχεια να αντικαθιστάτε όλες τις πύλες µε NAND ή NOR (οικουµενικές πύλες). 3. Nα «κατεβάζετε» ένα σχεδιασµό από τον υπολογιστή σε µια προγραµµατιζόµενη λογική διάταξη (FPGA) για σκοπούς ελέγχου και επαλήθευσης. 4. Να υλοποιείτε κυκλώµατα µε διακριτά στοιχεία στην πλακέτα κατασκευής κυκλωµάτων και να χρησιµοποιείτε τα όργανα του εργαστηρίου για ανίχνευση βλαβών/λαθών και επιδιόρθωσή τους. 2

Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 Χάρτες Karnaugh Οι χάρτες Κarnaugh (K-χάρτες) είναι γραφικές αναπαραστάσεις δυαδικών συναρτήσεων. Χρησιµοποιούνται ως εργαλεία ελαχιστοποίησης (σε κυκλώµατα δύο επιπέδων). Εκτίµηση Κόστους (Συνάρτηση Λογικό Κύκλωµα) : αρ. παραγόντων αρ. εισόδων πυλών αρ. όρων αρ. πυλών, αρ. εισόδων πυλών Βάθος παρενθέσεων αρ. επιπέδων MKM - 3 Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 Χάρτες Karnaugh (συν.) Ένας χάρτης Κarnaugh αποτελείται από 2 n κελιά, για µια συνάρτηση µε n µεταβλητές. Κάθεκελίαντιπροσωπεύει µία µόνο γραµµή στον πίνακα αληθείας. Κάθε κελί αντιστοιχεί σε ένα ελαχιστόροή µεγιστόρο της δυαδικής συνάρτησης. MKM - 4

Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 Κ-Χάρτης 2 Μεταβλητών x x 2 m 2 3 m 2 m m 3 ή x x 2 2 m 3 m m 2 m 3 Σηµείωση: η σειρά των µεταβλητών είναι ΣΗΜΑΝΤΙΚΗ για το f(x,x 2 ), όπου x είναι η γραµµή, x 2 είναι η στήλη. Το κελί είναι το x x 2. Το κελί είναι ο όρος x x 2, κτλ. Εάν ένας ελαχιστόρος είναι σε µια συνάρτηση, τότε το µπαίνει στο ανάλογο κελί. MKM - 5 Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 Κ-Χάρτης 2 Μεταβλητών (συν.) Κάθε 2 διπλανά κελιά (δεξιά-αριστεράκάτω-πάνω) στο χάρτη διαφέρουν ΜΟΝΟ κατά µία τιµή µεταβλητής, που εµφανίζεται συµπληρωµατική σε ένα κελί και µησυµπληρωµατική σε άλλο κελί. Παράδειγµα: m (=x x 2 ) είναιγειτονικό τουm (=x x 2 ) και τουm 2 (=x x 2 ), αλλά ΟΧΙ τουm 3 (=x x 2 ) MKM - 6

Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 Κ-Χάρτης 2 Μεταβλητών Παράδειγµα f(x,x 2 ) = x x 2 + x x 2 + x x 2 = m + m + m 2 = x + x 2 Το τοποθετείται στον K-χάρτη για τους ελαχιστόρους m, m, m 2 Οµαδοποίηση (ORing) των γειτονικών κελιών µε επιτρέπει απλοποίηση Ποία (απλούστερη) συνάρτηση αντιπροσωπεύεται σε κάθε διακεκοµµένο σχήµα? g( ) = m + m = x h( ) = m + m 2 = x 2 f(x,x 2 ) = x + x 2 Σηµειώστε ότιτο m καλύπτεται 2 φορές MKM - 7 x 2 x 2 3 Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 Κ-Χάρτης 3 ων Μεταβλητών yz x 3 2 m m m 3 4 5 7 6 m 4 m 5 m 7 m 2 m 6 - Σηµείωση: η σειρά των µεταβλητών είναι (x,y,z); yz αντιστοιχεί στη στήλη, x αντιστοιχεί στη γραµµή. - Κάθε κελί είναι γειτονικό µε τρία άλλα κελιά (αριστερά ή δεξιά ή πάνω ή κάτω ή κυκλική ακµή (edge wrap)) MKM - 8

Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 Κ-Χάρτης 3 ων Μεταβλητών (συν.) Οι τύποι των δοµών που είναι είτε ελαχιστόροι ή παράχθηκαν από την επανάληψη του θεωρήµατος ελαχιστοποίησης σε ένα χάρτη 3 µεταβλητών δίνονται στα δεξιά. οµάδα 2 όρων ελαχιστόρος Οµάδες των, 2, 4, 8 είναι πιθανές. οµάδα 4 ων όρων MKM - 9 Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 Ελαχιστοποίηση SOPαπό κανονική σε πρότυπη µορφή χρησιµοποιώντας K-χάρτη Βάζουµε στον K-χάρτηγια κάθε όρο γινοµένου της συνάρτησης (κανονικό SOP) Για ένα όρο γινοµένου µε πιο λίγες µεταβλητές, οµαδοποιούµε γειτονικά κελιά που περιέχουν. Οι οµάδες πρέπει να είναι στην δύναµη του 2 (2, 4, 8, ) Εξετάζουµε και τα boundary wraps για K- χάρτες3 ων ή περισσοτέρων µεταβλητών. Η απάντηση µπορεί να µην είναι µοναδική (µη-κανονική)! πρότυπο SOP MKM -

Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 Ελαχιστοποίηση Βάλτε τους ελαχιστόρους της δυαδικής συνάρτησης στο χάρτηκαι ακολούθως οµαδοποιήστε τους όρους Παράδειγµα: f(a,b,c) = a c + abc + bc MKM - Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 Ελαχιστοποίηση Βάλτε τους ελαχιστόρους της δυαδικής συνάρτησης στο χάρτηκαι ακολούθως οµαδοποιήστε τους όρους Παράδειγµα: f(a,b,c) = a c + abc + bc a bc MKM - 2

Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 Ελαχιστοποίηση Βάλτε τους ελαχιστόρους της δυαδικής συνάρτησης στο χάρτηκαι ακολούθως οµαδοποιήστε τους όρους Παράδειγµα: f(a,b,c) = a c + abc + bc Αποτέλεσµα: f(a,b,c) = a c+ b a bc MKM - 3 a bc Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 ΆλλαΠαραδείγµατα f (x, y, z) = m(2,3,5,7) f (x, y, z) = x y + xz yz f 2 (x, y, z) = m (,,2,3,6) f 2 (x, y, z) = x +yz yz MKM - 4

Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 Εξοµοίωση πύλης NAND F = ( ) = + = F = Y Y F = (( Y) ) = ( +Y ) = Y = Y F = ( Y ) = +Y = +Y Y Y F = Y F = +Y MKM - 5 Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 Κυκλώµατα NAND Για να βρείτε µια υλοποίηση ενός κυκλώµατος χρησιµοποιώντας µόνο πύλες NAND ακολουθήστε τα πιο κάτω βήµατα: Βρέστε ένα απλοποιηµένο SOP Το SOP είναι ένα AND-OR κύκλωµα Αλλάξτε τοand-or κύκλωµα σε έναnand κύκλωµα Χρησιµοποιήστε τα πιο κάτω εναλλακτικά σύµβολα: MKM - 6

Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 Εξοµοίωση SOP µε NAND Υλοποίηση 2 επιπέδων a) Αρχικό SOP (AND-OR κύκλωµα) b) Υλοποίηση χρησιµοποιώντας πύλες NAND MKM - 7 Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 Εξοµοίωση SOP µε NAND (συν.) Επαλήθευση: a) G = WY + YZ b) G = ( (WY) (YZ) ) = (WY) + (YZ) = WY + YZ MKM - 8

Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 SOP µε NAND (ξανά!) a) Αρχικό SOP AND-NOT b) ιπλή αντιστροφή(not) και οµαδοποίηση c) Αντικατάσταση µε πύλες NAND MKM - 9 NOT-OR Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 Υλοποίηση 2-επιπέδων µε NAND Παράδειγµα F (,Y,Z) = Σm(,6). Εκφράστε την F σε SOP µορφή F = Y Z + YZ. Βρείτε την SOP υλοποίηση για την F 2. Αντικατάσταση: AND AND-NOT µορφή της NAND OR NOT-ORµορφή της NAND MKM - 2

Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 Παράδειγµα (συν.) υεπίπεδη υλοποίηση µε πύλες NAND F = Y Z + YZ MKM - 2 Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 Μαθησιακά Αποτελέσµατα Με την ολοκλήρωση αυτού του εργαστηρίου θα πρέπει να µπορείτε να: Χρησιµοποιείτε πίνακες Karnaughγια απλοποίηση συναρτήσεων. Σχεδιάζετε ψηφιακά κυκλώµατα µε οικουµενικές πύλες. Φορτώσετε στην πλακέτα της Altera (FPGA board) τους σχεδιασµούς σας. Υλοποιήσετε κυκλώµατα χρησιµοποιώντας διακριτά στοιχεία και να ελέγξετε την ορθή τους λειτουργία καθώς επίσης και να εντοπίσετε λάθη/προβλήµατα χρησιµοποιώντας τον εργαστηριακό εξοπλισµό. 22